1	LAPORT: REMNANT CASTANEA DENTATA IN NORTHWESTERN NEW YORK
2	
3	
4	
5	
6	REMNANT AMERICAN CHESTNUT (CASTANEA DENTATA (MARSH.) BORKH.;
7	FAGACEAE) IN UPLAND FORESTS OF NORTHWESTERN NEW YORK
8	
9	
10	Robert G. Laport
11	
12	University of Rochester, Department of Biology, River Campus, Rochester, NY 14627 USA.
13	Present Address: University of Colorado-Boulder, Department of Ecology & Evolutionary
14	Biology, Campus Box 334, Boulder, CO 80309 USA.
15	email: rob.laport@gmail.com
16	
17	

LAPORT 2

1 Abstract

2	The American chestnut (Castanea dentata [Marsh.] Borkh.; Fagaceae) was an historically
3	important hardwood species in eastern deciduous forests of the United States and Canada prior to
4	being nearly eradicated by chestnut blight (Cryphonectria parasitica (Murr.) Barr). Several
5	remnant populations have been identified persisting across fragmented parts of the historical
6	range. The identification and characterization of remnant C. dentata populations is important for
7	breeding and conservation efforts, as they may represent potential genetic sources of local
8	adaptation or blight resistance, but much of the historical range remains unsurveyed. Here, I
9	report the locations, blight infection status, and reproductive status of remnant American
10	chestnut in upland forested areas of western New York, finding several reproductive/potentially
11	reproductive trees.
12	

12

LAPORT 3

1	The American chestnut (Castanea dentata [Marsh.] Borkh.; Fagaceae) was an historically
2	important hardwood species in eastern deciduous forests of the United States and Canada. Once
3	ranging from southern Maine and Ontario to southern Georgia, and west to the Mississippi River
4	(Peattie 1950; Russell 1987), often in monotypic stands, C. dentata was prized for its suitability
5	as a rot-resistant construction material and for its edible seeds prior to its near-eradication by the
6	fungal chestnut blight (Cryphonectria parasitica (Murr.) Barr) in the early 1900's (Brooks
7	1937; Jacobs et al. 2013). Intensive surveys have revealed several fragmented, remnant
8	populations in parts of Connecticut (Stephens and Waggoner 1980; Paillet 1982, 2002),
9	Massachusetts (Paillet 1988, 2002), Virginia (Stephensen et al. 1991), Ohio (Schwandron 1995),
10	and southern Ontario (Tindall et al. 2004). However, significant parts of the historical range that
11	may harbor remnant populations of C. dentata have not been surveyed.
12	The identification and characterization of remnant C. dentata individuals and populations
13	throughout its formerly native range is important as they may represent potential genetic sources
14	of local adaptation or blight resistance (Steiner 2006). Although active efforts are underway to
15	identify and breed blight-resistant stocks for re-introduction (Bauman et al. 2012; Jacobs et al.
16	2013), the current ecological status of wild, remnant populations of C. dentata throughout the
17	native range remains poorly known. Here, I present results from casual field surveys throughout
18	parts of northwestern New York State (Monroe, Steuben, and Tompkins Counties) where I have
19	identified remnant individuals and small populations of C. dentata.
20	
21	Materials & Methods

22

LAPORT 4

1	From 2008-2011, several woodland and forest parcels in western New York were
2	casually surveyed for the presence of C. dentata. Most of the surveys were focused on remnant
3	woodlands in Monroe County including: woodlands on the campus of the University of
4	Rochester, East Irondequoit Park/Abraham Lincoln Park, Lynch Woods Park, Durand Eastman
5	Park, and Irondequoit Bay Wetlands Park/Lucien Morin Park. However, two sites broadened the
6	scope of the surveys to larger parks in Tompkins (Taughannock State Park) and Steuben
7	Counties (Stony Brook State Park). The land-use and age of the woodland parcels vary
8	significantly, ranging from eastern old growth beech-maple forest to second growth woodlands
9	on former agriculture lands. All of the surveyed areas were characterized by being relatively
10	small (ca. 2 – 90ha; though only a portion of the larger parks was surveyed) and in most cases
11	were surrounded by a matrix of agriculture and/or suburban habitat.
12	When C. dentata individuals were identified, the GPS coordinates for each individual or
13	group of trees was recorded (WGS 84 datum), the diameter at breast height (DBH) was measured
14	or estimated, and the height of each stem was estimated. Additionally, the reproductive status,
15	and chestnut blight infection status was assessed (Table 1). Voucher specimens were collected
16	for most of the survey sites and deposited at the L.H. Bailey Hortorium Herbarium at Cornell
17	University.
18	
19	Results & Discussion
20	

Up until ca. 100 years ago, *Castanea dentata* was one of the most dominant trees of
eastern North American forests (Russell 1987). Being prized for its lumber quality and tendency
to re-sprout from root collars, silviculturalists of the late 19th and early 20th centuries exerted

LAPORT 5

1	considerable effort to ensure sustained lumber harvests (Matoon 1909, Buttrick 1913, Smith
2	2000). The decimation of C. dentata significantly altered eastern forest ecosystems, but the post-
3	blight ecological significance of C. dentata remains relatively unclear. However, significant
4	effort toward understanding the history (Russell 1987) and genetics (Stillwell et al. 2003;
5	Kubisiack and Roberds 2006; Shaw et al. 2003) of C. dentata are informing current efforts to
6	breed blight resistant stock (Jacobs et al. 2013; Bauman 2012) and reintroduce the species to its
7	former range (Paillet 2002).
8	In total, 61 individuals of C. dentata were identified in this study, ranging from 1-32
9	individuals per site (Table 1). About a third of the identified individuals (34.4%) had a single live
10	stem with a DBH \leq 5.0 cm and could not clearly be classified as root-crown re-sprouts.
11	However, several individuals (11.5%) were characterized by large (DBH \ge 10 cm) live or dead
12	trunks surrounded at the base by re-sprouting growth. Many of these re-sprouts were appreciable
13	in size (DBH ca. 1-3 cm). Only 8.3% of identified individuals were large (DBH \geq 20cm) and
14	apparently unaffected by blight at the time of discovery. Most (60%) of these individuals are
15	reproductive having visible catkins at the time of discovery (Table 1), or are potentially
16	reproductive with indications of old fruit husks on the forest floor, and should be re-evaluated in
17	the future.
18	There was not a clear association of woodland type or area with C. dentata growth habit,

19 or the frequency of chestnut blight. All of the surveyed woodlands in the current study tended to

20 be dominated by American Beech (Fagus grandifolia), Red Maple (Acer rubrum), Sugar Maple

21 (Acer saccharum), and White Ash (Fraxinus americana), but White Oak (Quercus alba) and

22 Shagbark Hickory (Carya ovata) were also typically present, and Eastern Hemlock (Tsuga

23 *canadensis*) was also present in the more southern sites. Paillet (1988) found that *C. dentata* was

LAPORT 6

1	more commonly observed near the edges of remnant forest patches, woodlots, and hedgerows
2	than within old-growth mesic forest in Connecticut and Massachusetts. Similarly, Tindall et al.
3	(2004) found that extant C. dentata in southern Ontario was associated with deciduous forests
4	with high canopy cover, but with well-drained sandy soils. Anecdotally, this also seems to be the
5	case in the current study, suggesting that remnant C. dentata in western New York persists in
6	deciduous forests on well-drained soils. However, these surveys were not systematic, and given
7	the patchy distribution of identified C. dentata it is likely that other individuals and small
8	populations may exist throughout woodland and larger forest parcels of western New York.
9	While this study contributes to the identification of remnant populations in northwestern
10	New York, additional surveys in other parts of C. dentata's historical range are essential to
11	understand the potential genetic sources of adaptation or blight resistance. Characterizing the
12	degree of local adaptation in C. dentata is an important avenue to pursue to help guide future
13	conservation efforts, yet this remains poorly understood (Steiner 2006). Despite recent molecular
14	evidence suggesting little genetic structure across the historical range (Kubisiak and Roberds
15	2006; Shaw et al. 2012), local adaptation of key life history traits, such as cold hardiness, growth
16	rate, and blight resistance, may be important for successful reintroduction of the species to
17	certain parts of its historical range (Steiner 2006). Future efforts should investigate the current
18	range of genetic and phenotypic variation present in remnant populations of C. dentata
19	throughout the historical range by identifying these scattered persistent populations.
20	
21	Acknowledgements

22

The author would like to thank J. Ng for assistance during surveys and input on a draft of
this manuscript, J. Ramsey and T. Ramsey for help identifying some of the surveyed localities.
Literature Cited
Bauman, J.M., C.H. Keiffer, and S. Hiremath. 2012. Facilitation of American chestnut (Castanea
dentata) seedling establishment by Pinus virginiana in mine restoration. International
Journal of Ecology 2012: 257326.
Brooks, A.B., 1937. Castanea dentata. Castanea 2: 61-67.
Buttrick, P.L., and J.S. Holmes. 1913. Preliminary report on the chestnut in North Carolina made
in connection with a cooperative investigation of the chestnut bark disease, Raleigh, NC:
North Carolina Geological and Economic Survey.
Jacobs, D.F., and L.R. Severeid. 2004. Dominance of interplanted American chestnut (Castanea
dentata) in southwestern Wisconsin, USA. Forest Ecology and Management 191: 111-
120.
Jacobs, D.F., Dalgleish, H.J., and Nelson, C.D. 2013. A conceptual framework for restoration of
threatened plants: the effective model of American chestnut (Castanea dentata)
reintroduction. New Phytologist 197: 378-393
Kubisiak, T.L. and J. Roberds. 2006. Genetic structure of American chestnut populations based
on neutral DNA markers. p. 109-122. In: Steiner, K.C. and J.E. Carlson (eds.).
Restoration of American chestnut to forest lands-Proceedings of a conference and
workshop. May 4–6, 2004, The North Carolina Arboretum. Natural Resources Report
NPS/NCR/CUE/NRR-2006/001. National Park Service, Washington, D.C.

1	Mattoon, W.R. 1909. The origin and early development of chestnut sprout. Forest Quarterly 7:
2	34-37.
3	Paillet, F.L. 1982. The ecological significance of American chestnut (Castanea dentata (Marsh.)
4	Borkh.) in the Holocene forests of Connecticut. Bulletin of the Torrey Botanical Club
5	109: 457-473.
6	Paillet, F.L. 1988. Character and distribution of American chestnut sprouts in southern New
7	England woodlands. Bulletin of the Torrey Botanical Club 115: 32-44.
8	Paillet, F.L. 2002. Chestnut: history and ecology of a transformed species. Journal of
9	<i>Biogeography</i> 29: 1517-1530.
10	Paillet, F.L., and P.A. Rutter. 1989. Replacement of native oak and hickory tree species by the
11	introduced American chestnut (Castanea dentata) in southwestern Wisconsin. Canadian
12	Journal of Botany 67: 3457-3469.
13	Peattie, D. 1950. A Natural History of Trees of Eastern and Central North America. Houghton
14	Mifflin Company, Boston. MA.
15	Russell, E.W.B. 1987. Pre-blight distribution of Castanea dentata (Marsh.) Borkh. Bulletin of
16	the Torrey Botanical Club 114: 183-190.
17	Schwadron, P.A. 1995. Distribution and persistence of American chestnut sprouts, Castanea
18	dentata (Marsh.) Borkh., in northeastern Ohio woodlands. The Ohio Journal of Science
19	95: 281-288.
20	Shaw, J., J.H. Craddock, and M.A. Binkley. 2012. Phylogeny and phylogeography of North
21	American Castanea Mill. (Fagaceae) using cpDNA suggests gene sharing in the southern
22	Appalachians (Castanea Mill., Fagaceae). Castanea 77: 186-211.
23	Smith, D.M. 2000. American chestnut: Ill-fated monarch of the eastern hardwood forest. Journal

1	<i>of Forestry</i> 98: 12-15.
2	Steiner, K.C. 2006. Regional adaptation in American chestnut. pp 123-128. In: Steiner, K.C. and
3	J.E. Carlson (eds.). Restoration of American chestnut to forest lands-Proceedings of a
4	conference and workshop. May 4-6, 2004, The North Carolina Arboretum. Natural
5	Resources Report NPS/NCR/CUE/NRR-2006/001. National Park Service, Washington,
6	D.C.
7	Stephens, G.R., and P.E. Waggoner. 1980. A half century of natural transitions in mixed
8	hardwood forests. Bulletin 783. The Connecticut Agricultural Experiment Station, New
9	Haven.
10	Stephenson, S.L., H.S. Adams, and M.L. Lipford. 1991. The present distribution of chestnut in
11	the upland forest communities of Virginia. Bulletin of the Torrey Botanical Club 118: 24-
12	32.
13	Stillwell, K.L., H.M. Wilbur, C.R. Werth, and D.R. Taylor. 2003. Heterozygote advantage in the
14	American chestnut, Castanea dentata (Fagaceae). American Journal of Botany 90: 207-
15	213.
16	Tindall, J.R., J.A. Gerrath, M. Melzer, K. McKendry, B.C. Husband, and G.J. Boland. 2004.
17	Ecological status of American chestnut (Castanea dentata) in its native range in Canada.
18	Canadian Journal of Forest Research 34: 2554-2563.
19	
20	
21	

Table 1. Locations and life-history status of *Castanea dentata* identified in woodlands of upstate New York. Asterisks (*) denote individuals for which voucher specimens were collected. Reproductive status; N = non-reproductive, R = reproductive. Blight status; N = no visible signs of being afflicted by blight, B = visibly afflicted by blight or a dead trunk.

	1
Plant IDDateLocality NameCountyLat. (°N)Long. (°W)DBH (cm)Height (m)StatusReprod.Blight Status	Co-occurring Species
UR1* 20Aug2008 UR Woodlands Monroe 43.1101 77.6396 21.6 15 live single stem R? N	Fagus grandifolia, Acer
UR2* 20Aug2008 UR Woodlands Monroe 43.1101 77.6396 12.7 15 live single stem N N	saccharum, Acer rubrum,
UR3*20Aug2008UR WoodlandsMonroe43.109977.639826.420dead trunk, re- sprouts at baseNB	Fraxinus americana, Carya ovata, Quercus alba,
UR4* 20Aug2008 UR Woodlands Monroe 43.1094 77.6397 7.1 12 live single stem N N	Prunus serotina, Populus
UR5* 5Sep2008 UR Woodlands Monroe 43.1093 77.6386 19.8 20 dead trunk, re- sprouts at base N B	deltoides, Juglans nigra, Liriodendron tulipifera,
	Sassafras albidum, Ulmus
UR6* 5Sep2008 UR Woodlands Monroe 43.1095 77.6393 8.5 15 live single stem N N	spp.
SB1*19Oct2008Stony Brook SPSteuben42.514877.69264.010live single stemNN	
SB2 19Oct2008 Stony Brook SP Steuben 42.5148 77.6926 5.0 10 live single stem N N	
SB3* 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 2.0 5 dead trunk, response to a base N B	
SB4 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 3.0 5 live trunk, response to a base N B	Quercus alba, Tsuga
SB519Oct2008Stony Brook SPSteuben42.514777.69184.010live single stemNN	canadensis, Acer
SB6 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 2.0 5 dead trunk, re- sprouts at base N B	saccharum, Fraxinus americana
SB7 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 5.0 10 live single stem N N	
SB8 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 4.0 10 live single stem N N	
SB9 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 3.0 8 live trunk, response to a base N B	
SB10 19Oct2008 Stony Brook SP Steuben 42.5147 77.6918 10.0 20 live single stem R? N	
T1* 27Jun2009 Taughannock SP Tompkins 42.5381 77.6091 4.0 10 live single stem N N	
T2 27Jun2009 Taughannock SP Tompkins 42.5381 77.6091 4.0 10 live single stem N N	Quercus alba, Acer saccharum, Acer rubrum,
T3 27Jun2009 Taughannock SP Tompkins 42.5392 77.6058 4.0 10 live single stem N N	Tsuga canadensis,
T4 27Jun2009 Taughannock SP Tompkins 42.5392 77.6058 20.0 15 live single stem N N	Fraxinus americana
T5 27Jun2009 Taughannock SP Tompkins 42.5392 77.6058 20.0 15 live single stem R N	Fraxinus americana
EI1* 5Oct2009 East Irondequoit Pk. Monroe 43.1913 77.5155 3.0 5 dead trunk, re- sprouts at base N B	Quercus alba, Quercus rubra, Acer rubrum, Acer
EI2 5Oct2009 East Irondequoit Pk. Monroe 43.1918 77.5150 3.0 5 live single stem N N	saccharum, Acer
EI3 5Oct2009 East Irondequoit Pk. Monroe 43.1918 77.5150 3.0 5 live single stem N N	saccharinum, Carya ovata,
EI45Oct2009East Irondequoit Pk.Monroe43.191877.51433.05live single stemNN	Sassafras albidum,
EI5 5Oct2009 East Irondequoit Pk. Monroe 43.1912 77.5158 3.0 5 live single stem N N	Liriodendron tulipifera, Fraxinus americana
LW1 24Sep2009 Lynch Woods Pk. Monroe 43.1004 77.6390 20.0 15 live single stem R N	

LW2	24Sep2009	Lynch Woods Pk.	Monroe	43.1004	77.6388	12.0	10	live single stem	N	N	Fagus grandifolia, Acer saccharum, Acer rubrum, Fraxinus americana, Carya ovata, Quercus alba, Prunus serotina, Populus deltoides, Juglans nigra, Liriodendron tulipifera, Sassafras albidum, Ulmus spp. Fagus grandifolia, Acer
DE1*	5Jun2011	Durand Eastman Pk.	Monroe	43.2282	77.5638	5.0	10	live single stem	Ν	N	saccharum, Acer rubrum, Tsuga canadensis
IW1	30Jun2011	Irondequoit Wetlands	Monroe	43.1666	77.5313	8.4	12	live single stem, sapling 1m S	Ν	Ν	
IW2	30Jun2011	Irondequoit Wetlands	Monroe	43.1666	77.5313	7.4	10	live single stem	Ν	N	
IW3	30Jun2011	Irondequoit Wetlands	Monroe	43.1666	77.5313	5.3	8	live single stem	Ν	N	
IW4	30Jun2011	Irondequoit Wetlands	Monroe	43.1668	77.5313	5.8	8	live single stem	Ν	N	
IW5	30Jun2011	Irondequoit Wetlands	Monroe	43.1668	77.5313	3.6	2.5	live single stem	N	N	
IW6	30Jun2011	Irondequoit Wetlands	Monroe	43.1668	77.5313	8.9	13	live single stem, re-sprouts at base	Ν	Ν	
IW7	30Jun2011	Irondequoit Wetlands	Monroe	43.1668	77.5313	3.1	3	live single stem	Ν	Ν	o " o
IW8	30Jun2011	Irondequoit Wetlands	Monroe	43.1669	77.5313	6.1	12	live single stem, re-sprouts ~5m N, 1m S (3.8 cm DBH)	Ν	N	Quercus alba, Quercus rubra, Acer rubrum, Acer saccharum, Acer saccharinum, Carya ovata,
IW9	30Jun2011	Irondequoit Wetlands	Monroe	43.1666	77.5314	6.9	8	live single stem	N	N	Sassafras albidum,
IW10*	30Jun2011	Irondequoit Wetlands	Monroe	43.1664	77.5321	2.5	1.5	dead trunk, re- sprouts at base	Ν	В	Liriodendron tulipifera, Fraxinus americana,
IW11	30Jun2011	Irondequoit Wetlands	Monroe	43.1656	77.5301	5.3	3	live single stem	Ν	Ν	Populus deltoides, Ulmus
IW12	30Jun2011	Irondequoit Wetlands	Monroe	43.1650	77.5289	5.3	0.5	2 dead trunks, re- sprouts at base	Ν	В	spp
IW13	30Jun2011	Irondequoit Wetlands	Monroe	43.1649	77.5288	5.3	7	2 trunks, re- sprouts 3m W & 2m S	N	N	
IW14	30Jun2011	Irondequoit Wetlands	Monroe	43.1649	77.5288	2.0	3	live single stem	Ν	N	
IW15	30Jun2011	Irondequoit Wetlands	Monroe	43.1650	77.5287	5.6	3	live single stem, re-sprout 1m N	Ν	N	
IW16	30Jun2011	Irondequoit Wetlands	Monroe	43.1649	77.5286	21.1	20	live single stem	R?	Ν	
IW17	30Jun2011	Irondequoit Wetlands	Monroe	43.1648	77.5284	1.3	2	live single stem	Ν	N	
IW18	30Jun2011	Irondequoit Wetlands	Monroe	43.1648	77.5284	2.3	2	live single stem	Ν	Ν	
IW19	30Jun2011	Irondequoit Wetlands	Monroe	43.1648	77.5284	6.9	4	live single stem	Ν	Ν	
IW20	30Jun2011	Irondequoit Wetlands	Monroe	43.1648	77.5284	6.4	7	live single stem	Ν	Ν	
IW21	30Jun2011	Irondequoit Wetlands	Monroe	43.1649	77.5284	6.1	7	live single stem	Ν	Ν	

IW22	30Jun2011	Irondequoit Wetlands	Monroe	43.1648	77.5283	11.2	15	live single stem, re-sprout 1m E	Ν	N
IW23	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5283	10.9	15	live single stem	Ν	N
IW24	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5283	6.4	8	live single stem	Ν	Ν
IW25	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5282	9.1	10	live single stem	Ν	N
IW26	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5283	4.3	5	dead trunk, re- sprouts at base	N	В
IW27	30Jun2011	Irondequoit Wetlands	Monroe	43.1646	77.5281	10.9	12	2 trunks	Ν	N
IW28	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5281	4.1	7	live single stem	Ν	N
IW29	30Jun2011	Irondequoit Wetlands	Monroe	43.1647	77.5280	3.6	2	dead trunk, re- sprouts 5m E, 20 m E	N	В
IW30	30Jun2011	Irondequoit Wetlands	Monroe	43.1649	77.5279	15.2	25	live single stem	Ν	N
IW31	30Jun2011	Irondequoit Wetlands	Monroe	43.1650	77.5279	18.8	30	dead trunk, re- sprouts 2m N, 3m E, 1 m N	N	В
IW32	30Jun2011	Irondequoit Wetlands	Monroe	43.1655	77.5279	3.6	3	dead trunk, re- sprouts 5m W, 10 m W, 2 m N	N	В