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Abstract 7 

Frameshift protein sequences encoded by alternative reading frames of coding genes 8 

have been considered meaningless, and frameshift mutations have been considered of little 9 

importance for the molecular evolution of coding genes and proteins. However, functional 10 

frameshifts have been found widely existing. It was puzzling how a frameshift protein kept 11 

its structure and functionality while its amino-acid sequence was changed substantially. 12 

Here we show that frame similarities between frameshifts and wild types are higher than 13 

random similarities and are defined at the genetic code, gene, and genome levels. In the 14 

standard genetic code, frameshift codon substitutions are more conservative than random 15 

substitutions. The frameshift tolerability of the standard genetic code ranks in the top 2.0-16 

3.5% of alternative genetic codes, showing that the genetic code is nearly optimal for 17 

frameshift tolerance. Furthermore, frameshift-resistant codons (codon pairs) appear more 18 

frequently than expected in many genes and certain genomes, showing that the frameshift 19 

optimality is reflected not only in the genetic code but more importantly, in its allowance 20 

of further optimizing the frameshift tolerance of a particular gene or genome, which shed 21 

light on the role of frameshift mutations in molecular and genomic evolution. 22 
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1.  Background 1 

The genetic code was deciphered in the 1960s [1]. The standard genetic code consists 2 

of 64 triplet codons, 61 sense codons for the twenty amino acids (AAs), and three nonsense 3 

codons for stop signals. The natural genetic code has several important properties: (1) the 4 

genetic code is universal in all species, with only a few variations found in some organelles 5 

or organisms, such as mitochondrion, archaea, yeast, and ciliates [2]; (2) the triplet codons 6 

are redundant, degenerate, and the third base is wobble (interchangeable); (3) in a coding 7 

DNA sequence (CDS), an insertion or deletion (InDel) causes a frameshift mutation if its 8 

size is not a multiple of three.  9 

It has been reported that the natural genetic code was optimized for translational error 10 

minimization, which is being extremely efficient at minimizing the effect of point mutation 11 

or mistranslation errors and is optimal for kinetic energy conservation in polypeptide chains 12 

[3-6]. Moreover, it was discovered that the standard genetic code resists frameshift errors 13 

by increasing the probability that a stop signal is encountered upon frameshifting because 14 

frameshifted codons for abundant amino acids overlap with stop codons [7].  15 

A frameshift mutation alters a reading frame, producing frameshift protein sequences 16 

(frameshifts). Frameshifts have long been considered mostly meaningless since they look 17 

completely different from the wild type and are often interrupted by many stop signals. A 18 

frameshifted gene yields truncated, non-functional, and potentially cytotoxic peptides [8]. 19 

Therefore, frameshift mutations have been considered harmful and of little importance to 20 

the evolution of proteins or coding genes. However, it is known that frameshifting does not 21 

always lead to lost-of-function. Frameshifted genes can sometimes be expressed through 22 

special mechanisms, such as translational readthrough [9-11], ribosomal frameshifting [12-23 

14], reading frame transition [13], or genetic recoding [15]. Moreover, frameshifted genes 24 

can be retained for millions of years and enable the acquisition of new functions [16].  25 

Many cases of functional frameshift homologs have been reported [17-19], e.g., by 26 

collecting human coding exons bearing InDels compared with the chimpanzee genome, 27 
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Hahn and Lee identified nine frameshift homologs between humans and chimpanzee, some 1 

of which seem to be functional in both species [19]. It has also been reported that several 2 

functional frameshifts as compared to their related genes in other species [20]. Particularly, 3 

Bartonek et al [21] showed that frameshifting preserves key physicochemical properties of 4 

proteins; Huang et al [22] showed that frameshifted proteins of a bacteria toxin gene retain 5 

the same function. Moreover, it has been reported that frameshifting may lead to functional 6 

divergence [16], novel genes [17], or overlapping genes, in viruses [23], bacteria [24], and 7 

even humans [25]. 8 

As is well known, a protein can be dysfunctioned even by changing one residue, so it 9 

is very puzzling how a frameshift protein kept its tertiary structural and functional integrity 10 

while its primary sequence was changed substantially. We have consistently observed high 11 

similarities among frameshifts and wild-type protein sequences [26], while our previous 12 

analyses based on ClustalW alignments were defective. Since we disclosed this study, other 13 

groups have further analyzed the genetic code using the physicochemical properties (PCPs) 14 

of the amino acids [27]. Here, we reanalyze the data using a novel frameshift alignment 15 

method and report that frameshifts and wild types are always highly similar and that the 16 

genetic code is nearly optimal for frameshift tolerance. Furthermore, many genes and 17 

certain genomes were further optimized to enhance their tolerance to frameshift mutations, 18 

which shed light on the role of frameshift mutations in molecular and genomic evolution. 19 

A frameshift mutation alters the reading frame of a gene and produces frameshifted 20 

proteins (frameshifts). Frameshifts have long been considered meaningless because they 21 

look completely different from the wild type. However, many cases of functional 22 

frameshifts have been widely observed. It was puzzling how a frameshift protein maintains 23 

its structure and functionality. Here we show that the similarities between frameshifts and 24 

their wild types are significantly higher than expected. We demonstrate that the genetic 25 

code is nearly optimal in terms of frameshift tolerance, making it prevail in early evolution. 26 

More importantly, it allows further optimizing of a particular gene or genome to tolerate 27 
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frameshift mutations and sheds light on the role of frameshift mutations in molecular and 1 

genomic evolution. 2 

2. Materials and Methods 3 

2.1 Protein-coding DNA sequences 4 

All reference coding sequences (CDSs) in ten model species, including Escherichia 5 

coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila 6 

melanogaster, Danio rerio, Xenopus tropicalis, Mus musculus, Pan troglodytes, and Homo 7 

sapiens, were retrieved from UCSC, Ensembl, or NCBI Genome Databases. Ten thousand 8 

sets of CDSs, each containing three CDSs with 300 or 500 random sense codons, were 9 

produced by a homemade program (RandomCDSs.java).  10 

2.2 Aligning and computing the similarities of wild types and frameshifts 11 

Program Similarity.java batch translates CDSs and computes the pairwise similarities 12 

among the translations, in which CDSs are translated using the standard genetic code in 13 

the 3 different reading frames in the sense strand, and the 3 different translations are aligned 14 

by 3 different methods, including ClustalW2, MSA, or FrameAlign. To calculate pairwise 15 

similarity, a pair of matched AAs in a pairwise alignment is considered conserved if their 16 

substitution score is ≥ 0 in the scoring matrix GON250, i.e., gaps and negative scores are 17 

considered different. The percent of conserved sites gives the pairwise similarity between 18 

a frameshift and the corresponding wild-type protein sequence.  19 

Similarity.java translates internal stop codon into AAs using a set of readthrough rules 20 

(Table 1). Translational readthrough occurs upon the suppressor tRNA activity with an 21 

anticodon matching a stop codon [11]. Many studies showed that translational readthrough 22 

occurs in prokaryotes and eukaryotes, from E. coli to humans, while the readthrough rules 23 

may vary among different species [28]. In E. coli, nonsense suppression tRNAs reported 24 

includes amber suppressors (supD [29], supE [30], supF [31]), ochre suppressors (supG 25 

[32]), and opal suppressors (supU [31], su9 [33]). In this study, suppressor tRNAs were 26 

summarized as a set of readthrough rules and used to translate frameshifted CDSs.  27 
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2.3 FrameAlign: aligning of frameshifts and wild-type protein sequence 1 

A wild-type protein-coding gene sequence consists of n triplet codons is written as: 2 

B1 B2 B3 | B4 B5 B6 | B7 B8 B9 | … | B3i-2 B3i-1 B3i | B3i+1 B3i+2 B3i+3 | … | B3n-2 B3n-1 B3n 3 

Where Bk ∈｛A, G, U, C｝; i = 1… n; k = 1…3n. Each pair of neighboring codons 4 

are separated by a bar to show the reading frame. Its encoded wild-type protein sequence 5 

(WT), consisting of n amino acids, can be written as, 6 

W T :  A B 1 B 2 B 3  A B 4 B 5 B 6  …  A B 3 i - 2 B 3 i - 1 B 3 i  A B 3 i + 1 B 3 i + 2 B 3 i + 3  …  A B 3 n - 5 B 3 n - 4 B 3 n - 3  A B 3 n - 2 B 3 n - 1 B 3 n 7 

where AB3i-2B3i-1B3i ∈｛A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y｝，represents 8 

the amino acid encoded by the ith codon (B3i-2 B3i-1 B3i). If a frameshift is caused by deleting 9 

or inserting one or two bases in the start codon, there are only four cases: 10 

(1) Delete one (-1): B2 B3 B4 | B5 B6 B7 | … | B3i-1 B3i B3i+1 | B3i+2 B3i+3 B3i+4 | …  11 

(2) Delete two (-2): B3 B4 B5 | B6 B7 B8 | … | B3i B3i+1 B3i+2 | B3i+3 B3i+4 B3i+5 | … 12 

(3) Insert one (+1): B0 B1 B2 | B3 B4 B5 | B6 B7 B8 | … | B3i-3 B3i-2 B3i-1 | B3i B3i+1 B3i+2 | … 13 

(4) Insert two (+2): B-1 B0 B1 | B2 B3 B4 | B5 B6 B7 | … | B3i-4 B3i-3 B3i-2 | B3i-1 B3i B3i+1 | … 14 

If a frameshift mutation occurs at any location between the first and the ith codon, the 15 

(i+1)th codon (B3i+1 B3i+2 B3i+3) has only two possible changes: 16 

(1) Forward frameshifting (FF): AB3i+2B3i+3B3i+4 17 

(2) Reverse frameshifting (RF): AB3iB3i+1B3i+2  18 

This continues for each codon downstream, resulting in two frameshifts, denoted as 19 

FF and RF, 20 

FF: AB2B3B4  AB5B6B7  …  AB3i-1B3iB3i+1  AB3i+2B3i+3B3i+4  …  AB3n-7B3n-6B3n-5  AB3n-4B3n-3B3n-2  [B3n-1B3n] 21 

R F :  A B 3 B 4 B 5  A B 6 B 7 B 8 … A B 3 i - 3 B 3 i - 2 B 3 i - 1 A B 3 i B 3 i + 1 B 3 i + 2 … A B 3 n - 6 B 3 n - 5 B 3 n - 4 A B 3 n - 3 B 3 n - 2 B 3 n - 1  [ B 3 n ] 22 

The final codon of FF or RF, as shown in the square brackets, is incomplete and was 23 

deleted. The ith codon of the frameshifts, B3i+2 B3i+3B3i+4 (FF) and B3i B3i+1B3i+2 (RF), both 24 

have two bases overlapping with the (i+1)th WT codon, B3i+1 B3i+2 B3i+3, and their encoded 25 

amino acids, AB3i+2B3i+3B3i+4, AB3iB3i+1B3i+2, and AB3i+1B3i+2B3i+3 are likely similar to each 26 
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other because similar codons encode amino acids with related physicochemical properties 1 

[3]. As shown in the following, WT, FF, and RF can be aligned in pairs, called FrameAlign, 2 

but cannot be aligned properly in a multiple sequence alignment (MSA), so common 3 

MSA tools are not suitable for aligning wild-type and frameshifts.  4 

(1). WT vs. FF: insert one gap at the end of FF. 5 

WT :  A B 1 B 2 B 3  AB 4 B 5 B 6 …A B 3 i - 2 B 3 i - 1 B 3 i AB 3 i + 1 B 3 i + 2 B 3 i + 3 …A B 3 n - 8 B 3 n - 7 B 3 n - 6 AB 3 n - 5 B 3 n - 4 B 3 n - 3A B 3 n - 2 B 3 n - 1 B 3 n 6 

FF :  A B 2 B 3 B 4 A B 5 B 6 B 7 …A B 3 i - 1 B 3 i B 3 i + 1 A B 3 i + 2 B 3 i + 3 B 3 i + 4 …A B 3 n - 7 B 3 n - 6 B 3 n - 5 A B 3 n - 4 B 3 n - 3 B 3 n - 2  
—   7 

(2). WT vs. RF: insert one gap at the beginning of RF. 8 

WT :  A B 1 B 2 B 3  A B 4 B 5 B 6  A B 7 B 8 B 9  … A B 3 i - 2 B 3 i - 1 B 3 i  A B 3 i + 1 B 3 i + 2 B 3 i + 3  …  A B 3 n - 5 B 3 n - 4 B 3 n - 3  A B 3 n - 2 B 3 n - 1 B 3 n 9 

RF: —   AB3B4B5 AB6B7B8   … AB3i-3B3i-2B3i-1 AB3i    B3i+1B3i+2  … AB3n-6B3n-5B3n-4  AB3n-3B3n-2B3n-1 10 

(3). FF vs. RF: no gaps are needed. 11 

FF :  AB 2B 3B 4   AB 5B 6B 7   …   AB 3i - 1B 3 i    B 3 i+1  AB 3 i+2B 3i+ 3B 3i+4   …   AB 3 n- 7B 3 n- 6B 3n- 5   AB 3n- 4B 3n- 3B 3n- 2   12 

R F :  A B 3 B 4 B 5  A B 6 B 7 B 8   …  A B 3 i B 3 i + 1 B 3 i + 2  A B 3 i + 3 B 3 i + 4 B 3 i + 5  …  A B 3 n - 6 B 3 n - 5 B 3 n - 4  A B 3 n - 3 B 3 n - 2 B 3 n - 1  13 

2.4 Computational analysis of frameshift codon substitutions 14 

According to whether the encoded AA is changed or not, codon substitutions have been 15 

classified into synonymous substitutions (SSs) and nonsynonymous substitutions (NSSs). 16 

Based on the above analysis in section 2.3, we further classified codon substitutions into 17 

three subtypes:  18 

(1) Random substitutions (RCSs): randomly change all three bases of the codons, 19 

including 64 × 64 = 4096 possible codon substitutions.  20 

(2) Wobble substitution (WCSs): randomly change only the third position of the codons, 21 

including 64 × 4 = 256 possible codon substitutions.  22 

(3) Frameshift substitution (FCSs): codon substitutions caused by forward or reverse 23 

frameshifting. Each codon has 4 forward and 4 reverse FCSs, and there are 64 × 8 = 512 24 

FCSs in total.  25 

In most cases, all three bases in the frameshifted codon are changed compared with 26 

the original codon, except for triplet monomers (such as AAA, GGG). The AA substitution 27 
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scores of FCSs and RCSs are defined as frameshift substitution scores (FSSs) and random 1 

substitution scores (RSSs), respectively. The sum FSS for all possible FCSs is considered 2 

the frameshift tolerability of the genetic code. Program Frameshift-CODON.java computes 3 

the substitution score for each codon substitution by using a scoring matrix, BLOSSUM62 4 

[34], PAM250 [35, 36], or GON250 [37].  5 

2.5 Computational analysis of random or alternative codon tables 6 

RandomCodes.java generates random codon tables by swapping AAs assigned to the 7 

sense codons and keeping all degenerative codons synonymous (Freeland and Hurst [5]). 8 

One million random codon tables were sampled from all possible (20! = 2.43290201×1018) 9 

genetic codes randomly using a random-number-based sampling algorithm, in which the 10 

probability of an AA being swapped is proportional to its proportion in the code table. The 11 

sampling was repeated 100 times independently. For each sample, the sum of FSSs for each 12 

genetic code was computed and compared with that of the natural genetic code.  13 

AlternativeCodes.java produces all (13824) alternative codon tables by permuting the 14 

nucleotide in each codon position independently (Itzkovitz and Alon [7]). Each alternative 15 

code has the same number of codons per amino acid and the same impact of misread errors 16 

as in the standard genetic code. The sum of FSSs for each of the compatible genetic codes 17 

was computed and compared with that of the natural genetic code. 18 

2.6 Analysis of codon pairs and their frameshift substitution scores 19 

FrameshiftCodonPair.java computes the FSSs for all possible codon pairs. For a given 20 

codon pair, written as B1 B2 B3 | B4 B5 B6, its encoded AA pair is written as AB1B2B3 AB4B5B6. 21 

There are 400 different AA pairs, 64 × 64 = 4096 different codon pairs. Similarly, the codon 22 

pair and its encoded AAs have only two types of changes in frameshifting: 23 

(1) Forward frameshifting: AB0B1B2 AB3B4B5  24 

(2) Reverse frameshifting: AB2B3B4 AB5B6B7 25 
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where B0 and B7 each have four choices, and therefore, there are 4096 × 8 = 32,768 1 

different frameshift codon pair substitutions (FCPSs). For each FCPSs, AB1B2B3 AB4B5B6 was 2 

compared with their frameshifts to obtain their FSSs. 3 

2.7 Computational analysis of the usage of codon and codon pairs 4 

For each genome, the number of occurrences was counted for every codon or codon 5 

pair. The observed and expected frequencies were then calculated for each codon or codon 6 

pair using Gutman and Hatfield method [38]. These calculations result in a list of 64 codons 7 

and 4096 codon pairs, each with an expected (E) and observed (O) number of occurrences, 8 

frequency, together with a value for the χ2 statistics. A codon or codon pair was identified 9 

as over-represented if O > E (or under-represented if O < E), and the average FSSs were 10 

calculated for each genome weighted by their codon or codon pair usages.  11 

3. Results and Analysis 12 

3.1 Wild-type and frameshift protein sequences are always highly similar 13 

First, 100,000 random CDSs each containing 300 sense codons were simulated and 14 

translated into protein sequences in the three reading frames in the sense strand. The three 15 

translations were aligned using ClustalW, MSA, or FrameAlign, and their frame similarities 16 

and random similarities were calculated, respectively. Similarities among the translations 17 

of three different reading frames are defined as frame similarities and those among the 18 

translations of three different random CDSs as random similarities. Frame similarities were 19 

also calculated for all available real CDSs in ten model organisms.  20 

When translations were aligned using ClustalW, the estimated average frame similarity 21 

for real and random CDSs is 0.456±0.033 and 0.452±0.013 (Table 2a), respectively. 22 

However, on average, ClustalW placed 49.57 and 80.11 gaps in the alignments of the 23 

translations of real and random CDSs, respectively. Besides, the estimated average random 24 

similarity is comparable to the average frame similarity but on average 137.05 gaps were 25 

placed in the alignments of translations of random CDSs, indicating that the similarity 26 

calculations can be false due to alignment artifacts, caused by inserting excessive gaps.  27 
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To sidestep the effect of aligners, MSA was used to obtain the optimal alignments [39]. 1 

Unfortunately, because of the memory requirements, MSA cannot be applied to protein 2 

sequences >500 AAs, so it cannot be applied to many real genes. So, only the translations 3 

of random CDSs were aligned using MSA, and the estimated average frame similarity is 4 

0.410±0.055 (Table 2a); on average, MSA placed 108.3 gaps in the alignments. However, 5 

the estimated average random similarity is also as high as 0.412±0.055, and on average, 6 

MSA placed 109.5 gaps in the alignments of random protein sequences, suggesting that 7 

false similarities caused by gappy alignment artifacts cannot be avoided using optimal 8 

alignments. 9 

As described in section 2.3, owing to inherent constraints, frameshifts and wild types 10 

cannot be aligned correctly using any existing methods. We designed FrameAlign, a simple 11 

method for pairwise alignment of frameshifts and wild types. For example, in a FrameAlign 12 

of wild-type zebrafish VEGFAA and its frameshifts, the average amino-acid sequence 13 

similarity is as high as 52.34% (Fig 1). This is very surprising, so we must emphasize here 14 

that this case was not cherry-picked but arbitrarily selected. One could reproduce the same 15 

kind of results easily with almost any real coding genes.  16 

When the translations were aligned using FrameAlign, the estimated average random 17 

similarity is 0.383±0.018, and the mean frame similarity is 0.394±0.016 (Table 2b). Their 18 

difference is small but statistically extremely significant (t-test P-value ≈ 0). Furthermore, 19 

the overall mean frame similarity of the real genes is as high as 0.450±0.030 (Table 2b, S1), 20 

much higher than random similarity (t-test P-value ≈ 0), or the frame similarity of random 21 

CDSs (t-test P-value ≈ 0), indicating that frameshifts of real genes are even more like their 22 

wild types, which cannot be revealed by calculations based on ClustalW or MSA alignments. 23 

For a given CDS, let 𝛿𝑖𝑗 be the pairwise similarities of its three translations, i, j=1,2,3, 24 

i ≠ j, 𝛿𝑖𝑗 = 𝛿𝑗𝑖. Using FrameAlign, the average similarity among the frameshifts and the 25 

wild type is defined as the shiftability of protein-coding genes (δ), 26 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2021. ; https://doi.org/10.1101/067736doi: bioRxiv preprint 

https://doi.org/10.1101/067736


 

10 / 26 
 

𝛿 =
1

3
(𝛿12 + 𝛿13 + 𝛿23) 1 

Shiftability is a quantitative measurement of frameshift tolerability. As frameshifting 2 

occurs between any two of the three reading frames, 𝛿12, 𝛿13, and 𝛿23 are all considered 3 

in the formula. As shown in Table 2b, the average shiftability is close to 0.45 in real genes 4 

but less than 0.4 in random CDSs. In other words, on average, about 45% of the AA sites 5 

remain conserved in a frameshift of a real gene. As shown in Table 2b, the shiftability varies 6 

substantially in different species, from 0.411 (E. coli) to 0.466 (human), but the standard 7 

deviations are all as low as 0.030 in all the species tested, i.e., shiftability is species-8 

dependent, and δ is centered at a specific value for most genes in a specific species.  9 

3.2 The genetic code was optimized for frameshift tolerance 10 

As described in section 2.5, the averages of AA substitution scores for random, wobble, 11 

and frameshift substitutions were computed, respectively. As shown in Table 3 and Supp 12 

S2, in all 4096 random substitutions, only a small proportion (230/4096=5.6%) of them are 13 

synonymous, and the proportion of positive substitutions (with a positive AA substitution 14 

score) is 859/4096=20.1%. Wobble substitutions have the highest average score because 15 

most (192/256=75%) wobble substitutions are synonymous, and most (192/230=83%) 16 

synonymous substitutions are wobble. In contrast, only a small percentage (28/512=5.5%) 17 

of the frameshift substitutions are synonymous (Table 4), while the remaining 94.5% are 18 

nonsynonymous. However, 29.7% of frameshift substitutions are positive nonsynonymous, 19 

which is about 1.5-fold of that of random (20.1%) and about 2-fold of that of wobble 20 

substitutions (15.6%). In summary, in the standard genetic code, wobble substitutions are 21 

assigned mostly with synonymous AAs, while frameshift substitutions are more frequently 22 

with positive nonsynonymous ones.  23 

Besides, no matter which AA substitution scoring matrix (BLOSSUM62, PAM250, or 24 

GON250) is used, the average FSSs are always significantly higher than those of random 25 

substitutions. Using GON250, e.g., the average FSS (-1.78) is significantly higher than the 26 
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average RSS (-10.81). As shown in Table S2, AAs assigned to frameshift substitutions are 1 

significantly more conservative than those to random substitutions. The P-values of the t-2 

tests between FSS and RSS are 2.497×10-10 (forward frameshifting vs random substitutions) 3 

and 2.896×10-9 (reverse frameshifting vs random substitutions), respectively.  4 

In the most common scoring matrices, such as BLOSSUM62, PAM250, and GON250, 5 

most scores are negative, and the percentage of positive scores is about 35%, i.e., in random 6 

codon substitutions, the percent of positive substitution is about 35%, which is consistent 7 

with the observed average random similarity, 0.383 (Table 2b). However, as mentioned 8 

above, the frame similarities of real genes are significantly higher than not only the random 9 

similarities but also the fame similarities of random CDSs, implying that the shiftability of 10 

genes is determined at two different levels, the genetic code, and the coding sequences.  11 

3.3 The natural genetic code ranks at the top of all possible codon tables 12 

To further investigate the frameshift optimality of the genetic code, we compared it 13 

with two kinds of alternative codon tables:  14 

(1) Random codon tables are produced by swapping the amino acids assigned to sense 15 

codons while keeping all degenerative codons synonymous (Freeland & Hurst) [5]. From 16 

all possible (20! = 2.43290201×1018) random codon tables, 100 independent samples were 17 

sampled using a simple random sampling algorithm, each containing one million random 18 

codon tables. As shown in Fig 3 and Table 5, when the FSSs were computed using PAM250, 19 

BLOSSUM62, and GON250 scoring matrix, the sum FSS of the standard genetic code 20 

ranks in the top 13.26%, 1.98%, and 2.94% of all random genetic codes, respectively. For 21 

the 100 independent samples, the standard deviations of the means and the ranks of FSSs 22 

are all as low as 0.03-0.15%, indicating that the sample size of one million is sufficient. 23 

(2) Compatible codon tables are produced by permuting the bases in the three different 24 

codon positions independently and preserving the AA assignment (Itzkovitz & Alon) [7]. 25 

For each codon position, there are 4! = 24 possible permutations of the four nucleotides. 26 

All 243 = 13,824 “compatible” codon tables were produced, and their FSSs were computed 27 
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(Supp S3). As shown in Fig 3 and Table 5, the natural genetic code ranks in the top 30.91% 1 

of the compatible genetic codes when their FSSs were computed using the PAM250 scoring 2 

matrix but ranks in the top 3.48% when using BLOSSUM62 or GON250.  3 

In either case, the ranks of the natural genetic code computed using BLOSSUM62 and 4 

GON250 are highly consistent with each other, the standard genetic code ranks in the top 5 

2.0–3.5% of all alternative codon tables in terms of frameshift tolerability. As pointed out 6 

by Itzkovitz and Alon [7], due to the wobble constraint for base pairing in the third position, 7 

only two permutations (the identity permutation and the A↔G permutation) are allowed in 8 

the third position. Thus, the genetic code has only 24 × 24 × 2 = 1152 distinct alternatives. 9 

Of the 1152 unique codes, only a dozen (or a few dozens) are superior to the natural genetic 10 

code in terms of frameshift tolerance. Therefore, we conclude that the genetic code is nearly 11 

optimal regarding frameshift tolerance. 12 

3.4 The shiftability was further optimized at gene-/genome-level 13 

As abovementioned, shiftability is species-dependent (Table 2b). For some real genes, 14 

shiftability is exceptionally high (Table S1b), e.g., E. coli ydaE (δ=0.571), human glutenin 15 

(δ=0.660). In other words, shiftability can be adjusted by gene or genome sequences. As 16 

shown in Table 6 and Supp S4, the mean FSS weighted by codon usages in E. coli, A. 17 

thaliana, and C. elegans are lower than expected (the mean FSSs of equal usage of codons), 18 

showing that frameshift-resistant codons (FTCs) are not overrepresented in these genomes. 19 

The weighted mean FSSs are significantly higher than expected in humans, mice, Xenopus, 20 

and yeast, suggesting that FTCs are overrepresented in these genomes.  21 

On the other hand, frameshifting involves adjacent codon pairs, so the usages of codon 22 

pairs are more likely to be related to the shiftability of genes. As shown in Table 7 and Supp 23 

S5, the usages of codon pairs are also highly biased in all species tested. Surprisingly, of 24 

the 4096 codon pairs, less than 1/3 (≤1660) are overrepresented, while the remaining 25 

(>2400) codon pairs are underrepresented or even unused, suggesting that the synonymous 26 

codon pairs had undergone a strong selection pressure [40]. The weighted mean FSSs in E. 27 
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coli, C. elegans, and A. thaliana are significantly lower than expected (the mean FSS of 1 

equal usage of codon pairs), showing that frameshift-resistant codon pairs (FTCPs) are not 2 

overrepresented in these genomes; the weighted mean FSSs are significantly higher than 3 

expected in humans, mice, Xenopus, and yeast, indicating that FTCPs are overrepresented 4 

in these higher species. In these species, shiftability is also higher (Table 2b), suggesting 5 

that shiftability is related to the usage of codons and codon pairs. 6 

4. Discussion 7 

4.1 The shiftability of the genetic code and the coding genes 8 

The natural genetic code has existed since the life origin and is believed to have been 9 

optimizing by sense codon reassignment and competition with alternative codes [41]. The 10 

natural genetic code was optimized along with several properties during the early history 11 

of evolution [42]. It has been reported that the natural genetic code was optimized for the 12 

minimization of translational errors, which is explained by the selection to minimize the 13 

deleterious effects of translation errors [3]. Besides, it was suggested that only one in every 14 

million alternative genetic codes is more efficient than the standard genetic code in terms 15 

of minimizing the effects of point-mutations or translational errors [5]; Also, it was shown 16 

that the genetic code is nearly optimal for storing additional information within coding 17 

sequences, such as out-of-frame hidden stop codons (HSCs) [7].  18 

A complete frameshift is usually a loss of function, and most functional frameshifts 19 

are partial frameshifts. Shiftability cannot guarantee that all frameshifts function, but can 20 

bring a better chance of restoring normal structure and function in repairing a frameshift 21 

mutation [43]. Because of the shiftability, near half of the amino acids remain conserved 22 

in a frameshift, regardless of where the frameshifting starts and ends. It is conceivable that 23 

a genetic code with greater shiftability had a better chance of winning the competition with 24 

its competitors in earlier evolutionary history. 25 

In the above, it is demonstrated that the genetic code guaranteed that, on average, about 26 

40 to 45% of the amino acids are kept conservative in a frameshift. This intriguing property 27 
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of the genetic code forms the basis of frameshift tolerance, which explains why functional 1 

frameshifts could exist [16-18]. If a frameshift is not removed by selecting against, it can 2 

be repaired by a reverse mutation, or changed by point mutations [44]. Proteins have been 3 

evolving through point and frameshift mutations in their CDSs. The point mutation rate is 4 

extremely low so that they alter the sequence, the structure, and the function of proteins at 5 

a slow rate. However, frameshift + point mutations provide a far more effective means for 6 

a fast-evolving of protein sequences, allowing the emerging of novel or overlapping genes. 7 

In the evolutionary process, shiftability can play a vital role in maintaining, repairing, and 8 

evolving proteins and coding genes. 9 

4.2 The usage of codons and codon pairs 10 

There have been quite some hypotheses on the cause and consequence of the usages 11 

of codons/codon pairs, such as gene expression level [45], mRNA structure [46], mRNA 12 

stability [47], and protein abundance [48]. Here we demonstrated that the shiftability of a 13 

gene or a genome is adjusted through the usage of codons and codon pairs, suggesting that 14 

many genes and certain genomes were optimized for frameshift tolerance. The shiftability 15 

of coding genes could either be a cause or a consequence of the usage of codons or codon 16 

pairs. The more a frameshift resembles the wild type, the more likely it can restore a normal 17 

function when a frameshift mutation occurs. Thus, overuse of frameshift-resistant codons 18 

or codon pairs confers an evolutionary or survival advantage on a gene or genome. In other 19 

words, the frameshift optimality of the genetic code is reflected not only in the code itself 20 

but more importantly, in its allowance of further optimizing the frameshift tolerance of a 21 

particular gene or genome, sheds light on the role of frameshift mutations in molecular and 22 

genomic evolution. 23 

4.3 The statistics for measuring frameshift tolerability 24 

We devised a new statistic for frameshift tolerance, frameshift substitution scores, and 25 

proved that they are higher in frameshift than in random substitutions. Since we disclosed 26 

this study, two other groups have further analyzed the genetic code [27] and proteins [21] 27 
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using the physicochemical properties (PCPs) of the amino acids. From a chemical point of 1 

view, PCP is more suitable for analyzing frameshift tolerance, while FSS could be more 2 

convenient in biological studies. Substitution scores are calculated from the probability that 3 

different amino acids were substituted by each other over time. Although the substitution 4 

scores are ultimately defined by the physicochemical properties of amino acids, their values 5 

also reflect the evolutionary relationships of organisms. As such, they are widely used in 6 

sequence analyses, e.g., calculating similarities, constructing alignments, and searching 7 

databases. 8 

Each family of scoring matrices has different members, such as PAM1, …, PAM100, 9 

and PAM250, representing probabilities of substitution over different timescales. Different 10 

scoring matrix members are designed for different evolutionary distances, e.g., PAM1, …, 11 

PAM100 are more suitable for aligning closely related protein sequences, while PAM250 12 

is more suitable for remotely related sequences. Pearson pointed out that “deep” scoring 13 

matrices (like BLOSUM62) target alignments with 20 – 30% identity, while “shallow” 14 

scoring matrices (e.g., VTML10), target alignments that share 90 – 50% identity, reflecting 15 

much less evolutionary change [49]. The alignment of frameshifts, however, is unique and 16 

special, because a frameshift and its wild-type CDS are closely related, their translations 17 

have a low identity but a moderate similarity. Obviously, “deep” matrices are more suitable 18 

than “shallow” matrices for aligning and analyzing frameshifts. In this study, we adopted 19 

three representatives of the “deep” matrices to calculate FSSs. Since frame similarities are 20 

quasi-constant, these scoring matrices were used without considering divergence levels. 21 

However, it is undetermined which family (or a member of a family) is the most suitable 22 

for calculating frameshift tolerance, or whether a specialized scoring matrix specifically 23 

designed for analyzing frameshift mutations is needed. 24 

4.4 The readthrough rules and their impact on the computation of similarity  25 

In the present study, we incorporate computational frameshifting and readthrough into 26 

the analysis. It is important to note that computational frameshifting and readthrough are 27 
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conceptually different from biological frameshifting and translational readthrough. This 1 

does not require that they truly occur in an organism, because these operations are used 2 

only for calculating similarities. So, in the present study, they are not taken as biological 3 

laws, but computational methods borrowed from biology.  4 

However, in the frameshifts, the expected percentage of stop signals is 3/64 = 4.69%. 5 

In real genes, the predicted percentage of hidden stop codons is even higher [8]. Therefore, 6 

the readthrough rules can have a significant impact on the frame similarity calculations.  7 

We have conducted a series of studies and found that the location and distribution of 8 

hidden stop codons in real genes and their matching wild-type amino acids are not random, 9 

and therefore, differences between readthrough and non-readthrough translations are not 10 

negligible. All these data suggest that the readthrough rules are probably be adapted to the 11 

genetic code and explain part of its optimality. As the presentation of these results depends 12 

on the present article, we will present these data in another article. 13 

5. Conclusion  14 

Previous studies have proved the robustness of the genetic code to point mutations, 15 

and here we analyzed the tolerability of the genetic code and some organisms to frameshift 16 

mutations. Based on the above analysis, we conclude that the genetic code and the genomes 17 

were both optimized for frameshift tolerance. Shiftability guarantees a near-half similarity 18 

of wild types and frameshifts, endowing coding genes an inherent tolerability to frameshift 19 

mutations in either (forward or reverse) direction. Thanks to this unique property, the 20 

natural genetic code obtained better fitness than its competitors in early evolution. The 21 

shiftability serves as an innate mechanism by which genes and genomes tolerate frameshift 22 

mutations, and thus, deleterious frameshift mutations could have been utilized as a driving 23 

force for evolution. However, the impacts of frameshift tolerance on molecular or genomic 24 

evolution remain to be characterized across the tree of life. 25 

Data accessibility. The source code of the java programs used to analyze the data are 26 

available at GitHub (https://github.com/CAUSA/Frameshift). The Supplementary datasets 27 
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are available at FigShare (https://doi.org/10.6084/m9.figshare.9948050.v2). S1a: Frame 1 

similarities aligned by ClustalW or MSA; S1b: Frame similarities aligned by FrameAlign; 2 

S2: FSSs of the natural genetic code; S3: FSSs of the alternative genetic codes; S4: FSSs 3 

of different codon usages; S5: FSSs of different usages of codon pairs.  4 
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Figure Legends 12 

Fig 1. The alignment of wild-type VEGFAA, readthrough, or non-readthrough 13 

translation of the frameshifts. Vegfaa: wild-type VEGFAA; vegfaa-1: -1 frameshift non-14 

readthrough translation; vegfaa-2: -2 frameshift non-readthrough translation; vegfaa-1-r: -15 

1 frameshift readthrough translation; vegfaa-2-r: -2 frameshift readthrough translation;  16 

Fig 2. The distribution of the FSSs for the alternative genetic codes. (A) randomly 17 

chosen one million random codon tables and (B) all 13824 alternative codon tables. NGC: 18 

the natural genetic code; FSSs were calculated using matrices PAM250, BLOSSUM62, 19 

and GON250. The probability densities were computed using a normal distribution 20 

function and plotted in language R.  21 
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Table 1. The readthrough rules derived from natural suppressor tRNAs for nonsense mutations.  1 

Site tRNA (AA) Codon 

supD Ser (S) UAG 

supE Gln (Q) UAG 

supF Tyr (Y) UAG 

supG Lys (K) UAA 

supU Trp (W) UGA 

 2 

  3 
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Table 2a. The similarities of proteins and their frameshifts (aligned by ClustalW or MSA).  1 

 2 

Type Species 

Number 

of CDSs  

Average Similarity Number 

of Gaps  𝜹𝟏𝟐  𝜹𝟏𝟑  𝜹𝟐𝟑 𝜹 MAX MIN 

Real  

CDSs 

(ClustalW) 

 

H. sapiens 71853 0.474±0.039 0.454±0.046 0.433±0.043 0.464±0.033  0.890   0.271   53.3 

P. Troglodytes 15781 0.473±0.04 0.452±0.047 0.431±0.042 0.463±0.034  0.657   0.309   48.9 

M. musculus  27208 0.469±0.038 0.448±0.046 0.43±0.041 0.459±0.033  0.739   0.286   52.5 

X. tropicalis 7706 0.477±0.038 0.455±0.044 0.439±0.042 0.466±0.032  0.638   0.320   36.8 

D. rerio  14151 0.465±0.036 0.443±0.043 0.433±0.038 0.454±0.032  0.658   0.332   51.4  

D. melanogaster 23936 0.455±0.039 0.432±0.045 0.426±0.039 0.444±0.033  0.702   0.250   69.4 

C. elegans 29227 0.475±0.037 0.444±0.042 0.441±0.042 0.459±0.032  0.750   0.261   50.4 

A. thaliana 35378 0.468±0.038 0.439±0.042 0.436±0.043 0.453±0.032  0.828   0.217   47.6  

S. cerevisiae  5889 0.482±0.043 0.451±0.042 0.463±0.047 0.467±0.035  0.692   0.259   39.7 

E.coli 4140 0.441±0.039 0.415±0.043 0.408±0.042 0.428±0.032  0.614   0.280   45.6 

Average 235269 0.468±0.039 0.443±0.044 0.434±0.042 0.456±0.033  0.890*   0.217*   49.6 

Random CDSs 

(ClustalW) 

Three frames 100000x3 0.475±0.019 0.428±0.020 0.427±0.020 0.452±0.013 0.512  0.391   80.1 

Three random CDSs 100000x3 0.476±0.019 0.429±0.020 0.428±0.020 0.452±0.013 0.520  0.388   137.1 

Random CDSs (MSA) 

Three frames 100000x3 0.475±0.019 0.428±0.020 0.427±0.020 0.452±0.013 0.512  0.391   80.1 

Three random CDSs 100000x3 0.476±0.019 0.429±0.020 0.428±0.020 0.452±0.013 0.520  0.388   137.1 

 3 

 4 

Table 2b. The similarities of proteins and their frameshifts (aligned by FrameAlign) 5 

 6 

  7 

* Very large/small similarity values were observed in a few very short or repetitive peptides. 8 

Type  Species 

Number 

of CDSs 

Average Similarity  Number 

of Gaps  𝜹𝟏𝟐  𝜹𝟏𝟑  𝜹𝟐𝟑 𝜹 MAX MIN 

Real  

CDSs 

(FrameAlign) 

 

H. sapiens 71853 0.492±0.043 0.472±0.044 0.434±0.040 0.466±0.029  0.713  0.194  2 

P. Troglodytes 15781 0.491±0.046 0.468±0.046 0.431±0.042 0.463±0.030  0.625  0.311  2 

M. musculus  27208 0.484±0.046 0.469±0.042 0.426±0.040 0.460±0.029  0.739  0.286  2 

X. tropicalis 7706 0.481±0.042 0.481±0.041 0.439±0.037 0.467±0.028  0.644  0.353  2 

D. rerio  14151 0.471±0.044 0.468±0.040 0.408±0.040 0.449±0.030  0.614  0.314  2 

D. melanogaster 23936 0.475±0.046 0.457±0.044 0.362±0.047 0.431±0.030  0.689  0.236  2 

C. elegans 29227 0.450±0.047 0.475±0.045 0.421±0.043 0.449±0.032  0.634  0.224  2 

A. thaliana 35378 0.442±0.045 0.477±0.044 0.412±0.041 0.444±0.031  0.882  0.244  2 

S. cerevisiae  5889 0.461±0.041 0.510±0.042 0.423±0.038 0.465±0.029  0.692  0.259  2 

E.coli 4140 0.435±0.046 0.426±0.047 0.372±0.043 0.411±0.030  0.571  0.237  2 

Average 235269 0.468±0.045 0.470±0.043 0.413±0.041 0.450±0.030 0.882*  0.194*  2 

Random CDSs 

(FrameAlign) 

Three frames 100000 0.394±0.028 0.394±0.028 0.395±0.028 0.394±0.016 0.477  0.330  2 

Three random CDSs 100000x3 0.383±0.028 0.383±0.028 0.383±0.028 0.383±0.018 0.458  0.304  0 
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 1 

Table 3. The amino acid substitution scores for different kinds of codon substitutions.  2 

Codon Substitution Random 
Frameshift 

Wobble 
FF RF 

Type of 

Codon 

Substitution 

All 4096 256 256 256 

Unchanged (%) 64 (1.6%) 4 (1.6%) 4 (1.6%) 64 (25%) 

Changed (%) 4032 (98.4%) 252 (98.4%) 252 (98.4%) 192 (75%) 

SS (%) 230 (5.6%) 14 (5.5%) 14 (5.5%) 192 (75%) 

NSS-Positive (%) 859 (20.1%) 76 (29.7%) 76 (29.7%) 40 (15.6%) 

NSS-Negative (%) 3007 (73.4%) 166 (64.8%) 166 (64.8%) 24 (9.4%) 

Average 

Substitution 

Score 

BLOSSUM62 -1.29 -0.61 -0.65 3.77 

PAM250 -4.26 -0.84 -0.84 3.68 

GON250 -10.81 -1.78 -1.78 35.60 

SS/NSS: synonymous/nonsynonymous substitution; FF/RF: forward/reverse frameshift substitutions. 3 

  4 
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Table 4. The frameshift substitution scores of the natural and alternative genetic codes. 1 

Genetic codes 

(Number tested) 

Scoring  

Matrix 
  

FSS of the natural genetic code   FSS of the alternative genetic codes 

FSS Score  Rank  Rank% STDEV STDEV%    Average STDEV STDEV% 

Random 

(1,000,000 × 100) 

PAM250  -344 132,586.79  13.26% 1,011.17  0.1011%  -504.88  0.54  -0.1073% 

Blossum62  -276 19,752.52  1.98%  295.17  0.0295%  -450.53  0.27  -0.0598% 

Gonnet250  -912 29,447.26  2.94%  398.72  0.0399%  -2,872.95  4.16  -0.1447% 

Compatible  

(13824) 

PAM250   -344 4273 30.91% - -   -401.25  - - 

Blossum62  -276 481 3.48% - -  -436.75  - - 

Gonnet250   -912 481 3.48% - -   -2,736.13  - - 

   2 
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Table 5. The usage of codons and their weighted mean FSSs (Gon250) 1 

NO 

Species  

(Codon Usage) 

Weighted mean FSS 

1 H. sapiens -9.82 

2 M. musculus -13.47 

3 X. tropicalis -12.75 

4 D. rerio -20.58 

5 D. melanogaster -19.43 

6 C. elegans -23.38 

7 A. thaliana -22.52 

8 S. cerevisiae  -14.08 

9 E. coli -28.59 

10 Equal usage -22.27 

  2 
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Table 6. The usage of codon pairs and their weighted mean FSSs (Gon250) 1 

NO species 
Number of codon pairs   Weighted mean FSS 

Over-represented Under-represented Absent   Over-represented Under-represented All 

1 H. sapiens 1573 2523 50 
 

-1.52 -7.80 -3.06 

2 M. musculus 1505 2591 190 
 

-2.83 -7.13 -3.81 

3 X. tropicalis 1660 2436 148 
 

-3.12 -6.98 -3.80 

4 D. rerio 1493 2603 148 
 

-4.87 -6.09 -5.18 

5 D. melanogaster 1418 2678 140 
 

-5.33 -5.86 -5.02 

6 C. elegans 1469 2627 164 
 

-6.47 -5.26 -6.11 

7 A. thaliana 1566 2530 15 
 

-6.30 -5.35 -6.37 

8 S. cerevisiae 1493 2603 159 
 

-4.86 -6.14 -4.27 

9 E. coli 1389 2707 197   -6.76 -5.11 -6.82 

10 Equal Usage 0 0 0   N/A N/A -5.67 

 2 

  3 
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