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Abstract 14 

Whole-genome sequencing (WGS) of pathogens from host samples becomes more and 15 

more routine during infectious disease outbreaks. These data provide information on possible 16 

transmission events which can be used for further epidemiologic analyses, such as identification 17 

of risk factors for infectivity and transmission. However, the relationship between transmission 18 

events and WGS data is obscured by uncertainty arising from four largely unobserved processes: 19 

transmission, case observation, within-host pathogen dynamics and mutation. To properly 20 

resolve transmission events, these processes need to be taken into account. Recent years have 21 

seen much progress in theory and method development, but applications are tailored to specific 22 

datasets with matching model assumptions and code, or otherwise make simplifying assumptions 23 

that break up the dependency between the four processes. To obtain a method with wider 24 

applicability, we have developed a novel approach to reconstruct transmission trees with WGS 25 

data. Our approach combines elementary models for transmission, case observation, within-host 26 

pathogen dynamics, and mutation. We use Bayesian inference with MCMC for which we have 27 

designed novel proposal steps to efficiently traverse the posterior distribution, taking account of 28 

all unobserved processes at once. This allows for efficient sampling of transmission trees from 29 

the posterior distribution, and robust estimation of consensus transmission trees. We 30 

implemented the proposed method in a new R package phybreak. The method performs well in 31 

tests of both new and published simulated data. We apply the model to to five datasets on 32 

densely sampled infectious disease outbreaks, covering a wide range of epidemiological settings. 33 

Using only sampling times and sequences as data, our analyses confirmed the original results or 34 

improved on them: the more realistic infection times place more confidence in the inferred 35 

transmission trees. 36 
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 37 

Author Summary 38 

It is becoming easier and cheaper to obtain whole genome sequences of pathogen 39 

samples during outbreaks of infectious diseases. If all hosts during an outbreak are sampled, and 40 

these samples are sequenced, the small differences between the sequences (single nucleotide 41 

polymorphisms, SNPs) give information on the transmission tree, i.e. who infected whom, and 42 

when. However, correctly inferring this tree is not straightforward, because SNPs arise from 43 

unobserved processes including infection events, as well as pathogen growth and mutation 44 

within the hosts. Several methods have been developed in recent years, but none so generic and 45 

easily accessible that it can easily be applied to new settings and datasets. We have developed a 46 

new model and method to infer transmission trees without putting prior limiting constraints on 47 

the order of unobserved events. The method is easily accessible in an R package implementation. 48 

We show that the method performs well on new and previously published simulated data. We 49 

illustrate applicability to a wide range of infectious diseases and settings by analysing five 50 

published datasets on densely sampled infectious disease outbreaks, confirming or improving the 51 

original results. 52 

Introduction 53 

As sequencing technology becomes easier and cheaper, detailed outbreak investigation 54 

increasingly involves whole-genome sequencing (WGS) of pathogens from host samples [1]. 55 

These sequences can be used for studies ranging from virulence or resistance related to particular 56 

genes [1, 2], to the interaction of epidemiological, immunological and evolutionary processes on 57 
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the scale of populations [3, 4]. If most or all hosts in an outbreak are sampled, it is also possible 58 

to use differences in nucleotides, i.e. single-nucleotide polymorphisms (SNPs), to resolve 59 

transmission clusters, individual transmission events, or complete transmission trees. With that 60 

information it becomes possible to identify high risk contacts and superspreaders, as well as 61 

characteristics of hosts or contacts that are associated with infectiousness and transmission [5, 6]. 62 

Much progress has been made in recent years in theory and model development, but existing 63 

methods typically include assumptions to address specific datasets, with fit-for-purpose code for 64 

data analysis. An easily accessible method with the flexibility to cover a wide range of infections 65 

is currently lacking, and would bring analysis of outbreak sequence data within reach of a much 66 

broader community. 67 

The interest in easily applicable methods for sequence data analysis in outbreak settings 68 

is demonstrated by the community’s widespread use of the Outbreaker package in R [7-10]. 69 

However, the model in Outbreaker assumes that mutations occur at the time of transmission, 70 

which does not take the pathogen’s in-host population dynamics into account, nor the fact that 71 

mutations occur within hosts. The publications by Didelot et al [11] and Ypma et al [12] revealed 72 

that within-host evolution is crucial to relate sequence data to transmission trees, as is illustrated 73 

in Fig 1A: there are four unobserved processes, i.e. the time between subsequent infections, the 74 

time between infection and sampling, the pathogen dynamics within hosts, and mutation. The 75 

difference in sequences between host b and infector a result from all of these processes.  As a 76 

result, a host’s sample can have different SNPs from his infector’s (Fig 1B: hosts a and b); a host 77 

can even be sampled earlier than his infector with fewer SNPs (Fig 1B: hosts a and c).  78 

 79 
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Fig 1. Sketch of stochastic processes involved in data generation process. (A) The four 80 

processes indicated by host a infecting host b. (B) Examples of resulting differences in sequences 81 

for host a infecting both hosts b and c. 82 

 83 

Several recently published methods do allow mutations to occur within the host, but 84 

make other assumptions not fully reflecting the above-described process, such as using a 85 

phenomenological model for pairwise genetic distances [13], presence of a single dominant 86 

strain in which mutations can accumulate [14], or absence of a clearly defined infection time 87 

[15]. To take the complete process into account, Didelot et al [11] and Numminen et al [16] took 88 

a two-step approach: first, phylogenetic trees were built, and second, these trees were used to 89 

infer transmission trees. Didelot et al [11] used the software BEAST [17, 18] to make a timed 90 

phylogenetic tree, and used a Bayesian MCMC method to colour the branches such that changes 91 

in colour represent transmission events. Numminen et al [16] took the most parsimonious tree 92 

topology, and accounted for unobserved hosts by a sampling model (which is an additional 93 

complication). This two-step approach is likely to work better if the phylogenetic tree is properly 94 

resolved (unique sequences with many SNPs), but less so if there is uncertainty in the 95 

phylogenetic tree. However, also in that case construction of the phylogenetic tree is done 96 

without taking into account that only lineages in the same host can coalesce, and that these go 97 

through transmission bottlenecks during the whole outbreak. That is likely to result in incorrect 98 

branch lengths and consequently incorrect infection times.  99 

Hall and Rambaut [19] implemented a method in BEAST for simultaneous inference of 100 

transmission and phylogenetic trees. BEAST allows for much flexibility when it comes to 101 

phylogeny and population dynamics reconstruction (for which it was originally developed [17, 102 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2016. ; https://doi.org/10.1101/069195doi: bioRxiv preprint 

https://doi.org/10.1101/069195


6 
 

18]), e.g. by allowing variation in mutation rates between sites in the genome, between lineages, 103 

and in time. However, datasets of fully observed outbreaks often do not contain sufficient 104 

information for reliable inference: they typically cover only a few months up to at most several 105 

years (as in Didelot et al [11], with tuberculosis) and do not contain many SNPs (usually of the 106 

same order of magnitude as the number of samples). A more important limitation is that the 107 

transmission model implemented in BEAST is rather specific: it allows for transmission only 108 

during an infectious period constrained by positive and negative samples, during which 109 

infectiousness is assumed to be constant. This may put prior constraints on the topology and 110 

order of events in the transmission and phylogenetic trees, which is undesirable if the primary 111 

aim is to reconstruct the transmission tree with little or no prior information about when hosts 112 

were infectious. 113 

Previously, Ypma et al [12] had also developed a method for simultaneous inference of 114 

transmission and phylogenetic trees, albeit with rather specific assumptions on the within-host 115 

pathogen dynamics and the time and order of transmission events, and with no available 116 

implementation. However, their view on the phylogenetic and transmission trees was quite 117 

different. Instead of a phylogenetic tree with transmission events, they regarded it as a 118 

hierarchical tree. The top level is the transmission tree, with hosts having infected other hosts 119 

according to an epidemiological transmission model. The lower level consists of phylogenetic 120 

“mini-trees” within each host. A mini-tree describes the within-host micro-evolution. It is rooted 121 

at the infection time and has tips at transmission and sampling events. The complete 122 

phylogenetic tree then consists of all these mini-trees, connected through the transmission tree. 123 

That description allowed them to develop new MCMC updating steps, some changing the 124 

transmission tree, some the phylogenetic mini-trees.  125 
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We built further on that principle to reconstruct the transmission trees of outbreaks, in a 126 

new model and estimation method. The method requires data on pathogen sequences and 127 

sampling times. The model includes all four underlying stochastic processes (Fig 1A), each 128 

described in a flexible and generic way, such that we avoid putting unnecessary prior constraints 129 

on the order of unobserved events (Fig 1B).  This allows for application of the method to a wide 130 

range of infectious diseases, including new emerging infections where we have little quantitative 131 

information on the infection cycle. The method is implemented in R, in a package called 132 

phybreak. We illustrate the performance of the method by applying it to both new and previously 133 

published simulated datasets. We demonstrate the range of applicability by applying the model to 134 

to five datasets on densely sampled infectious disease outbreaks, covering a wide range of 135 

epidemiological settings. 136 

Results 137 

Outline of the method 138 

The method infers infection times and infectors of all cases in an outbreak. The data 139 

consist of sampling times and sequences of all cases, where some of the sequences may be empty 140 

if no sequence is available. Using simple models for transmission, sampling, within-host 141 

dynamics and mutation, samples are taken from the posterior distributions of model parameters 142 

and transmission and phylogenetic trees, by a Markov-Chain Monte Carlo (MCMC) method. The 143 

main novelty of our method lies in the proposal steps for the phylogenetic and transmission trees 144 

that are used to generate the MCMC chain. It makes use of the hierarchical tree perspective, in 145 

which the phylogenetic tree is described as a collection of phylogenetic mini-trees (one for each 146 

host), connected through the transmission tree (see Methods for details). 147 
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The posterior samples are summarized by medians and credible intervals for parameters 148 

and infection times, and by consensus transmission trees. Consensus transmission trees are based 149 

on the posterior support for infectors of each host, defined as the proportion of posterior trees in 150 

which a particular infector infects a host. The Edmonds’ consensus tree takes for each host the 151 

infector with highest support, and uses Edmonds’ algorithm to resolve cycle and multiple index 152 

cases [20], whereas the Maximum Parent Credibility (MPC) tree is the one tree among the 153 

posterior trees with maximum product of supports [19]. 154 

The models and parameters used for inference are as follows: 155 

- transmission: assuming that all cases are sampled and the outbreak is over, the mean 156 

number of secondary infections must be 1. The transmission model therefore consists 157 

only of a Gamma distribution for the generation interval, i.e. the time interval 158 

between a primary and a secondary case. The model contains two parameters: the 159 

shape aG, which we fixed at 3 during our analyses, and the mean mG, which is 160 

estimated and has a prior distribution with mean μG and standard deviation σG. In an 161 

uninformative analysis, μG = 1, and σG = ∞. 162 

- sampling: the sampling model consists of a Gamma distribution for the sampling 163 

interval, which is the interval between infection and sampling of a case. The model 164 

contains two parameters: the shape aS, which is fixed during the analysis, and the 165 

mean mS, which is estimated and has a prior distribution with mean μS and standard 166 

deviation σS. In an uninformative analysis, μS = 1, and σS = ∞; in a naïve analysis we 167 

additionally set aS = 3. 168 

- within-host dynamics: The within-host model describes a linearly increasing 169 

pathogen population size ( )τ τ=w r , at time τ since infection of a host. The slope r 170 
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has a Gamma distributed prior distribution with shape ar and rate br. In an 171 

uninformative analysis, ar = br = 1. 172 

- The mutation model is a site-homogeneous Jukes-Cantor model, with per-site 173 

mutation rate μ. The prior distribution for log(μ) is uniform. 174 

Analysis of the newly simulated datasets 175 

We generated new simulated datasets were generated with the above model, in a 176 

population of 86 individuals and a basic reproduction number R0 = 1.5, to obtain 25 datasets of 177 

50 cases. Parameters were aG = aS = 10, mG = mS = r = 1, μ = 10-4 and sequence length 104, 178 

resulting in 1 genome-wide mutation per mean generation interval of one year.  179 

Table 1 shows some summary measures on performance of the method (see S1 Results 180 

for additional measures and results for more simulations). Sampling a single chain of 25,000 181 

MCMC cycles took about 30 minutes on a 2.6 GHz CPU (Linux). Four sets of results are shown: 182 

one with all parameters fixed at their correct value, and three with different levels of prior 183 

knowledge on mS only: informative with correct mean, uninformative, and informative with 184 

incorrect mean. The top of the table shows effective sample sizes (ESSs) for μ and mS and for the 185 

infection times to evaluare mixing of continuous parameter samples. To evaluate mixing across 186 

and within chains of infectors per host, we tested for differences between the chains and for 187 

dependency within the chains by Fisher’s exact tests: the proportion of accepted tests (P > 0.05) 188 

is a measure of mixing. The MCMC mixing is generally good for tree inference and model 189 

parameters, as most ESSs are above 200 and an expected 95% of Fisher’s tests is accepted; the 190 

only exceptions are the within-host parameter r (ESSs between 100 and 200, S1 Results), and mS 191 

with an uninformative prior. 192 

 193 
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Table 1. Performance on 25 newly simulated datasets of 50 cases, with shape parameters aS 194 

= aG = 10.  195 

  Level of prior information on mS 
 Reference a Informative 

Correct b 
Uninformative c Informative 

Wrong d 

MCMC sampling     
Continuous parameter samples (95% interval of ESS) 
μ 6520 ; 9763 631 ; 1853 226 ; 1327 548 ; 1764 
mS   270 ; 319 31 ; 111 309 ; 789 
tinf  1499 ; 8378 765 ; 4437 212 ; 982 425 ; 4314 
Infectors (% Fisher’s exact tests accepted) 
between chains 98.6% 98.3% 98.7% 98.6% 
autocorrelation 96.1% 97.0% 94.9% 96.9% 
Tree inference     
Infection times (coverage: % of 95% CIs containing the true value) 
 95.8% 96.2% 96.8% 44.6% 
Infectors (number correct/number identified) 
Edmonds’  34.9/50 34.6/50 34.3/50 34.5/50 
MPC  33.4/50 32.4/50 32.6/50 30.7/50 
>50% support  27.9/33.0 28.3/34.0 28.1/34.1 21.6/24.4 
>80% support  15.2/15.7 15.2/15.8 15.4/16.0 8.2/8.4 
Results are based on two MCMC chains of 25,000 samples each; ESS, effective sample size; CI, 196 

credible interval; MPC, maximum parent credibility. a mG, mS, r = 1; b μS = 1, σS = 0.1; c μS = 1, 197 

σS = ∞; d μS = 2, σS = 0.1 198 

 199 

The bottom part of Table 1 shows the results on tree inference. Infection times (using all 200 

MCMC samples) are well recovered if the mean sampling interval does not have a strong 201 

incorrect prior. For this simulation scenario, consensus transmission trees contained almost 70% 202 

(35 out of 50) correct infectors, as determined by counting infectors and resolving multiple index 203 

cases and cycles in the tree (Edmonds’ method [20]) and slightly fewer when choosing the 204 

maximum parent credibility (MPC) tree [19] among the 50,000 posterior trees. Infectors with 205 

high support are more likely correct: 82% (28 out of 34) are correct if the support is above 50%, 206 

and 96% (15.4 out of 16) are correct if the support is above 80%. These numbers are similar in 207 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2016. ; https://doi.org/10.1101/069195doi: bioRxiv preprint 

https://doi.org/10.1101/069195


11 
 

smaller outbreaks, and lower if sampling and generation interval distributions are wider (S1 208 

Results). Using prior information on the mean sampling interval did not improve on this, but if 209 

prior information is incorrect, fewer hosts have a strongly supported infector, which makes 210 

inference more uncertain.  In conclusion, the method is fast and efficient if applied to simulated 211 

data fitting the model. In that case, no informative priors are needed for transmission tree 212 

inference. 213 

Analysis of previously published simulated data 214 

We applied the method to previously published outbreak simulations [19]. Briefly, a 215 

spatial susceptible-exposed-infectious-recovered (SEIR) model was simulated in a population of 216 

50 farms, with a latent period (exposed) of two days and a random infectious period with mean 217 

10 days and standard deviation 1 day, at the end of which the farm was sampled. Two mutation 218 

rates were used, either Slow Clock or Fast Clock, equivalent to 1 or 50 genome-wide mutations 219 

per generation interval of one week, respectively.  220 

Table 2 shows performance of the method with naïve and informative prior information 221 

on the sampling interval distribution (see S1 Results for uninformative). Effective sample sizes 222 

are a bit smaller than with the new simulations, but in most cases still good for infection times, 223 

whereas sampling of infectors was excellent. The low variance of the sampling interval 224 

distribution caused some problems in efficient sampling of mS because of its high correlation 225 

with the associated infection times. This is best seen in the ESS of mS and infection times in the 226 

uninformative Slow Clock analysis (S1 Results), but it also causes problems in the burn-in phase 227 

if inference starts with parameter values far from their actual values (not shown). Posterior 228 

median mutation rates are slightly higher than used for simulation, which could be due to 229 

different rates for transition and transversion in the simulation model [19]. 230 
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 231 

Table 2. Performance on 25 published simulated datasets in populations of size 50 [19]. 232 

 Slow Clock simulations Fast Clock simulations 
Prior information Naïve a Informative b Naïve a Informative b 

MCMC sampling     
Continuous parameter samples (95% interval of ESS) 
μ 225 ; 505 355 ; 979 24 ; 710 62 ; 702 
mS 44 ; 114 37 ; 88 88 ; 932 79 ; 390 
tinf  170 ; 1475 197 ; 608 170 ; 2064 236 ; 2571 
Infectors (% Fisher’s exact tests accepted) 
between chains 95.9% 97.3% 87.3% 96.8% 
autocorrelation 94.2% 96.7% 81.7% 94.8% 
Parameter inference (95% interval of posterior medians) 
log10(μ) -4.86 ; -4.66 -4.93 ; -4.77 -3.29 ; -3.17 -3.20 ; -3.16 
mG 2.1 ; 4.9 3.6 ; 5.7 4.2 ; 6.4 4.7 ; 6.1 
mS 6.6 ; 10.3 11.3 ; 12.8 9.9 ; 15.5 11.6 ; 12.6 
r 0.40 ; 1.6 0.13 ; 0.59 0.49 ; 2.6 0.24 ; 1.3 
Tree inference     
Infection times (coverage: % of 95% CIs containing the true value) 
 76.6% 97.6% 95.4% 94.7% 
Infectors (number correct/number identified) 
Edmonds’  28.8/49.3 30.7/49.3 31.8/49.3 45.3/49.3 
MPC  25.1/49.3 30.2/49.3 29.8/49.3 45.3/49.3 
>50% support  12.9/14.3 25.4/31.4 22.6/28.7 45.0/48.7 
>80% support  3.0/3.1 18.8/20.2 4.4/4.8 41.0/42.2 
Results are based on two MCMC chains of 25,000 samples each. The mean outbreak size was 233 

49.3 cases; ESS, effective sample size; CI, credible interval; MPC, maximum parent credibility. a 234 

aS = 3, μS = 1, σS = ∞; b aS = 144, μS = 12, σS = 1 235 

 236 

Consensus trees with uninformative and informative settings were almost as good as in 237 

the original publication [19], in which spatial data were used and in which it was known that 238 

there was a latent period and that hosts could not transmit after sampling. In the Slow Clock 239 

simulations about 62% of infectors were correct, and in the Fast Clock simulations about 92%. 240 

Infection times were also well recovered in most cases, but not in the uninformative Slow Clock 241 
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analysis (S1 Results). In the naïve analyses, the Slow Clock consensus trees are only slightly less 242 

good (but mixing of the chain much better), whereas the Fast Clock consensus trees become 243 

much worse, with only 65% of infectors correct. In conclusion, the method performs well if 244 

applied to data simulated with a very different model. Good prior information on the variance of 245 

the sampling interval can significantly improve transmission tree inference, especially if the 246 

genetic data contain many SNPs. 247 

Analysis of published datasets 248 

We finally applied the method to five published datasets on outbreaks of Mycobacterium 249 

tuberculosis (Mtb, [11]), Methicillin-resistant Staphylococcus aureus (MRSA, [21]), Foot-and-250 

mouth disease (FMD2001 and FMD2007, [12, 22-24]), and H7N7 avian influenza (H7N7, [19, 251 

25-27]). 252 

The results for the four smaller datasets are shown in Table 3, which shows that mixing 253 

of the MCMC chains was generally good. Fig 2 shows the Edmond’s consensus trees (full details 254 

in S1 Results), with each host’s estimated infection time and most likely infector, colour coded 255 

to indicate posterior support. Fig 3 shows one sampled tree for each dataset (from the posterior 256 

set of 50,000), matching the MPC consensus tree topology. 257 

 258 

Table 3. Summary statistics for four published datasets.  259 

 Mtb MRSA FMD2001 FMD2007 
Prior information Naïve a Informative b Naïve a Naïve a 

MCMC sampling     
Continuous parameter samples (ESS) 
μ 244 2183 200 561 
mG 213 478 774 686 
mS 42 431 176 317 
r 214 147 286 297 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2016. ; https://doi.org/10.1101/069195doi: bioRxiv preprint 

https://doi.org/10.1101/069195


14 
 

tinf (range of ESSs) 133 ; 961 61 ; 2131 160 ; 1217 270 ; 1584 
Infectors (% Fisher’s exact tests accepted) 
between chains 33/33 35/36 15/15 11/11 
autocorrelation 31/33 35/36 15/15 11/11 
Parameter inference (95% interval of posterior medians) 
log10(μ) -9.4 (-9.7 ; -9.1) -8.1 (-8.3 ; -7.9) -4.4 (-4.5 ; -4.3) -4.5 (-4.8 ; -4.3) 
mG 102 (55 ; 170) 23 (16 ; 33) 14 (10 ; 21) 8 (5 ; 13) 
mS 425 (180 ; 684) 30 (20 ; 45) 13 (7 ; 22) 9 (5 ; 17) 
r 0.057 (0.0099 ; 3.3) 0.58 (0.020 ; 3.1) 1.3 (0.29 ; 3.9) 0.89 (0.098 ; 3.9) 
Results are based on two MCMC chains of 25,000 samples each; ESS, effective sample size; a aS 260 

= 3, μS = 1, σS = ∞; b aS = 1, μS = 15, σS = 5 261 

 262 

Fig 2. Consensus Edmonds’ transmission trees for four of the five analysed datasets. 263 

Vertical bars indicate sampling days, coloured links indicate most likely infectors, with colours 264 

indicating the posterior support for that infector. (A) Mtb data [11]; (B) MRSA data [21]; (C) 265 

FMD2001 data [22]; (D) FMD2007 data [23].  266 

Fig 3. Consensus MPC transmission and phylogenetic trees for four of the five analysed 267 

datasets. Each tree is one posterior sample matching the MPC tree topology. Colours are used to 268 

indicate the hosts in the transmission tree: connected branches with identical colour are in the 269 

same host, and a change of colour along a branch is a transmission event. (A) Mtb data [11]; (B) 270 

MRSA data [21]; (C) FMD2001 data [22, 24]; (D) FMD2007 data [23, 24]. 271 

 272 

The Mtb data were analysed with naïve prior information, which resulted in a median 273 

sampling interval of 425 days (similar to estimated incubation times [28]), a median generation 274 

interval of 102 days, and a mutation rate equivalent to 0.3-1.3 mutations per genome per year, as 275 

estimated before [29, 30]. The Edmonds’ censensus transmission tree (Fig 2a) shows low support 276 

for most infectors, which is mainly a reflection of the low number of SNPs. However, the same 277 

index case K02 and three clusters as identified in Didelot et al [11] are distinguished: one starting 278 
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with K22, one with K35, and the remaining cases starting with K16 or infected by the index case. 279 

The main difference compared to the original analysis lies in the shape of the phylogenetic tree 280 

and the estimated infection times (Fig 3a). Whereas the topology is very similar, the timing of 281 

the branching events is different: in the original tree, internal branches decrease in length when 282 

going from root to tips, consistent with a coalescent tree based on a single panmictic population. 283 

By taking into account the fact that coalescent events take place within individual hosts, our 284 

analysis shows branch lengths that are more balanced in length across the tree. Importantly, this 285 

results in a more recent dating of root of the tree: early 2008 (Fig 3a) instead of early 2004 [11]. 286 

The MRSA data were analysed with an informative prior for the mean sampling interval 287 

mS and a shape parameter aS based on data on the intervals between hospitalisation and the first 288 

positive sample. The estimated mutation rate is similar to literature estimates [31, 32], but the 289 

posterior median mS of 30 days is considerably higher than the prior mean of 15 days (Table 3). 290 

This may be explained by the two health-care workers (HCW_A and HCW_B), which have very 291 

long posterior sampling intervals that were not part of the data informing the prior (Edmonds’ 292 

consensus tree, Fig 2b). In contrast with the original analysis, we now identify a transmission 293 

tree rather than only a phylogenetic tree, resulting in the observation that the two health-care 294 

workers may not have infected any patient in spite of their long infection-to-sampling interval. 295 

Almost all transmission events with low support (<20%) involved unsequenced hosts. Three of 296 

them were identified as possible infector, in the initial stage of the outbreak, when only few 297 

samples were sequenced. This indicates that some unsequenced hosts may have played a role in 298 

transmission, but that it is not clear which. Finally, a major difference between our results and 299 

those in the original publication is the shape of the phylogenetic tree and the dating of the tree 300 

root: around 1st January (Fig 3b) instead of 1st September the year before [21]. 301 
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Analysis of the FMD2001 and FMD2007 datasets resulted in posterior sampling intervals 302 

with means of 13 and 9 days, respectively, close to the 8.5 days estimated from epidemic data 303 

[33] . Generation intervals were about the same (Table 3). Both datasets contained more SNPs 304 

than the Mtb and MRSA data, with unique sequences for each host and higher mutation rates, 305 

similar to published rates in FMD outbreak clusters [34]. This resulted in equal Edmonds’ and 306 

MPC consensus transmission trees, and much higher support for most infectors (Figs 2cd, 3cd). 307 

Our transmission tree is almost identical to the one from Ypma et al [12], who used a closely 308 

related method but did not allow for transmission after sampling. When comparing to the 309 

analysis of these data by Morelli et al [24], the topologies of the phylogenetic trees (Fig 3cd) 310 

match the topologies of the genetic networks (Fig S18 in [24]), but the transmission trees are 311 

quite different. The main differences are that in the FMD2001 outbreak, they identify farm B as 312 

the infector of C, E, K, L, O, and P; and in the FMD2007 outbreak, they have IP4b infecting 313 

IP3b, IP3c, IP6b, IP7, and IP8. Differences are likely the result of their use of the spatial data 314 

[24]. Use of additional data is expected to improve inference, although their estimates of 315 

infection-to-sampling intervals (about 30 days) were unrealistically long.  316 

The H7N7 dataset was analysed with the sequences of the three genes HA, NA, and PB2 317 

separately, and combined; with informative priors for both the mean sampling and mean 318 

generation intervals. Five parallel chains were run, and mixing was generally good (Table 4); it 319 

took about 7 hours on a 2.6GHz CPU to obtain 25,000 unthinned samples in a single chain. 320 

Analysis of the three genes combined resulted in a posterior median mS of 8.5 days, slightly 321 

longer than the 7 days on which the informative prior was based [35], and longer than in the 322 

separate analyses. The mean generation time was shorter than the prior mean: 3.9 days with all 323 

genes. We also calculated the parsimony scores of the posterior sampled trees, defined as the 324 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2016. ; https://doi.org/10.1101/069195doi: bioRxiv preprint 

https://doi.org/10.1101/069195


17 
 

minimum numbers of mutations on the trees that can explain the sequence data [36], and 325 

compared these with the numbers of SNPs in the data (Table 4). It appeared that with the genes 326 

separately analysed, parsimony scores were 6-13% higher than the numbers of SNPs, indicating 327 

some homoplasy in the phylogenetic trees (this was not seen with any of the other datasets). The 328 

analysis of all genes together resulted in parsimony scores of 18% higher than the number of 329 

SNPs. The estimated mutation rates are among the highest estimates for Avian Influenza Virus, 330 

as already noted before in earlier analyses of the same data [25, 37]. Fig 4 shows the Edmonds’ 331 

consensus tree in generations of infected premises, indicating locations and inferred infection 332 

days (full details in S1 Results). Without the use of location data, there is a large Limburg 333 

cluster, a Central cluster including two sampled Limburg cases, and a small Limburg cluster of 334 

three cases with an exceptionally long generation time (about 8 lines from the bottom). A closer 335 

look at the sequences makes clear that the first of these cases (L22/34) has 3 SNPs different from 336 

assigned infector G4/11, and 4 SNPs different from cases in the large Limburg cluster. Using 337 

geographic data as in earlier analyses [19, 27] will probably place these cases within that cluster.  338 

 339 

Table 4. Summary statistics for H7N7 dataset.  340 

  Sequenced gene  
 HA NA PB2 All genes 
MCMC sampling     
Continuous samples a     
μ 1428 1366 2036 798 
mG 854 838 1039 720 
mS 330 240 311 232 
r 119 108 82 70 
tinf (range) 400 ; 4873 409 ; 3920 538 ; 4225 82 ; 793 
Infectors b     
between chains 93.8% 92.9% 95.9% 93.8% 
autocorrelation 97.1% 97.1% 95.9% 97.9% 
     
Parameter inference c     
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log10(μ) -4.41 (-4.52 ; -4.31) -4.42 (-4.54 ; -4.31) -4.54 (-4.65 ; -4.44) -4.50 (-4.56 ; -4.43) 
mG 3.6 (3.1 ; 4.2) 3.4 (2.9 ; 4.0) 3.8 (3.3 ; 4.4) 3.9 (3.4 ; 4.5) 
mS 7.5 (6.7 ; 8.5) 7.6 (6.6 ; 8.6) 7.5 (6.7 ; 8.5) 8.5 (7.6 ; 9.5) 
r 0.21 (0.024 ; 1.5) 0.25 (0.023 ; 1.5) 0.085 (0.0026 ; 0.74) 0.35 (0.029 ; 1.4) 
     
Phylogenetic inference     
Tree parsimony scores c 102 (101 ; 103) 83 (82 ; 85) 100 (99 ; 101) 313 (312 ; 315) 
#SNPs in data 90 73 94 257 

Results are based on five MCMC chains of 25,000 samples each, with aS = 10; μS = 7; σS = 0.5; 341 

aG = 3; μG = 5; σG = 1; ar = br = 1. SNP = single nucleotide polymorphism. a effective sample 342 

sizes; b fraction of Fisher’s exact tests with P > 0.05; c medians and 95% credible intervals 343 

 344 

Fig 4. Consensus Edmonds’ transmission tree for the H7N7 dataset [19, 25, 27]. Infected 345 

premises are (not uniquely) coded by location (as in [19]), median posterior infection day, and 346 

sampling day. Coloured arrows indicate most likely infectors, with colours indicating the 347 

posterior support for that infector. 348 

Discussion 349 

We developed a new method to reconstruct outbreaks of infectious diseases with 350 

pathogen sequence data from all cases in an outbreak. Our aim was to have an easily accessible 351 

and widely applicable method. For ease of access, we developed efficient MCMC updating steps 352 

which we implemented in a new R package, phybreak. We tested the method on newly simulated 353 

data, previously published simulated data, and published datasets. Our model is fast: 25,000 354 

iterations took roughly 30 minutes with the Mtb and MRSA datasets of about 30 hosts, and 7 355 

hours with the full three-genes H7N7 dataset in 241 hosts. Two chains with 50,000 posterior 356 

samples proved sufficient (measured by ESS) for tree inference (infectors and infection times) 357 

and most model parameters with simulated and published data. The package contains functions 358 
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to enter the data, to run the MCMC chain, and to analyse the output, e.g. by making consensus 359 

trees and plotting these (as in Fig 3). 360 

We tested the method on five published datasets, with outbreaks of viral and bacterial 361 

infections, and in diverse settings of open and closed populations, in human and veterinary 362 

context. The method performed well on all datasets in terms of MCMC chain mixing and tree 363 

reconstruction. With uninformative priors on mean sampling intervals and mutation rates, we 364 

obtained estimates that were all very accurate when compared to literature, and the inferred 365 

transmission trees seemed as good, or even better when considering estimated infection times. 366 

With two datasets (MRSA and H7N7) we included some prior information on sampling and/or 367 

generation intervals, which mainly affected the inferred infection times, but not so much the 368 

transmission trees. 369 

For wide applicability, we kept the underlying model simple without putting prior 370 

constraints on the order of unobserved events such as infection and coalescence times. Four 371 

submodels with only one or two parameters each were used for sampling, transmission, within-372 

host pathogen dynamics, and nucleotide substitution. The sampling model, a gamma distribution 373 

for the interval between infection and sampling, has a direct link to inferred infection times, and 374 

is the model for which it is most likely that prior information is available from epidemiological 375 

data in the same or other outbreaks. We used simulated data to study the effect of uninformative 376 

or incorrect prior information on shape parameter aS and mean mS. It appears that an incorrect aS 377 

or an incorrect informative prior for mS does reduce accuracy of inferred infection times. 378 

However, consensus trees are hardly affected, at least if the number of SNPs is in the order of the 379 

number of hosts as we saw in the actual datasets (Table 1 and Table 2 Slow Clock). Only the 380 

precision of consensus trees is reduced, i.e. there are fewer inferred infectors with high support. 381 
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Results with the Fast Clock simulations did show a significant reduction in consensus tree 382 

accuracy. In that case, there are so many SNPs that the phylogenetic tree topology and times of 383 

coalescent nodes are almost fixed; then, too much variance in sampling intervals (low aS) results 384 

in many incorrect placements of infection events on that tree. Possibly, with so many SNPs it 385 

could be more efficient to first make the phylogenetic tree, and then use that tree to infer 386 

transmission events [11, 16], but it is questionable whether genome-wide mutation rates are ever 387 

so high that this becomes a real issue [38].  388 

The submodel for transmission is relevant for transmission tree inference in describing 389 

the times between subsequent infection events. Transmission is modelled as a homogeneous 390 

branching process, implicitly assuming that there was a small outbreak in a large population, 391 

with a reproduction number (mean number of secondary cases per primary case) of 1. Our 392 

approach assumes that everyone in the outbreak was known, which is a potential limitation, as 393 

even with good surveillance, contact tracing, and case identification, there is always the 394 

possibility that some infectors are not known to outbreak investigators. If all, or almost all, 395 

infectors are in the data, the generation interval distribution reflects the course of infectiousness, 396 

separating the cases in time along the tree. Apart from not taking heterogeneity across hosts into 397 

account (an extension we wish to leave for future development, see below), this neglects the 398 

possibility that susceptibles can have contact with several infecteds in a smaller population or 399 

more structured contact network. That could be modelled by a force of infection, which would 400 

more realistically describe contraction of the generation interval during the peak of the outbreak, 401 

and provide estimates for relevant quantities such as reproduction ratios [6]. However, it requires 402 

information about uninfected susceptibles in the same population and a more complicated 403 

transmission model, which is a significant disadvantage when it comes to general applicability, 404 
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one of our primary aims. More importantly, for transmission tree inference it does not seem to be 405 

a problem: the analyses of the published simulations were almost as accurate as in the original 406 

publication [19], and these simulations were in very small populations with almost all hosts 407 

infected.  408 

The role of the within-host model is to integrate over all possible phylogenetic mini-trees 409 

and mutation events within the hosts. Therefore, the sometimes less efficient mixing of the 410 

within-host growth rate r  (small ESS) is not problematic as it does not prevent good mixing of 411 

the tree topology. The role of the substitution model is to explain the genetic diversity in the 412 

data, through the likelihood of the genetic data (Eq (8)). We have used a wide prior on the 413 

mutation rate μ, and assumed a homogeneous site model. In principle these choices can easily be 414 

made more general in the same MCMC framework, but we have found that on the time scale of 415 

outbreaks, the likelyhood in very much dependent on the number of mutations in the tree 416 

(parsimony score). The method finds the phylogenetic tree with fewest mutations and matches 417 

the posterior μ to the number of mutations and the sum of the tree’s branch lengths, resulting in 418 

accurate estimates with both simulated and actual data. Allowing different rates for different sites 419 

(or for transversion vs. transition) will not change this, and will mainly result in more mutation 420 

rate estimates.  421 

With two exceptions, the parsimony scores of posterior tree samples were always equal to 422 

the number of SNPs in the datasets (the minimum possible). The first exception is the set of Fast 423 

Clock published simulations, which had so many SNPs that many of the same mutations had 424 

occurred in parallel. The second exception is the H7N7 dataset. In that case, the analyses of the 425 

three genes separately resulted in parsimony scores with 6-12 (6%-13%) more mutations than the 426 

number of SNPs, whereas the analysis of all genes together resulted in a parsimony score of 313 427 
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(median) to explain only 257 SNPs, a surplus of 56 mutations (18%). The results for separate 428 

genes could indicate positive selection, confirming the analysis by Bataille et al [25], who even  429 

identified specific mutations that had occurred multiple times. The even higher discrepancy for 430 

the combined analysis is suggestive of reassortment events, also recognised by Bataille et al [25].  431 

The proposed method and implementation opens perspectives for further extending the 432 

methodology to reconstruct phylogenetic and transmission trees from pathogen sequence data. 433 

One possible set of extensions arises from changes to the models embedded in our method, to 434 

include additional aspects of outbreak dynamics. For instance, the generation time distribution 435 

(infectiousness curve) could be made dependent on the sampling interval, which may be relevant 436 

for the MRSA outbreak analysis in which the two health-care workers may have transmitted the 437 

bacterium until late after infection. This dependence is implicit in methods in which transmission 438 

is modelled more mechanistically (e.g. [12, 13, 19]), but we chose not to do that to keep the 439 

model more generic. Another important extension would be to relax the assumption of a 440 

complete bottleneck at transmission; the bottleneck may be larger in reality [39, 40] and it has 441 

has previously been relaxed by looking at transmission pairs [41] or modelling it as separate 442 

transmission events [15], but not yet in a timed transmission tree. In our model, this would mean 443 

that a host can carry multiple phylogenetic mini-trees, rooted at the same infection time to the 444 

same infector. A third extenstion would be to include the possibility of reassortment of genes 445 

within a host, primarily motivated by the results of the H7N7 analysis. This may be done by 446 

modelling the coalescent process within hosts, the phylogenetic mini-trees, differently for 447 

different genes, but constrained by a single transmission tree. Finally, it would be possible to 448 

allow for multiple index cases, which may play a role in open populations with possible re-449 

introductions (as in the MRSA setting), or when only a subset of a large epidemic is analysed 450 
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(the FMD2001 dataset). This is implemented in models using genetic models based on pairwise 451 

genetic distances [7, 13], but is considered a major challenge with a coalescent model [42]. 452 

Multiple index cases could also reflect unobserved hosts in the outbreak itself, recently addressed 453 

by Didelot et al [43] in their two-step approach of first inferring a phylogenetic and then a 454 

transmission tree.  455 

A second type of extension would stem from incorporating additional data. An example 456 

is the use of data that make particular transmissions more or less likely, such as contact tracing 457 

data, or censoring times for infection times per host or transmission times between sets of hosts, 458 

motivated by the MRSA dataset in which admission and discharge days are known for each 459 

patient. Sampling of infection times and infectors could be constrained by these additional data 460 

(as in [19, 27]). Another example is the use of spatial data in combination with a spatial 461 

transmission kernel, so that the likelihood of infectors includes a distance-dependency, a possible 462 

extension motivated by the FMD and H7N7 analyses (as in [24, 27]). A third example is the use 463 

of host characteristics to model infectivity as a function of covariates. With the MRSA data, it 464 

would then be possible to test for increased infectivity of the health-care workers, or to test for 465 

differences in transmissibility in the three wards. In general, the use of additional host data 466 

would make dealing with hosts for which a sequence is not available less problematic: the 467 

method currently can include these hosts, but without additional data their role is unclear and 468 

they are often placed at the end of transmission chains in consensus trees (Fig 2b, Fig 3).    469 
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Methods 470 

Data 471 

We developed our model for fully observed outbreaks of size n hosts. Data consist of the 472 

sampling times S and DNA sequences G, which means that for each host i we know the time of 473 

sampling or diagnosis Si and the sequence Gi associated with the sampling time. It is not 474 

necessary to have a sequence for each host. 475 

 476 

We illustrate the method with the following five datasets from earlier publications (all in 477 

S3 Data): 478 

 479 

1. Tuberculosis (Mycobacterium tuberculosis, Mtb). This dataset was analysed by 480 

Didelot et al [11]. It consists of 33 Mtb cases in a population of drug users (approximate 481 

population size 400) , with samples collected in a 2.5 years time frame. The 20 SNPs were part 482 

of a 4.4 Mbp long sequence. Analysis of this dataset tests the performance of this method in an 483 

outbreak with relatively few cases in a large population. 484 

2. Methicillin-resistant Staphylococcus aureus (MRSA). This is the dataset from Nubel et 485 

al [21], with 36 MRSA cases in a neonatal ICU sampled within a time period of 7 months. 486 

Sampling dates were available for all cases, but sequences only for 28 cases, revealing 26 SNPs 487 

in the non-repetitive core genome of 2.7 Mbp. Analysis of this dataset tests for the performance 488 

of this method in an outbreak in a small population, including cases without sequence. 489 

3. Foot-and-mouth disease (FMD2001). This is the dataset from Cottam et al [22] also 490 

analysed by several others [12, 24], with 15 infected premises within a time period of 2 months. 491 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2016. ; https://doi.org/10.1101/069195doi: bioRxiv preprint 

https://doi.org/10.1101/069195


25 
 

Sequences were available for all cases, with 85 SNPs among 8196 nucleotides. Analysis of this 492 

dataset and the next tests for the performance of this method in a small completely sampled 493 

outbreak in a large population and allows comparison of the estimated transmission tree to earlier 494 

results. 495 

4. Foot-and-mouth disease (FMD2007). This is the dataset from Cottam et al [23], also 496 

analysed by Morelli [24], with 11 infected premises within a time period of 2 months. Sequences 497 

were available for all cases, with 27 SNPs among 8176 nucleotides 498 

5. H7N7 avian influenza (H7N7). This dataset has been analysed by several authors [19, 499 

25-27], and consists of 241 poultry farms in a time period of about 2.5 months. Sequences of the 500 

HA, NA, and PB2 genes were available on GISAID for 228 farms, with associated sampling 501 

dates. The total number of SNPs was 257 in 5541 nucleotides. For the 13 unsampled farms we 502 

used the culling date minus 2 days as the observation day (the mean sampling-to-culling interval 503 

was 2.4 days in the 228 sampled farms). We analysed the data for the three genes separately, and 504 

combined. To inform a prior distribution for the interval from infection to sampling, we used 505 

estimated infection times from Boender et al [35]. Analysis of this dataset tests for the 506 

performance of this method in a large outbreak, including cases without sequence. 507 

 508 

The model and likelihood 509 

The model describes the spread of an infectious pathogen in a population through contact 510 

transmission, the dynamics of the pathogen within the infected hosts, and mutation in the DNA 511 

or RNA of that pathogen. Furthermore, it describes how these dynamics are observed through 512 

sampling of pathogens in infected hosts. We infer the transmission tree and parameters 513 

describing the relevant processes by a Bayesian analysis, using Markov-Chain Monte Carlo 514 
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(MCMC) to obtain samples from the posterior distributions of model parameters and 515 

transmission trees (infectors and infection times of all cases). We first introduce the models and 516 

likelihood functions; then we explain how we update the transmission trees and parameters in the 517 

MCMC chain. 518 

The posterior distribution is given by 519 

 ( ) ( ) ( )Pr , , , , Pr , , , , Pr , , ,∝ ⋅P P PI M θ S G S G I M θ I M θ . (1) 520 

Equation (1) is the probability for the unobserved infection times I, infectors M, phylogenetic 521 

tree P, and model parameters θ, given the data (sampling times and sequences). The posterior 522 

probability can be split up into separate likelihood terms representing the four processes, times a 523 

prior probability for the parameters (see S2 Methods): 524 

 ( ) ( ) ( ) ( ) ( ) ( )Pr , , , , Pr , Pr , , , Pr , Pr , Pr∝ ⋅ ⋅ ⋅ ⋅P P PI M θ S G G θ S I M θ S I θ I M θ θ .  (2) 525 

We now introduce the four models, the associated likelihoods, and prior distributions for 526 

associated parameters. 527 

Transmission. We assume that the outbreak started with a single case. Each case produced 528 

secondary cases at random generation intervals after their own infection (Gamma distribution 529 

with shape aG and mean mG).  We consider that all untimed transmission tree topologies are 530 

equally likely, so that the probability of the transmission tree only depends on its timing. The 531 

outbreak is described by the vectors I and M with infection times Ii and infectors Mi for all 532 

numbered cases i. The infector of the index case is 0. The likelihood is the product of probability 533 

densities ( ( ) ( ),Γ ⋅
ΓΓ a md ) of all generation times in the outbreak: 534 
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 ( ) ( ) ( ),
0

Pr , , Γ
>

= −∏ iΓΓ
i

ΓΓ  i Ma m
i M

a m d I II M . (3) 535 

Sampling. We assume that all cases are observed and sampled at random times after they were 536 

infected, according to a Gamma distribution with shape aS and mean mS. Transmission and 537 

sampling are independent, so transmission can take place after sampling, and a case can be 538 

sampled earlier than its infector. The likelihood is the product of probability densities of all 539 

sampling intervals in the outbreak: 540 

 ( ) ( ) ( ),Pr , , Γ= −∏ S SS S i ia m
i

a m d S IS I .  (4) 541 

Within-host dynamics. The main function of the within-host model is to allow for a stochastic 542 

coalescent process within the host. Each host i harbours its own phylogenetic mini-tree Pi, with 543 

the tips being the transmission and sampling events, and the root being the time of infection. 544 

Thus, the likelihood is the product of all likelihoods per host: 545 

 ( ) ( )Pr , , , Pr , , ,=∏ i i
i

P r P S rS I M I M ,  (5) 546 

in which r is the parameter describing the within-host dynamics (see below). The dependency on 547 

all infection times and infectors remains for the mini-trees, because these determine the 548 

transmission times with host i as infector. 549 

Going backwards in time, coalescence between any pair of lineages within a host takes 550 

place at rate ( )1 ,τw r , where ( ),τ τ=w r r  denotes the linearly increasing within-host pathogen 551 

population size at (forward) time τ since infection of the host. With this particular function 552 

coalescent nodes tend to be close to the transmission events if r is small, whereas they tend to be 553 
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soon after infection of the infector if r is large. This function also naturally results in only one 554 

lineage at the time of infection (complete transmission bottleneck), as the coalescence rate goes 555 

to infinity near the time of infection.  556 

In the complete phylogenetic tree P, three types of nodes x are distinguished: nodes x =  557 

1...n are the sampling nodes of the corresponding hosts i = 1...n, i.e. the tips of the tree at which 558 

sampling took place; nodes x = n+1...2n-1 are the coalescent nodes; nodes x = 2n...3n-1 are the 559 

transmission nodes, i.e. the points in the tree at which a lineage goes from one host to the next. 560 

By hx we identify the host in which node x resides; for transmission nodes it identifies the 561 

primary host (infector). The mini-tree Pi is the set of nodes within host i, and τx is the time of 562 

node x since infection of host hx. Let ( )τiL  denote the number of lineages in host i at time τ 563 

since infection: 564 

 ( ) ( ) ( ) ( )
2 2

1τ τ τ τ τ τ τ
∈ < < ∈ ≥

= + − − − − −∑ ∑
< <i i

i x x i
x x P n x n x x P x n

L u u u ,  (6) 565 

in which ( )τu  is the heaviside step function, i.e. ( ) 0τ =u  if τ < 0, and ( ) 1τ =u  if τ ≥ 0. In other 566 

words, ( )0 1=iL  by definition because of the complete transmission bottleneck, and then it 567 

increases by 1 at each coalescent node and decreases by 1 at each transmission event and at 568 

sampling. The likelihood for each mini-tree can then be written as 569 

 ( ) ( )
( ) ( )0

2

1 1Pr , , , exp
, ,2

τ
τ

τ τ
∞

∈ < <

  
= −     

∏∫
<i

i
i i

x x P n x n x

L
P S r d

w r w r
I M ,  (7) 570 
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with 
0 1

0
2 2
   

≡ ≡   
   

. The first term is the probability to have no coalescent events during the 571 

intervals in which there are two or more lineages, the second term is the product of coalescent 572 

rates at the coalescent nodes.  573 

Mutation. We use a single fixed mutation rate μ for all sites, with mutation resulting in any of 574 

the four nucleotides with equal probability (Jukes-Cantor). This parameterisation means that the 575 

effective rate of nucleotide change is 0.75μ. Given the phylogenetic tree, this results in the 576 

likelihood: 577 

 ( ) ( )( )( ) ( )( )( )
{ }2 1

1
31 1 1

4 4 4 4
, , ,

Pr , exp expµ µ µ
−

Ι −Ι

= − − − ⋅ + − −∑∏ ∏
µut µut

x x
n

x v x v
loci xA C G T

P t t t tG .  (8) 578 

Here, we multiply over all coalescent and transmission nodes x, which occur at time tx and have 579 

parent node vx; Ιmut indicates if a mutation occurred on the branch between x and νx. The 580 

likelihood is calculated using Felsenstein’s pruning algorithm [44].  581 

Prior distributions. Here we describe our general choice of prior distributions, not the particular 582 

parameterization in our analyses (Section Evaluating the method). We chose fixed values for aG 583 

and aS, the shape parameters of generation and sampling intervals. For their means mG and mS, 584 

we used prior distributions with means μG and μS and standard deviations σG and σS, which are 585 

translated into Gamma-distributed priors for rate parameters bG = aG/mG and bS = aS/mS, 586 

distributed as ( )0, 0,,Γ ΓΓ a b  and  ( )0, 0,,Γ S Sa b  (see S2 Methods). For the slope r of the within-host 587 

growth model, we chose a Gamma-distributed prior with shape and rate ar and br. We chose 588 

log(μ) to have a uniform (improper) prior distribution, equivalent to ( )Pr 1µ µ .  589 
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Inference method 590 

We use Bayesian statistics to infer transmission trees and estimate the model parameters 591 

from the data, and MCMC methods to obtain samples from the posterior distribution. The 592 

procedure is implemented as a package in R (phybreak), which can be downloaded from GitHub 593 

(www.github.com/donkeyshot/phybreak). The package also contains functions to simulate data, 594 

and to summarize the MCMC output. 595 

The main novelty of our method lies in the proposal steps for the phylogenetic and 596 

transmission trees, used to generate the MCMC chain. It makes use of the hierarchical tree 597 

perspective, in which the phylogenetic tree is described as a collection of phylogenetic mini-trees 598 

(one for each host), connected through the transmission tree. Most proposals are done by taking 599 

one host, changing its position in the transmission tree, and simulating the phylogenetic mini-600 

trees in the hosts involved in that change. In a second type of proposal, the transmission tree is 601 

changed while keeping the phylogenetic tree intact.  602 

Initialization of the MCMC chain requires initial values for the six model parameters (aG, 603 

mG, aS, mS, r, and μ). The transmission tree is initialized by generating an infection time for each 604 

host (sampling day minus random sampling interval). The first infected host is the index case, 605 

and for the remaining hosts an infector is randomly chosen, weighed by the density of the 606 

generation time distribution. Finally, the phylogenetic mini-trees in each host are simulated 607 

according to the coalescent model and combined with one another to create a complete 608 

phylogenetic tree. 609 

Each MCMC iteration cycle starts with updates of the transmission and phylogenetic 610 

trees, followed by updates of the model parameters. To start with the latter, the parameters mS 611 

and mG are directly sampled from their posterior distribution given the current infection times 612 
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and transmission tree (Gibbs update). This is done by sampling the rate parameters bS and bG, 613 

which were given conjugate prior distributions (see above).  If = −∑S i iT S I  is the sum of n 614 

sampling intervals in the tree, a0,S and b0,S are the shape and rate of the prior distribution for bS, 615 

then a new posterior value is drawn as 616 

 ( )0, 0, ,Γ = + = +S S S S Sb shape a a n rate b T ,  (9) 617 

from which mS is calculated as S Sa b . Posterior values for mG are drawn from a similar 618 

distribution, with = −∑ iG i MT I I  the sum of n – 1 generation intervals. The parameters r and μ 619 

are updated by Metropolis-Hastings sampling; proposals r’ and μ’ are generated from lognormal 620 

distributions ( ),σ rLN r  and ( ), µµ σLN , i.e. with current values as mean. The standard 621 

deviations are calculated based on the expected variance of the target distributions, given the 622 

outbreak size for σr, and number of SNPs for σμ (see S2 Methods). 623 

Updating the phylogenetic and transmission trees. The phylogenetic and transmission trees, 624 

described by the unobserved variables { }, ,= PZ I M , are updated by proposing a new tree with 625 

proposal density ( )' , ,H Z Z S θ , and accepting with Metropolis-Hastings probability (using Eq 626 

(1)) α, 627 

 
( ) ( ) ( )
( ) ( ) ( )

Pr , ', Pr ', ', ,
min 1,

Pr , , Pr , ' , ,
α

 ⋅ ⋅
=   ⋅ ⋅ 

H
H

S G Z θ Z θ Z Z S θ
S G Z θ Z θ Z Z S θ

.  (10) 628 

Per MCMC iteration cycle, n proposals are done with each host as a focal host once, in 629 

random order. Each proposal starts by taking a focal host i, drawing a sampling interval 630 
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( )2
3 ,Γ S ST a m  from a Gamma distribution with shape parameter 2

3 Sa  and mean mS, and 631 

calculating a preliminary proposal for the infection time ' = −i iI S T . Based on this preliminary 632 

proposal, the topology of the transmission tree is changed (see below), and in most cases the 633 

phylogenetic tree as well (80% probability). However, we also allowed for proposal steps 634 

without changing the phylogenetic tree (20% probability); this greatly improves mixing of the 635 

MCMC chain if there are many SNPs, which more or less fixes the phylogenetic tree topology. 636 

The 80%-20% distribution for the two types of proposal was not optimized but chosen such that 637 

mixing of the phylogenetic tree is only limitedly less efficient than without the second type of 638 

proposal (keeping the phylogenetic tree fixed).  639 

Proposals for changes in transmission and phylogenetic trees. Here we describe how changes 640 

in the transmission and phylogenetic trees are proposed for six different situations, based on the 641 

preliminary proposal for the infection time Ii’ and on whether the index case is involved. Fig 5 642 

shows the proposed changes. More detail on the proposal distribution and calculation of 643 

acceptance probability is given in the S2 Methods. 644 

A. The focal host i is index case, and the preliminary Ii’ is before the first transmission 645 

event. In that case, the infection time of host i becomes Ii’, and no topological changes 646 

are made in the transmission tree (Fig 5A). 647 

B. The focal host i is index case, and the preliminary Ii’ is after the first transmission event, 648 

but before host i’s second transmission event, if there is any. In that case, the infection 649 

time of host i becomes Ii’, and host i’s first infectee becomes index case, transmitting to i 650 

(Fig 5B). 651 

C. The focal host i is index case, and the preliminary Ii’ is after host i’s second transmission 652 

event, if there is any. In that case, the infection times of host i and its first infectee are 653 
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switched, and host i’s first infectee becomes index case. They may or may not exchange 654 

infectees, with 50% probability (Fig 5C). 655 

D. The focal host i is not index case, and the preliminary Ii’ is before infection of the index 656 

case. In that case, the infection time of host i becomes Ii’, and host i becomes index case, 657 

transmitting to the original index case (Fig 5D). 658 

E. The focal host i is not index case, and the preliminary Ii’ is after infection of the index 659 

case, but before host i’s first transmission event. In that case, the infection time of host i 660 

becomes Ii’, and a new infector is proposed from all hosts infected before Ii’ (Fig 5E). 661 

F. The focal host i is not index case, and the preliminary Ii’ is after host i’s first transmission 662 

event. In that case, the infection times of host i and its first infectee are switched, as well 663 

as their position in the transmission tree. They may or may not exchange infectees, with 664 

50% probability (Fig 5F). 665 

 666 

Fig 5. Graphics depicting proposal steps A-F for new transmission and phylogenetic trees. 667 

In panels A, B, D, and E, the initial situation is at the top, and the proposal below. In panels C 668 

and F, the initial situation is in the middle, and two alternative proposal above and below. Every 669 

panel shows an outbreak with four hosts, with red arrows indicating transmission: the purple host 670 

is the focal host, with the purple arrow indicating the proposal for the new infection time Ii’; 671 

filled hosts have a new phylogenetic mini-tree proposed; greyed-out hosts do not play a role in 672 

the proposal. (A) the focal host is the index case, and Ii’ is before the first transmission event; (B) 673 

the focal host is the index case, and  Ii’ is after the first, but before the second secondary case; 674 

(C) the focal host is the index case and Ii’ is after his second secondary case; (D) the focal host is 675 

not the index case and Ii’ is before infection of the index case; (E) the focal host is not the index 676 
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case and Ii’ is before his first secondary case; (F) the focal host is not the index case and Ii’ is 677 

after his first secondary case.  678 

 679 

Each change in the transmission tree is followed by proposing new phylogenetic mini-680 

trees for all hosts involved, i.e. if their infection time was changed or transmission nodes were 681 

added or removed (grey hosts in Fig 5). 682 

Proposals for changes in the transmission tree only. Here we describe how changes in the 683 

transmission tree are proposed without changing the phylogenetic tree, based on the preliminary 684 

Ii’ and on whether the index case is involved. Fig 6 shows the proposed changes. More detail on 685 

the proposal distribution and calculation of acceptance probability is given in the S2 Methods. 686 

G. The focal host i is the index case. If the preliminary Ii’ is before the first coalescence 687 

node, the infection time of host i becomes Ii’, and no changes are made in the 688 

transmission and phylogenetic trees. If the preliminary Ii’is after the first coalescence 689 

node, the proposal is rejected.  690 

H. The focal host i is not the index case, and the preliminary Ii’is after the most recent 691 

common ancestor (MRCA) of the samples of host i and his infector j, which is a 692 

coalescent node in infector j. In that case, the infection time of host i becomes Ii’, and 693 

infectees may move from host i to infector j or vice versa (Fig 6A). 694 

I. The focal host i is not the index case, but his infector j is the index case, and the 695 

preliminary Ii’ is before the MRCA of the samples of host i and his infector j. In that 696 

case, an infection time Ij’ is proposed for the infector j. If Ij’ is after the MRCA, the 697 

infection time of the infector j becomes Ij’, and the infection time of host i becomes the 698 
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original infection time of his infector j. Infectees may move from host i to infector j or 699 

vice versa (Fig 6B). If Ij’ is before the MRCA, the proposal is rejected. 700 

J. The focal host i is not the index case, and neither is his infector j, and the preliminary Ii’ 701 

is before the MRCA of the samples of host i and his infector j, but after the MRCA of the 702 

samples of host i and infector j’s infector. In that case, an infection time Ij’ is proposed 703 

for the infector j. If Ij’ is after the MRCA, the infection time of the infector j becomes Ij’, 704 

and the infection time of host i becomes Ii’. Infectees may move between host i, infector 705 

j, and infector j’s infector (Fig 6C). If Ij’ is before the MRCA of host i and infector j, or 706 

Ii’ is before the MRCA of host i and infector j’s infector, the proposal is rejected. 707 

 708 

Fig 6. Graphics depicting proposal steps H-J for new transmission trees, keeping the 709 

phylogenetic tree unchanged. In all panels, the initial situation is at the top, and the proposal 710 

below. Every panel shows part of an outbreak, with red arrows indicating transmission to 711 

depicted or undepicted hosts. Only in panel B host I must be the index case. The purple host is 712 

the focal host, with the dark purple arrow indicating the proposal for the new infection time Ii’; 713 

the light purple arrow in panels B and C indicate the proposal for the new infection time Ij’ of the 714 

focal host’s infector. The grey parts of the phylogenetic tree are moved between the hosts. (A) 715 

the focal host is not the index case, and Ii’ is after MRCAI,II of the focal host and his infector; (B) 716 

the focal host is not the index case, and Ii’ is before MRCAI,II of the focal host and his infector 717 

(the index case), and Ij’ is after MRCAI,II; (C) the focal host is not the index case, and Ii’ is 718 

before MRCAII,III of the focal host and his infector, but after the MRCAI,III of the focal host and 719 

his infector’s infector; also, Ij’ is after MRCAII,III.  720 
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Evaluating the method 721 

We took three approaches to evaluate our method: analysis of newly simulated data, 722 

analysis of published simulated data [19], and analysis of published observed data. When not 723 

specified, the following parameter settings and priors were used: shape parameters for sampling 724 

and generation interval distributions aS = aG = 3, uninformative priors for mean sampling and 725 

generation intervals with μS = μG = 1 and σS = σG = ∞, and an uninformative prior for within-host 726 

growth parameter r with ar = br = 1. The prior for log(μ) (mutation rate) is always uniform. 727 

Analyses were done by two MCMC chains, in each taking 25,000 samples (25,000 728 

MCMC cycles). Burn-ins were different: 2000 MCMC cycles for the newly simulated data, 729 

10,000 for the published simulated data [19], and 5000 for the observed data. With the H7N7 730 

data, five MCMC chains were run, with a burn-in of 5000 samples, followed by 25,000 samples. 731 

 732 

Analysis of newly simulated data. Four outbreak scenarios were simulated, each replicated 25 733 

times: outbreak sizes of 20 and 50 cases, each with aG = aS = 3, resulting in overlapping 734 

generations and cases sampled earlier than their infector, or aG = aS = 10, resulting in more 735 

discrete generations and cases mostly sampled in order of infection. Further, the mean generation 736 

and sampling intervals were mG = mS = 1 year, the mutation rate μ = 10-4 per year in a DNA 737 

sequence with 104 sites resulting in a genome-wide mutation rate of 1 per year and a number of 738 

SNPs in the same order of magnitude as the outbreak size. For the within-host model we used r = 739 

1 per year.  740 

The transmission trees were simulated assuming populations of size 35 or 86 individuals 741 

and R0 = 1.5, corresponding to expected final outbreak sizes of about 20 and 50 [45], 742 

respectively. Simulations started with one infected individual. All individuals were assumed to 743 
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be equally infectious, resulting in a Poisson-distributed number of contacts at times since 744 

infection drawn from the generation time distribution; these contacts were made with randomly 745 

selected individuals and resulted in transmissions if that individual had not been infected before. 746 

Simulations were repeated until 25 outbreaks were obtained of the desired size. 747 

Given the infection times, sampling times were drawn, and phylogenetic mini-trees were 748 

simulated for each host. These were combined into one phylogenetic tree on which random 749 

mutation events were placed according to a Poisson process with rate 1. Each mutation event was 750 

randomly assigned to one site, and generated one of the four nucleotides with equal probabilities 751 

(reducing the effective mutation rate by 25%). By giving the root an arbitrary sequence, the 752 

sampled sequences were obtained by following the paths from root to sample and changing the 753 

nucleotides at the mutation events.  754 

The simulated data (sampling times and sequences) were analysed with four sets of 755 

parameter settings:  756 

 757 

- Reference: aG = 3, all other parameters at simulation value (except for μ); 758 

- Informative Correct: aS at simulation value, informative prior for mS with μS = 1 and σS = 759 

0.1; 760 

- Uninformative: aS at simulation value;  761 

- Informative Wrong: aS at simulation value, informative prior for mS with μS = 2 and σS = 762 

0.1. 763 

Analysis of published simulated data. We used two sets of 25 simulated outbreaks, identified 764 

as Fast clock and Slow clock in the original paper [19], in which full details on the simulations 765 

can be found. Briefly summarizing some characteristics, 50 hosts were placed on a grid and a 766 
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spatial transmission model was run, with exponential transmission kernel. Outbreaks with fewer 767 

than 45 cases were discarded. An SEIR (susceptible – exposed – infectious – removed) 768 

transmission model was used, with fixed latent period of 2 days and normally distributed 769 

infectious period (mean(sd) of 10(1) days). Sampling occurred at the time of removal. 770 

Phylogenetic mini-trees were simulated using a logistic within-host growth model 771 

( ) ( ) ( )6 6 1.50.1 1 1 ττ −= + +w e e , starting at ( )0 0.1=w , then growing to ( )4 20.2=w  and going to 772 

( ) 40.4∞ =w . Sequences were generated with a 14,000 base pair genome and a mutation rate of 773 

10-5 per site per day (Slow clock) or 5·10-4 per site per day (Fast clock). The Slow Clock resulted 774 

in a mean number of mutations of 0.14 per day, or 0.98 per mean generation time of 7 days 775 

(latent period plus half infectious period), equivalent to the rate used in the new simulations; the 776 

Fast Clock was 50 times as fast. 777 

The simulated data (sampling times and sequences, not locations and removal times) 778 

were analysed with three levels of prior knowledge on the sampling interval distribution: 779 

- Naive: default settings; 780 

- Uninformative: aS = 144 (coefficient of variation of 0.083, as in the simulation); 781 

- Informative: aS = 144, an informative prior for mS (μS = 12, σS = 1).  782 

Analysis of published datasets. The published Mtb, FMD2001, and FMD2007 datasets were 783 

analysed with default settings. The MRSA data contained information on times between hospital 784 

entry and first positive sample for 32 patients. Because of their mean and standard deviation of 785 

20 days, we analysed these data with different prior information on the sampling interval only: aS 786 

= 1, μS = 15, σS = 5. For the H7N7 outbreak data, infection times of the flocks had been estimated 787 

[35], from which the mean and standard deviation of the sampling interval was calculated (7.0 788 
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and 2.2 days). We used this to inform the sampling intervals with: aS = 10, μS = 7, σS = 0.5. 789 

Because transmission after culling is not possible, we also used a weak informative prior for the 790 

mean generation interval: μG = 5, σG = 1. 791 

Performance and outcome measures. The aim of the method is to reconstruct outbreaks in 792 

terms of infection times of all hosts and the transmission tree. This requires good mixing of the 793 

MCMC chain, especially of infection times and infectors, and a useful method to summarize all 794 

sampled transmission trees into a consensus tree.  795 

To test for good mixing, we used effective sample sizes (ESS, calculated with the coda 796 

package in R) to evaluate mixing of the parameters and infection times. There are no strict 797 

thresholds, but in BEAST, an ESS < 100 is considered too low, whereas an ESS > 200 is 798 

considered sufficient [46]. Mixing of the tree topology (infector per host) was evaluated as 799 

follows. To test for 200 independent samples, the chains were thinned by 250, giving 100 800 

samples per chain. Then two Fisher’s exact tests were done for each host, the first to compare the 801 

posterior frequency distributions of infectors across the chains (100 infectors per chain), the 802 

second to test for independency of subsequent samples, i.e. autocorrelation, within the chains 803 

(198 pairs of infectors). We used the proportion of successful tests (i.e. P > 0.05) as a measure of 804 

mixing, expecting 95% successful tests with good mixing. 805 

Two methods were used to make consensus transmission tree topologies (who infected 806 

whom), both based on the frequencies of infectors for each host among the 50,000 posterior 807 

trees. The support of host j being the infector of host i is defined as the proportion of posterior 808 

trees in which host i infected host j. The first consensus tree is the maximum parent credibility 809 

(MPC) tree [19], which is the tree among all posterior trees that has the highest product of 810 

infector supports. The second consensus tree is the tree constructed using an adaptation of 811 
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Edmond’s algorithm, which starts by taking the infector with highest support for each host, and 812 

resolves cycles if there are any [20]. Because the actual algorithm requires prior choice of an 813 

index case, we adapted it by repeating the algorithm for all supported index cases, and selecting 814 

the tree with highest sum of posterior supports (the measure used in the algorithm itself).  815 

Posterior infection times were summarized either outside the context of a consensus tree, 816 

i.e. based on all MCMC samples, or for a particular consensus tree, i.e. for each host based only 817 

on those samples in which the infector was the consensus infector. The latter is to improve 818 

consistency between topology and infection times, although even then consistency is not 819 

guaranteed. For plotting transmission trees only, we used the Edmond’s consensus tree; for 820 

plotting transmission and phylogenetic trees together, we used the MPC consensus tree, which 821 

comes with a consistent phylogenetic tree because it is one of the sampled trees. 822 
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 999 

Fig 1. Sketch of stochastic processes involved in data generation process. (A) The four 1000 

processes indicated by host a infecting host b. (B) Examples of resulting differences in sequences 1001 

for host a infecting both hosts b and c. 1002 
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 1004 

Fig 2. Consensus Edmonds’ transmission trees for four of the five analysed datasets. 1005 

Vertical bars indicate sampling days, coloured links indicate most likely infectors, with colours 1006 

indicating the posterior support for that infector. (A) Mtb data [11]; (B) MRSA data [21]; (C) 1007 

FMD2001 data [22]; (D) FMD2007 data [23].  1008 
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 1010 

Fig 3. Consensus MPC transmission and phylogenetic trees for four of the five analysed 1011 

datasets. Each tree is one posterior sample matching the MPC tree topology. Colours are used to 1012 

indicate the hosts in the transmission tree: connected branches with identical colour are in the 1013 

same host, and a change of colour along a branch is a transmission event. (A) Mtb data [11]; (B) 1014 

MRSA data [21]; (C) FMD2001 data [22, 24]; (D) FMD2007 data [23, 24]. 1015 
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 1017 

Fig 4. Consensus Edmonds’ transmission tree for the H7N7 dataset [19, 25, 27]. Infected 1018 

premises are (not uniquely) coded by location (as in [19]), median posterior infection day, and 1019 

sampling day. Coloured arrows indicate most likely infectors, with colours indicating the 1020 

posterior support for that infector. 1021 
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 1022 

Fig 5. Graphics depicting proposal steps A-F for new transmission and phylogenetic trees. 1023 

In panels A, B, D, and E, the initial situation is at the top, and the proposal below. In panels C 1024 

and F, the initial situation is in the middle, and two alternative proposal above and below. Every 1025 
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panel shows an outbreak with four hosts, with red arrows indicating transmission: the purple host 1026 

is the focal host, with the purple arrow indicating the proposal for the new infection time Ii’; 1027 

filled hosts have a new phylogenetic mini-tree proposed; greyed-out hosts do not play a role in 1028 

the proposal. (A) the focal host is the index case, and Ii’ is before the first transmission event; (B) 1029 

the focal host is the index case, and  Ii’ is after the first, but before the second secondary case; 1030 

(C) the focal host is the index case and Ii’ is after his second secondary case; (D) the focal host is 1031 

not the index case and Ii’ is before infection of the index case; (E) the focal host is not the index 1032 

case and Ii’ is before his first secondary case; (F) the focal host is not the index case and Ii’ is 1033 

after his first secondary case.  1034 
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 1036 

Fig 6. Graphics depicting proposal steps H-J for new transmission trees, keeping the 1037 

phylogenetic tree unchanged. In all panels, the initial situation is at the top, and the proposal 1038 

below. Every panel shows part of an outbreak, with red arrows indicating transmission to 1039 
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depicted or undepicted hosts. Only in panel B host I must be the index case. The purple host is 1040 

the focal host, with the dark purple arrow indicating the proposal for the new infection time Ii’; 1041 

the light purple arrow in panels B and C indicate the proposal for the new infection time Ij’ of the 1042 

focal host’s infector. The grey parts of the phylogenetic tree are moved between the hosts. (A) 1043 

the focal host is not the index case, and Ii’ is after MRCAI,II of the focal host and his infector; (B) 1044 

the focal host is not the index case, and Ii’ is before MRCAI,II of the focal host and his infector 1045 

(the index case), and Ij’ is after MRCAI,II; (C) the focal host is not the index case, and Ii’ is 1046 

before MRCAII,III of the focal host and his infector, but after the MRCAI,III of the focal host and 1047 

his infector’s infector; also, Ij’ is after MRCAII,III.  1048 
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