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Abstract

Ecological networks, or food webs, describe the feeding relationships between interacting species

within an ecosystem. Understanding how the complexity of these networks influences their response

to changing top-down control is a central challenge in ecology. Here, we provide a model-based

investigation of trophic cascades — an oft-studied ecological phenomenon that occurs when changes

in the biomass of top predators indirectly effect changes in the biomass of primary producers — in

complex food webs that are representative of the structure of real ecosystems. Our results reveal

that strong cascades occur primarily in small and weakly connected food webs, a result very much

in agreement with empirical studies. The primary mechanism underlying weak or absent cascades

was a strong compensatory response; in most webs predators induced large population level cascades

that were masked by changes in the opposite direction by other species in the same trophic guild.

Thus, the search for a general theory of trophic cascades in food webs should focus on uncovering

the features of real ecosystems that promote or preclude compensation within functional guilds.

1 Introduction1

Trophic cascades occur when changes in an ecosystem’s top trophic level propagate down through the2

food web and drive changes in the biomass of primary producers (Hairston et al., 1960; Paine, 1980).3

Cascades have now been documented in virtually every type of ecosystem, but neither conceptual nor4

mathematical theories have been able to explain widespread variation in observed cascade strengths5

(Borer et al., 2005; Shurin et al., 2010); in some ecosystems, strong cascades impact several lower trophic6

levels while in others they diminish within a single trophic level (Heath et al., 2014). Indeed, trophic7

trickles (McCann et al., 1998) — weak or absent cascades in response to major changes to a food web’s8

top trophic level — abound in nature (Brett and Goldman, 1996; Mikola and Setälä, 1998; Halaj and9

Wise, 2001). Given that human actions are disproportionately altering biomass of top predators (Estes10

et al., 2011), there is a pressing need to understand under what circumstances such changes will or won’t11

cascade through complex food webs (Terborgh et al., 2010).12

Food web structure has long been predicted to regulate cascade strength (Strong, 1992; Pace et al.,13
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1999; Polis et al., 2000; Shurin et al., 2010) and the magnitudes of indirect effects in general (MacArthur,14

1955; Yodzis, 1988). Indirect tests of this hypothesis have so far been accomplished by leveraging data15

on community features like functional or taxonomic diversity (Borer et al., 2005; Frank et al., 2006), in16

hopes that these proxies for web structure could provide clues to the features of ecological networks that17

influence the magnitude of cascading top down effects. However results have been mixed, with studies18

reporting both strong (Frank et al., 2006, 2007; Baum and Worm, 2009) and weak or noisy (Borer19

et al., 2005; Fox, 2007) associations between diversity measures and cascade strengths. Whether data20

support assertions that food web structure regulates cascade strengths remains unclear, and a coherent21

understanding of when relatively strong or weak trophic cascades occur is still lacking.22

One impediment to progress is that extensions of cascade theory toward species rich and topolog-23

ically complex food webs are needed to guide further empirical study. To date, cascade theory has24

focused largely on understanding variation in cascade strengths in model food chains (Oksanen et al.,25

1981; McCann et al., 1998; Heath et al., 2014; DeLong et al., 2015) and although extensions of cascade26

theory to alternate trophic modules exist (Bascompte et al., 2005; Fahimipour and Anderson, 2015),27

the mechanisms underlying variation in cascade strength in species rich and complex trophic networks28

remain poorly understood (Holt et al., 2010; Shurin et al., 2010).29

Here we use a bioenergetic food web model to explicitly study the emergence of trophic cascades in30

species rich webs that are representative of the structure of real ecosystems following the invasion of a31

novel top generalist predator. We demonstrate that the strongest trophic cascades occur in small and32

weakly connected food webs — a result in agreement with some prior predictions (Pace et al., 1999; Polis33

et al., 2000; Fox, 2007; Shurin et al., 2010). Moreover, our results reveal that biomass compensation34

within producer and consumer functional guilds, whereby some species increase in biomass while others35

decrease proportionately, is the most common mechanism underlying weak or absent trophic cascades.36

Thus, the search for a general theory of trophic cascades in food webs should focus on uncovering37

the abiotic and biotic features of real ecosystems that promote or preclude biomass compensation and38

compensatory dynamics within functional guilds.39

2 Methods40

We generated food web topologies using an ecological niche model (Williams and Martinez, 2000) and41

simulated the dynamics of energy flows between species using a bioenergetic model (Yodzis and Innes,42

1992; Brown et al., 2004; Brose et al., 2006b; Williams et al., 2007; Williams, 2008). The niche model is43

discussed in detail by Williams and Martinez (2000) and was used to generate topologies for 1200 food44

web simulations in a factorial design: initial species richnesses of S = 10, 15, 20 and 25 were crossed with45

directed connectance C = 0.12, 0.16 and 0.2 as niche model parameters (4 richnesses × 3 connectances ×46
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100 iterations = 1200 webs total). These values of C were chosen because they encompassed a wide range47

of empirically observed connectance values (Dunne et al., 2002). Webs that deviated from the precise C48

values, contained disconnected nodes, or consisted of disconnected subgraphs were not considered.49

Details of the energy flow model and parameters used are discussed by Williams et al. (2007) but50

briefly, an allometrically scaled nonlinear bioenergetic model (Yodzis and Innes, 1992) was used to study51

the dynamics of species biomasses and the occurrence of trophic cascades in niche model food webs when52

they are subject to the invasion of a new top predator. We report results from a single ecologically53

reasonable set of model parameters (see Supplementary Materials), though similar results were obtained54

with other model parameterizations. Biomass dynamics were represented as55

dBi
dt′

= BiGi(B)−
∑

j=consumers

xjyjiBjFji(B)

eji
(1)

56

dBi
dt′

= −xiBi + xiBi
∑

j=resources

yijFij(B)−
∑

j=consumers

xjyjiBjFji(B)

eji
(2)

for primary producers and consumers respectively. Here Bi is the biomass of species i. All k producers57

were assumed to have the same body mass, Mk = 1, and time t‘ was scaled with producer growth rate58

(Williams et al., 2007). The metabolic parameter xi is the mass specific metabolic rate of species i59

relative to the time scale of the system and the non-dimensional constant yij is the ingestion rate of60

resource i by consumer j relative to the metabolic rate of i. The efficiency eji is the fraction of the61

biomass of resource i lost during consumption by consumer j, that is assimilated. The function Gi(B) is62

the normalized growth rate of primary producer population i, which follows logistic growth, 1− Bi/Ki63

where Ki is the carrying capacity of producer i. To control for effects of varying productivity on trophic64

cascade strength, we maintained constant productivity across simulations by assuming a system-wide65

carrying capacity K that is shared amongst i producer populations according to Ki = K/np, where np66

is the number of producer species in the web.67

The function Fji(B) is the normalized multi-species functional response for consumer j and resource68

i, developed by Yodzis and Innes, 1992 and extended by others (Brose et al., 2006b; Williams et al., 2007;69

Williams, 2008). Adding consumer interference to a multispecies nonlinear functional can be represented70

as71

Fji =
ωjiB

1+q
i

B1+q
0 + diBjB

1+q
0 +

∑
k ωjkB

1+q
k

. (3)

Here di is a positive constant that sets the amount of interference in the system and the sum in the72

denominator is over all k resources of consumer j. The parameter B0 is the half saturation density. In73

order to avoid excessive extinctions or the collapse of webs following predator invasions, and permit the74

study of trophic cascades following major changes to web structure, we assumed that interference occurred75

but was weak (di = 0.5) and set the shape parameter q = 0.2, which slightly relaxed consumption at76
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low resource biomasses — features that are both biologically realistic and likely too subtle to observe77

empirically (Williams, 2008). We assume passive resource switching, so ωij = 1/nri where nri is the78

number of resources consumed by species i. Additional model details are discussed by Williams et al.79

(2007) and in Supplementary Materials.80

Simulations were run for 5000 model time steps at which point a top generalist predator invaded81

the food web. We assumed that the predator was a highly efficient generalist, with a fixed body mass82

consistent with a large secondary consumer (see Supplementary Materials) and a scaled attack rate twice83

that of other species in the system. We note that the augmented predator attack rate is still within the84

range of empirically observed values (Peters, 1983). Upon invasion, the predator had a probability of 0.585

of consuming any species in the web whose shortest path to a producer P = 1; the invader can consume86

herbivores or omnivores that are already present in the web, but not producers or other top predators.87

Following the predator invasion, each system was run for a further 5000 time steps for a total 10000 time88

steps. Cascade strengths were measured as log10 response ratios log10Bpost/Bpre, where Bpost and Bpre89

are aggregate producer community biomasses (summed over all np basal species) averaged over the final90

100 time steps after and before predator invasions respectively. Likewise, consumer level effects were91

calculated as log10 response ratios of aggregate consumer biomass, where the consumer guild was defined92

as all species that eat producers (P = 1, where P is the shortest path length to any producer species).93

Numerical integration of ordinary differential equations was accomplished using the deSolve package in94

R (R Core Team, 2015).95

To study whether features of the initial network structure were strongly related to the response of96

systems to invading predators, we computed associations between the cascade strengths and a suite of97

common network properties (Williams and Martinez, 2004; Vermaat et al., 2009) using ANOVA. The98

network properties we considered were species richness, connectance, characteristic path length, the99

fraction of species that are basal, intermediate and omnivorous, clustering coefficient, mean maximum100

trophic similarity and Clauset-Newman-Moore modularity (Clauset et al., 2004). We note that the101

frequentist statistical hypothesis tests employed here were not used to assess statistical significance102

since p-values are determined by the number of simulations one chooses to run. Instead, we follow103

the suggestion of White et al. (2014) and use the statistical model described above as a framework104

for partitioning effect sizes and variance in these multifactorial simulations and comparing effect sizes105

among factors. We refer to these effects below using the notation βvariable where for instance βC is the106

connectance effect, which reflects the per unit impact of scaled (Gelman, 2008) C on the strength of107

cascades.108

Finally, we sought to understand the mechanisms underlying weak trophic cascades, as these cascades109

would be least likely detected in empirical studies. We operationally defined weak cascades as a less than110

twofold change in aggregate producer biomass after predator invasions. One possibility is that weak111
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cascades are caused by diffuse predator effects (sensu Yodzis, 2000), whereby predator consumption is112

spread over multiple resources leading to overall weak biomass responses at the population scales. In113

this scenario, species in each lower trophic level change only slightly in the same direction, and strong114

community level biomass responses fail to emerge. Alternatively, weak cascades could occur even in the115

presence of major changes to population biomasses if changes in strongly depressed species are offset by116

compensatory changes in the opposite direction by other species (i.e., biomass compensation; Gonzalez117

and Loreau, 2009) in the producer or consumer guilds. To quantitatively assess these possibilities, we118

present a measure µ that quantifies the degree of biomass compensation among populations i in a trophic119

guild as120

µ = 1−
|
∑
iεsBi,post −Bi,pre|∑
iεs |Bi,post −Bi,pre|

(4)

where the sum is over all s species in a trophic guild (e.g., producers). This metric µ varies from 0121

to 1, with 0 indicating that all species within a guild changed in the same direction (the biomass of122

all populations increased or decreased) and 1 indicating perfect biomass compensation. If weak trophic123

cascades are typically accompanied by small µ values, then we conclude that weak cascades usually124

occur because top down effects are too diffuse to effect strong changes in aggregate producer biomass.125

Conversely, if weak cascades are typically accompanied by large µ, then we conclude that compensatory126

changes in the opposite direction by species in the same guild lead to a small net changes in aggregate127

biomass. Herein, we refer to compensation in the producer and consumer guilds as µR and µN .128

3 Results129

Predator invasions had moderate effects on aggregate producer biomass in most food webs (Fig. 1).130

Producers changed by a factor of 1.7 on average across all simulations, and twofold changes in producer131

biomass occurred in only 31% of webs. Predator facilitation of producers was strongest in small and132

weakly connected webs (Fig. 2; βS = −0.111, βC = −0.012). Cascade strengths were also associated133

with other topological properties commonly used to describe web structure (Williams and Martinez,134

2004; Vermaat et al., 2009). The strongest associations were observed between producer log response135

ratios and S, the fraction of basal species, the fraction of intermediate species and mean maximum136

trophic similarity (Table 1).137

The magnitudes of consumer log response ratios were more strongly correlated with most food web138

properties (Table 1), suggesting that the sensitivity of a guild’s log response ratio to initial network139

conditions may depend on trophic position; topology appears to exhibit relatively strong associations with140

changes in consumer level biomass following novel predator invasions compared to lower trophic levels.141

Depression of consumer biomass by invading predators was strongest in small and weakly connected142

networks (Fig. 2; βS = 0.741, βC = 0.156) with fewer basal species and less modular, more clustered143
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network configurations (Table 1).144

Producer compensation µR was negatively correlated with cascade strengths across all simulations145

(Fig. 3a; Pearson’s r = −0.34), suggesting that biomass compensation among producers commonly146

masked cascades at the community scale (e.g., compare Figs. 3b & 3c). This result is recapitulated by147

the high frequency of simulations characterized by stronger trophic cascades and almost no producer148

compensation (Fig. 3a, dark shaded region). Indeed, of the webs that exhibited weak producer cascades149

(i.e., aggregate producer biomass increased by less than a factor of 2), 90% contained at least one150

producer population that more than doubled despite the absence of a strong community level cascade.151

Taken together this suggests that weak cascades were in large part caused by producer compensation,152

leading to a small net changes in aggregate biomass.153

Compensation in the consumer guild increased strongly with S and C (Fig. 4), explaining the shift154

in consumer effect size distributions toward zero visible in Figs. 1e-h and Fig. 2. This suggests that two155

separate compensation mechanisms could explain weak cascades in webs. The first occurred primarily156

in smaller webs, when strong depression of consumers was transmitted to producer populations but157

failed to manifest at the guild scale because changes in some populations were offset by others in the158

opposite direction (i.e., producer compensation). The second occurred primarily in larger webs (Fig.159

4), when top-down predator effects were immediately diminished in the consumer trophic guild due160

to consumer compensation. The strongest cascades occurred when the degrees of both producer and161

consumer compensation were low, which was most likely in small, weakly connected webs.162

4 Discussion163

Our modeling study found that strong trophic cascades at the scale of the producer community are more164

likely to occur in smaller, less connected ecological communities, a result that is in agreement with some165

previous interpretations of indirect effects and trophic cascades (MacArthur, 1955; Pace et al., 1999;166

Frank et al., 2006; Shurin et al., 2010). In most webs (90% of all simulations), at least one producer167

species doubled or more in biomass, yet strong community scale cascades occurred in only thirty percent168

of simulations. Strong population level cascades were often offset by an opposite biomass change in169

other species so that the overall producer community biomass wasn’t strongly affected. Thus, restricting170

attention to trophic cascades as measured by changes in the overall biomass of producer species makes it171

much less likely that the effects of an invading species will be detected. Strong top-down effects still occur172

in large and complex ecological networks, but observing them requires finer-grained observations than173

simply measuring total plant biomass (Polis et al., 2000). In almost all communities, the introduced top174

species had a strong effect on both the relative biomass of species and the dynamics of the community.175

Shifts in relative species composition due to compensation within a community are more common than176
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changes in the overall community biomass, and may be a potentially useful indicator for species invasions177

(Schmitz, 2006).178

Weaker cascades in large highly connected webs have been attributed to weaker and more diffuse179

interactions among trophic levels in these systems (Leibold et al., 1997; Pace et al., 1999; Shurin et al.,180

2010). However, the observation that compensation frequently operated in multiple trophic guilds sug-181

gests a new hypothesis for the emergence of trophic cascades in complex food webs. Namely, changes at182

the top of webs have some chance of diminishing due to compensation within each trophic guild, as they183

cascade down to producers. If the trophic network is structured in a way that precludes compensation184

from occurring in any of these guilds, then a strong cascade will emerge. Alternatively, top-down regula-185

tion has the capacity to diminish within a single trophic level if the propensity for compensation is high186

in that particular system, which can result from particular network configurations or exogenous abiotic187

forcing in real ecosystems (Gonzalez and Loreau, 2009). Experimental tests of this hypothesis could be188

accomplished by adding conspecific generalist predators to replicate food webs with known topologies189

(e.g., experimentally assembled micro- or mesocosms) and measuring them repeatedly through time.190

However, replicated food web experiments with repeated measures are scant (Fahimipour and Hein,191

2014) and to our knowledge no such data exist to test the results presented here.192

The present study looks at the role of increasing web size and structural complexity on trophic193

cascades and the detection of the effects of species introductions. The model used, while more complex194

than those typically used in trophic cascade studies, is still highly idealized. The dynamics of real195

ecosystems often include many other non-trophic processes (Kéfi et al., 2015) which might dampen (or196

magnify) the cascading influence of top predators (Polis and Strong, 1996). One such example is that197

our study was restricted to models of closed systems. Evidence of cross-ecosystem cascades (Knight198

et al., 2005) and the influence of resource colonization rates on cascades (Fahimipour and Anderson,199

2015) suggest that extensions of our model to open systems will be a promising enterprise for further200

theoretical study.201

Identifying the abiotic and biotic features of ecosystems that regulate trophic cascades is a fundamen-202

tal issue in ecology (Polis et al., 2000; Terborgh et al., 2010) and a practical problem for the management203

of invasive species, agricultural pests and zoonotic disease (Estes et al., 2011). While the present study204

identifies features of model food web architecture that influence cascades, the potential for compensa-205

tion (Gonzalez and Loreau, 2009), complex indirect interactions and feedbacks (Yodzis, 2000) in real206

world networks together with insufficient data (Shurin et al., 2010) and issues of scale (Polis et al., 2000)207

combine to make the development of a predictive cascade theory of food webs a difficult problem.208
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Figure Captions311

Fig. 1. (a—d) Stacked histograms of producer cascade strength frequency distributions for webs of312

different richness (panel columns) and connectance (green shading) values. The green dotted lines mark313

mean cascade strengths for reference. Smoothing was accomplished using a Gaussian kernel. (e—h)314

Stacked histograms of consumer cascade strength frequency distributions for webs of different richness315

(panel columns) and connectance (purple shading) values. The purple dotted lines mark mean consumer316

cascade strengths for reference. Smoothing was accomplished using a Gaussian kernel.317

Fig. 2. Relationships between S, C and cascade strengths in the producer (green circles) and consumer318

(purple squares) guilds. Points and error bars represent mean cascade strength ± 2 SEM and lines show319

results of loess regression to raw simulated data. Panels (a), (b) and (c) correspond to C values of 0.12,320

0.16 and 0.2 respectively.321

Fig. 3. (a) Level plot showing the negative relationship between the producer cascade strengths and322

the degree of producer compensation, µR. Points represent individual simulations. The background323

is shaded according to a Gaussian kernel used for density estimation, where darker shades of green324

represent denser regions. A high density of stronger cascades with near-zero producer compensation is325

visible. (b) Example of a relatively strong cascade where compensation is weak. Colored green lines326

represent individual producer populations and the thick black line is the aggregate producer biomass.327

A dotted line marks the predator invasion. (c) Example of a weak cascade due to strong producer328

compensation.329

Fig. 4. Relationships between S, C and compensation in the producer (green circles) and consumer330

(purple squares) guilds. Points and error bars represent mean compensation values ± 2 SEM and lines331

show results of loess regression to raw simulated data. Panels (a), (b) and (c) correspond to C values of332

0.12, 0.16 and 0.2 respectively.333
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Table Captions334

Table 1. Results of ANOVA tests. The Variable column indicates the dependent variable to which335

statistics refer. The food web properties were species richness (S ), directed connectance (C ), charac-336

teristic path length (CPL), the fraction of species that are basal (Frac. B), intermediate (Frac. I ) and337

omnivorous (Frac. Om), Clauset-Newman-Moore modularity, clustering coefficient and mean maximum338

trophic similarity. The β and sums-of-squares columns indicate the regression coefficients and model339

sums of squares respectively.340
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Figure 1341
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Figure 2343
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Figure 3345
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Figure 4347
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Table 1: Results of ANOVA tests

Variable Food Web Property β Sum-of-squares
Producer Response Ratio

S -0.111 31.87
C -0.012 15.33
CPL 0.08 0.53
Frac. B 0.21 1.86
Frac. I -0.116 4.83
Frac. Om 0.001 0.06
Modularity 0.014 0.01
Clustering Coefficient 0.009 0.19
Mean Maximum Similarity -0.095 1.48

Consumer Response Ratio
S 0.741 84.46
C 0.156 0.58
CPL 0.002 0.11
Frac. B 0.218 4.24
Frac. I -0.084 6.95
Frac. Om 0.014 0.03
Modularity 0.077 0.55
Clustering Coefficient -0.084 0.93
Mean Max Similarity 0.038 0.24
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Supplementary Methods349

Metabolic parameters in the bioenergetic model (Yodzis and Innes, 1992; Brose et al., 2006b) are given350

by351

xi =
aTi
ark

Mk

Mi

0.25

(5)

352

yij =
aji
aTi

. (6)

Here, Mi is the mass of an individual of species i and Mk is the mass of primary producers used for353

normalizing the time scale. The constants aT , ar and aj (mass0.25×time−1) were previously determined354

from empirical data on the allometry of metabolism, production, and maximum consumption respectively.355

We assumed that all species were invertebrates, and so ar = 1 , aT = 0.314 and yij = 8 (see Brose et al.356

(2006b) for the derivation of these values). The assimilation efficiency eij = 0.45 for consumption of357

producers and eij = 0.85 for consumption of consumers. In order to reduce the size of the parameter358

space being explored, all species in a web were assumed to have a constant consumer-resource body359

size ratio Z so that the mass of species i was Mi = MkZ
P where P is shortest path length between360

species i and any producer. We report simulations in which Z = 42. This value represents the mean361

predator-prey body mass ratio reported by Brose et al., 2006a, although the results presented herein362

were not sensitive to the choice of Z across its biologically relevant range. We assumed that the predator363

had a fixed body mass consistent with a large secondary consumer Mpred = Z2.5. To ensure predators364

were not entering webs in which many species had gone extinct prior to their arrival, we set a limit on365

the maximum allowable number of extinctions prior to invasions at two, using Bi < 1 × 10−15 as the366

extinction threshold. In the event of extinctions before predator arrival, we allowed the extinct taxa to367

reinvade the system at an initial biomass equal to the extinction threshold. We report results for systems368

in which B0 = 0.25 and the system-wide carrying capacity K = 5. The initial biomass of each species369

was uniformly drawn from [0.01, 0.1] for all simulations.370
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