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Abstract

Background: Networks are popular and powerful tools to describe and model biological processes. Many computational methods
have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both.
Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to
extract meaningful modules. Many of these methods assess results’ significance against null distributions of randomized networks.
However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the
reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment.

Results: Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of
unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving
its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we
reformulate the lower bound to the iterations’ number of the switching-algorithm to make it suitable for the F-rewiring of networks
of any size. Finally, we present BiRewire3, an open-source Bioconductor software enabling the F-rewiring of any type of
unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data
mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed
reference signaling networks and phosphoproteomic data.

Conclusions: BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/, and it should have a

broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.
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1 Background
Representing and modeling biological processes as net-
works, in particular signaling and gene regulatory re-
lations, is a widely used practice in bioinformatics and
computational biology. This bridges these research
fields to the vast repertoire of tools and formalisms
provided by graph- and complex-network-theory. Fur-
thermore, this facilitate an integrative analysis of ex-
perimental observations, either by derivation of net-
works from the data, or by mapping the latter on the
former. Hence, network-based approaches have become
a popular paradigm in computational biology [1, 2].
In the last few years this has allowed the design of
a broad assortment of algorithms and tools whose
aim ranges from providing an interpretative frame-
work for the modeled biological relations, to the iden-
tification of network-modules able to explain pheno-
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typic traits and experimental data from large refer-
ence signaling graphs [3, 4]. Many methods in this
last class aim at identifying a sub-network, for exam-
ple, that is composed by the most differentially ex-
pressed or significantly mutated genes [5, 6, 7, 8, 9],
or that it is targeted by a given external perturbation
[10, 11, 12, 13, 14]. Toward this aim different optimiza-
tion procedures have been used to analyze experimen-
tal data, identifying a pathway that is deregulated in
a given disease, or whose activity is perturbed upon a
given drug treatment.
In many approaches, directed signed networks (DSNs,
formally defined in the following sections) are used
to model pathways and to interlink pathways from a
given collection. In these networks, nodes represent
biological entities (typically proteins) while edges rep-
resent the biological relationships between them (e.g.,
the activity of protein A affects that of protein B).
These edges have a direction to discriminate effectors
and affected nodes in a modeled relation, and a sign
to specify whether the modeled relation is an activa-
tion (positive sign) or an inhibition (negative sign).
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Unsigned/undirected edges modeling generic interac-
tions can be also present. When available, sign and
direction allow a more detailed detection of the nature
of the interaction between the nodes. In this study,
the number, sign and direction of a node’s connections
are cumulatively denoted by the functional charac-
terization level (FCL) of the corresponding modeled
biological entity (from now entity).
In a reference network modeling a set of interlinked
pathways or protein-protein-interactions, the FCL
might be high for a node that models a functional hub.
For example a kinase phosphorylating a large number
of substrate proteins will have a high number of out-
going edges with positive sign. Similarly, a gene acti-
vated by a large number of transcription factors will
have a high number of positive in-coming edges. On
the other hand the FCL might be strongly biased by
the relevance of a biological entity in a given research
field, and the resource the network has been assem-
bled from. For example, in a cancer focused reference
network it is reasonable to find nodes that have a high
FCL just because they have oncogenetic or tumor-
suppressive properties, thus have been studied more
than others. As a consequence, solutions to the net-
work optimization problems tackled in bioinformatics
(and mentioned above) can be strongly influenced by
the topology of the initial network, and by the FCL of
its nodes.
In an attempt to overcome this issue, some tools as-
sess this bias by comparing their provided sub-network
solutions with those that would be obtained (using
the same experimental data and the same algorithm)
across a large number of trials, each starting from
a reference network that is a randomized version of
the original one. Many other tools neglect this aspect
and the significance of the solution is computed by
randomizing the experimental data only. For both op-
tions, the expectation of some topological properties
(for example the inclusion of a given edge or node)
of the sub-network solutions is estimated by analyz-
ing the random solutions obtained across the trials. In
this way, the significance of these properties is quanti-
fied as the divergence from their expectation, testing
against the null hypothesis that there is no association
between the analyzed experimental data and the out-
putted sub-network solutions.
To our knowledge, all the existing methods assessing
their solution significance through reference network
randomizations make use of a simple edge shuffling.
This means that in a randomization trial each edge
of the network is simply set to link two randomly se-
lected nodes. This implicitly means that null models
resulting from this randomization strategy are totally
unconstrained with regards to the degree of the nodes,

and the way they are linked to each other in the orig-
inal network. Therefore, the impact of the FCL of
the nodes in the original reference network on the out-
putted sub-network solution is not considered. In order
to take this into account a constrained randomization
strategy preserving the FCL of all the nodes in the
original network must be used.

The problem of randomizing an undirected and un-
weighted network while preserving the degree of its
nodes, i.e. the total number of incident edges for each
node, is known in graph theory as network rewiring
and unfortunately presents itself with analytical and
numerical challenges [15]. With the additional con-
strain that the network to rewire is bipartite (i.e.
nodes can be partitioned into two sub-sets such that
there are no edges linking nodes in the same set),
this problem reduces to randomizing a binary matrix
preserving its marginal totals, i.e. its row-wise and
column-wise sums. Several algorithms exist to solve
this problem [16, 17] but the computationally efficient
randomization of moderately large matrices (therefore
the rewiring of large bipartite networks) is still chal-
lenging. Additionally, to our knowledge, none of the
methods published is formally shown to be able to
actually simulate samplings from the uniform distri-
butions of all the possible binary matrices with pre-
scribed marginal totals. Such proof exists for methods
rewiring directed binary networks based on swap-and-
fill strategies applied to their adjacency matrices [18]
but not dealing with DSNs. Finally, some recent meth-
ods have been proposed to solve the related (but yet
different from FCL preserving rewiring) problem of
randomizing metabolic networks in a mass-balanced
way [19].

In [20] we showed how an algorithm based on
a Monte Carlo procedure known as the switching-
algorithm (SA) [21] can be used to efficiently random-
ize large cancer genomics datasets preserving the mu-
tation burdens observed across patients and the num-
ber of mutations harbored by individual genes (hence
to efficiently rewire large bipartite networks). To this
aim, we derived a novel lower bound for the number
of steps required by the SA in order for its underlying
Markov chain to reach a stationary distribution. Ad-
ditionally, we implemented the SA in the R package
BiRewire (publicly available on Bioconductor [20]) and
we showed a massive reduction in computational time
requirements of our package and bound with respect to
other existing R implementations [22] and bounds [21].

Here (i) we introduce the problem of rewiring a DSN
modeling a biological network in a way that the FCL
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Figure 1 F-rewiring of directed signed networks is
reducible to the rewiring of two bipartite graphs:
(A) Scheme of the transformation function mapping a directed
signed network (DSN) to two bipartite networks (BNs)
induced by the positive, respectively negative, edges of the
original network; (B) scheme of the inverse function that, after
the two BNs induced by the edges of the original network have
been rewired via the switching-algorithm, maps back the
resulting rewired BNs to a DSN.

of all the modeled entities is preserved: F-Rewiring;
(ii) we formally show how this problem reduces to
rewiring 2 bipartite networks; (iii) we provide a gener-
alized bound to the SA for bipartite networks of any
size; and (iv) we show the validity of the Markov chain
convergence criteria (used in our previous work) for F-
rewiring DSNs.
Finally, we provide an overview of the functions in-
cluded in a new version of BiRewire for F-Rewiring,
and we show results from two case studies where so-
lutions obtained with two network optimization meth-
ods (BioNet [9], and CellNOpt [23]) are assessed for
statistical significance and intial reference network bi-
ases against constrained null models generated with
BiRewire.

2 Methods
2.1 Preliminary notations
The problem we are tackling is the computationally ef-
ficient randomization of a directed and signed network
(DSN) (formally defined below) in a way that some
local features of its individual nodes are preserved.
In such a network G = (V,E), the edges in E can be

encoded as triplets (a, b, ∗) where a is called source
node, b is called target node and ∗ is a label denoting
the sign of the relation occurring among them, which
could be positive, ∗ = +, or negative, ∗ = −.
According to this definition, in a DSN the edge (a, b,+)
is different from the edge (a, b,−), thus making this
formalism more flexible than that provided by a di-
rected weighted network (with weights ∈ {+1,−1}).
In fact, differently from such a model, in a DSN two
edges with same terminal nodes and direction but dif-
ferent sign can coexist. In addition, a DSN is differ-
ent and less general than a multidigraph (a directed
multigraph), because only two possible edges with the
same direction can coexist between the same couple of
nodes.
Given an edge e ∈ E, we define the function λ(e) :
E → {+,−}, mapping each edge to its sign label.
Given a node v ∈ V , we define its in-bound-star I(v)
as the set of edges in E having v as destination,
I(v) = {e ∈ E : e = (a, v, ∗)}. Similarly, consid-
ering the edges having v as source defines its out-
bound-star, O(v) = {e ∈ E : e = (v, b, ∗)}. Im-
posing as additional condition for an edge to be in-
cluded in these sets that of having a fixed sign la-
bel, defines positive and negative in-bound and out-
bound stars. Formally, the v positive- (respectively neg-
ative) in-bound-star is the set of edges in G having
v as destination and positive (respectively negative)
label, I+(v) = {e ∈ I(v) : λ(e) = +} (respectively
I−(v) = {e ∈ I(v) : λ(e) = −}). Analogously, the v
positive- (respectively negative) -out-bound-star is the
set of edges in G having v as source and positive (re-
spectively negative) label, O+(v) = {e ∈ O(v) : λ(e) =
+} (respectively O−(v) = {e ∈ O(v) : λ(e) = −}).
By naturally extending the definition of node degree
(i.e. the number of edges connected to a node) to these
formalisms, we call positive-in-degree of a node v the
quantity |I+(v)| equal to the number of edges with
positive label having v as destination. Similarly we de-
fine the v negative-in-degree, positive-out-degree and
positive-in-degree, the quantities |I−(v)|, |O+(v)| and
|O−(v)|, respectively.
In the light of the introduced notation, the object of
this study can be redefined as the randomization of
the edges of a DNS G while preserving not only its
general node-degrees (network rewiring), but also all
the signed degrees defined above, for all the nodes:
network F-rewiring.
A biological pathway can be naturally represented
through a DNS G = (V,E). In this case the nodes
in V would represent biological entities, and the edges
in E would represent functional relationships occur-
ring among them, whose type would be defined by the
sign label (+ for activatory and − for inhibitory in-
teractions), with directions indicating effector/affected
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roles (source/destination of the edges). In this case the
signed degrees introduced above would define the func-
tional characterization level (FCL) of the individual bi-
ological entities considering all the possible roles that
they can assume within a given pathway.
Particularly the positive-out-degree of a node v would
correspond to the level of characterization of the corre-
sponding biological entity as activator of other entities;
the negative-out-degree would correspond to its char-
acterization as inhibitor; finally, the positive-, respec-
tively negative-, in-degree of a node would correspond
to the level of characterization of the corresponding
entity as activated, respectively inhibited, by other en-
tities in the same DSN.
As a consequence, the ultimate goal of this study is to
efficiently randomize a pathway (or a collection of in-
terlinked pathways) in a way the functional character-
ization levels of its individual entities, i.e. the signed-
directed degrees of all the nodes, are preserved.

2.2 F-rewiring of a directed signed networks is reducible
to the rewiring of two bipartite networks: reduction
proof

Let us consider a directed signed network (DSN) G =
(V,E), with λ(e) ∈ {−,+}, ∀e ∈ E and a transforming
function f(G), from the set of all the possible DSNs to
the set of all the possible pairs of bipartite networks
(B+, B−), such as B∗ = (S∗, D∗, E∗), whose node sets
are defined as S∗ = {v ∈ V : ∃(v, x, ∗) ∈ E}, and
D∗ = {v ∈ V : ∃(x, v, ∗) ∈ E}, with ∗ ∈ {+,−}. Wor-
thy of note is that the same node of G can be both a
source (therefore belonging the set S∗) for some edge
in E, and a destination (therefore belonging to the set
D∗) for some other edge in E. As a consequence f
should also relabel the nodes (for example adding a
subscript to labels of the nodes in D∗). Here, for sim-
plicity we will neglect this relabeling.
As a conclusion, the function f maps G to two bi-
partite networks (BNs) (B+, B−) such that B+ =
(S+, D+, E+) is the BN induced by the positive edges
of G, where all the sources of these edges are included
in the first node set S+, all the destinations in the sec-
ond set D+ and two nodes across these two sets are
connected by an undirected edge if they are connected
in the original network G by a positive edge that goes
from the node in the first set to that in the second
one. The second bipartite network of the pair B− is
similarly induced by the negative edges of G. Formally
E∗ = {(s, d) : s ∈ S∗, d ∈ D∗ and ∃(s, d, ∗) ∈ E},
with ∗ ∈ {+,−}. An example of this transformation is
shown in Figure 1A.
It can be shown that such a function f realizes a bi-
jection between the set of all the possible DNSs and
the set of all the possible pairs of BNs [24]. As a conse-
quence its inverse f−1 is a function from the set of all

the possible pairs of BNs to the set of all the possible
DSNs, and it is defined as f−1(B1, B2) = G = (V,E),
where

V = S1 ∪ S2 ∪D1 ∪D2,

E = {(s, d,+) : (s, d) ∈ E1 with s ∈ S1 and d ∈ D1}

∪{(s, d,−) : (s, d) ∈ E2 with s ∈ S2 and d ∈ D2}.

For simplicity, we assume that f−1 re-assignes to the
nodes their original labels before constructing the
node/edge sets of G, if they were relabeled by the
function f . An example of this inverse transformation
is shown in Figure 1B.

Proposition 2.1. Let be G = (V,E) a DSN modeling
a pathway (or a set of interlinked pathways) P , and
f the transformation function described above f(G) =
(B+, B−). If R+ and R− are rewired versions of B+

and B− respectively, then f−1(R+, R−) = H is a ran-
domized version of G in which the signed-directed de-
grees of all the nodes v ∈ V , i.e. the quantities |I+(v)|,
|I−(v)|, |O+(v)|, |O−(v)|, are kept equal to their origi-
nal values. This implies that H is an F-rewired version
of G, hence a randomization of P in which the func-
tional characterizations of the individual entities are
preserved.
Proof. First of all we need to show that H is a ran-

domized version of G, in other words that H is a di-
rected signed network with the same nodes set and
number of edges of G and the same signed-directed
node degrees but a different edge set.
To this aim let be H = (W,F ) = f−1(R+, R−). Since
a rewiring does not affect the node set of the trans-
formed network, R+ has the same node set of B+, and
R− has the same node set of B−. On the other hand,
B+ and B− are the two bipartite networks induced by
the positive and negative edges (respectively) of G. For
construction, the union of their nodes gives V . Taken
together these observations imply that W = V
From the definition of f , B+ contains the positive
edges in E and B− the negative edges of E (whose ter-
minal nodes have been possibly relabeled). From the
definition of rewiring, the edge set of R+ contains the
same number of edges of B+ but at least one edge not
contained in B+. Similarly the edge set of R− contains
the same number of edges of B− and at least one edge
not contained in B−. Therefore, from the definition of
f−1, |F | = |E| and F contains at least two edges that
are not included in E. This imply that F 6= E.
As a conclusion G and H have the same set of nodes

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/069245doi: bioRxiv preprint 

https://doi.org/10.1101/069245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Iorio et al. Page 5 of 13

and number of edges but different edge sets.
Secondly we need to show that the signed degrees of
all the nodes of H are equal to those of all the nodes
in G.
Let us assume that the positive-in-degrees ofH are dif-
ferent from those of G. From the f−1 definition, this
implies that R+ contains at least a node in the source
set for which the degree is different from that of its
counterpart in B+. However, this contradicts R+ be-
ing a rewired version of B+. With the same argument
it is possible to prove that all the signed-directed node
degrees of H are equal to those of G.

2.3 Switching-algorithm lower bound for bipartite
networks of any size

To rewire a bipartite network B = (S,D,E), the
switching-algorithm (SA) [21] performs a cascade of
switching-steps (SS). In each of these SS two edges
(a, b) and (c, d) are randomly selected from E and re-
placed with (a, d) and (c, b) if these two new edges are
not already contained in E. In this case the SS under
consideration is said successful.
Underlying the SA is a Markov chain whose states are
different rewired versions of the initial network G and
a transition between states is realized by a successful
SS.

In [20] we prove that, if executing a sufficiently large
number of SS, the SA can efficiently simulate sam-
plings from the uniform distribution of all the possi-
ble bipartite networks with predefined node sets and
prescribed node degrees. Therefore it can be used to
obtain a rewired version of a network B that it is, on
average, no more similar to B than are similar to each
other two bipartite networks B1 and B2 sampled from
the real uniform distribution of all the possible bipar-
tite networks with the same node sets and node degrees
of B. To this aim, the number of SS to be performed
before sampling the (k + 1)-th rewired network must
be large enough to assure that the algorithm has for-
gotten the k-th sampled rewired network (the starting
network G for k = 0). Formally, the number of SS be-
tween two following samplings must be at least equal
to the burn-in time of the Markov chain underlying
the SA, which is needed to reach a stationary distri-
bution [25, 26]. An example of this is shown in Figure
2: the 5 plots show results from a simulation study
in which the SA has been used to rewire a synthetic
bipartite network of 50 + 50 nodes and an edge den-
sity of 20%, and rewired versions of this network have
been sampled at different intervals of SSs. A sampling
interval of 1 SS produces sampled networks that are
strongly related to each other (Figure 2A). Gradually
increasing the sampling interval (from 5 to 20 SS, Fig-
ure 2B to D), reduces the sampled network similarities
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Figure 2 Rewired network samplings using the
switching-algorithm (SA) at different sampling
intervals, in terms of switching-steps (SS). Points
represent sampled networks, arrows indicate a starting
synthetic network, and colors indicate the sampling order.
Point proximities reflect corresponding network similarities
quantified through the Jaccard index. Point coordinates have
been obtained with a generalized multi-dimensional scaling
procedure (t-SNE).

but some local dependencies are maintained. At a sam-
pling interval of 300 SS (Figure 2E) the Markov chain
underlying the SS has reached its stationary distribu-
tion, the sampled networks are completely unrelated
and there are no dependencies. Therefore, for the bi-
partite network under consideration, a number of SS
≥ 300 is sufficient to simulate samplings from the uni-
form distribution of all the possible bipartite networks
with 50 + 50 nodes and node degrees equal to those
of the original network.

An empirical bound N ′ for the minimal number of
SS to be performed by the SA between two consecutive
samplings has been proposed in [21] as being equal to
100 times the number of edges of the bipartite network
to rewire. This makes rewiring moderately large net-
works computationally very expensive.
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By analyzing the trend of similarity to the original net-
work along the sample path of the Markov chain sim-
ulation implemented by the SA, in [20] we proposed
a novel lower bound to the number of SS needed to
rewire large bipartite networks equal to

N =
|E|

2(1− d)
ln [(1− d)|E|], (1)

where E is the set of edges of the network to rewire
B = (S,D,E) and d = |E|/(|S||D|) is its edge density.
In [20] we show that this bound is much lower than N ′

and that our SA implementation and bound provide a
massive reduction of the computational time required
to rewire large bipartite networks (with thousands of
nodes and tens of thousands of edges) with respect to
other SA implementations [22] and the bound N ′.

Here we provide a generalization of the lower bound
N making the SA effective and computationally effi-
cient in rewiring bipartite networks of any size. This
is led by the observation that a DSN modeling a path-
way (and the two bipartite networks induced by its
positive and negative edges, respectively) can be even
composed by a modest number of nodes and edges.

As shown in the supplementary data of [20] (from
now on going, equations from this paper will have
GSD, for Gobbi supplementary data, as prefix), Equa-
tion 1 follows from the GSD-Equation 11 (page 20)
and it is a simplified form of

N =
|E|(1− d) ln

(
|E|
ε −

|E|2
εt

)
2pr

(2)

where t = |S||D| is the total number of possible edges
of the original network, d = |E|/t is its edge density,
pr is the probability of a SS to be successful. ε is the
accuracy of the bound in terms of distance (quantified
through the convergence metric that we used to moni-
tor the Markov chain underlying the SA, based on the
number of edge shared by the original network and its
rewired version at the generic k-th SS, and defined in
GSD-Equation 9, page 19) from the real fixed point x̄.

Under the assumption of a uniform degree distribu-
tion[1] we showed that pr = (1−d)2 (GDS-Equation 4,
page 16). As a consequence Equation 2 can be rewrit-
ten as:

N =
|E| ln

(
|E|
ε −

|E|2
εt

)
2(1− d)

, (3)

[1] Our proof applies also to non uniform degree distri-
butions, leading to the same conclusions for the case
of directed signed networks. Here we use the uniform
case for simplicity.

which for ε = 1, gives Equation 1.
Equation 3 expresses the lower bound of the number

of SS as a function that accounts for the network topol-
ogy and the estimated distance of the Markov chain
underlying the SA from its steady-state, according to
the convergence metric used in [20]. More detailed, this
distance is equal to |x(k)− x̄|, where x(k) is the number
of common edges between the original network and its
rewired version after k SS, and x̄ is the expected num-
ber of common edges between the original network and
its rewired version, after the Markov chain underlying
the SA has reached its stationary distribution.

In our previous bound definition ε was defined in
terms of number of edges, and N defined as in Equa-
tion 1 in order to have |x(k) − x̄| ≤ 1 for k ≥ N .

For large bipartite networks, i.e. |E| > 10000, a value
of ε = 1 guarantees a relative error δ < 0.01% of edges
for a number of SS k ≥ N . However, for relatively
smaller networks, for example when |E| = 100, a value
of ε = 1 implies a substantially increase in the relative
error to δ = 1%, making the estimated lower bound N
increasingly suboptimal with respect to the estimated
real fixed point.

For this reason here we redefine the lower bound N
for the number of SS as a function of its relative er-
ror δ, which quantifies its sub-optimality with respect
to the estimated real fixed point. Through the simple
substitution ε = |E|δ, Equation 3 can be rewritten as:

N =
|E|(1− d) ln

(
1−d
δ

)
2pr

= Ω|E|

where Ω = (1−d)(ln (1−d)−ln δ)
2pr

depends only on the level
of accuracy δ, the density d of the original network and
the probability pr of a successful SS. For uniformly
distributed degrees[1], i.e. pr = (1 − d)2, this bound
reads as:

N =
|E| ln

(
1−d
δ

)
2(1− d)

. (4)

A value of δ = 0.00005 (corresponding to ε = 1 edge
when |E| ∼ 20000), is used by default by our new im-
plementation of the SA in the new version of the pack-
age BiRewire but this parameter can also be set to a
user defined value, making our tool and bound suit-
able for the rewiring of bipartite networks of any size.
Additionally, the choice of a suitable value for this pa-
rameter can be determined by visually inspecting the
SA Markov chain convergence with a new dedicated
function (described in Section 3.1)
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2.4 Convergence criteria for signed directed networks
In [20] we showed that the convergence criteria we
used to estimate our lower bound N for the number
of switching-steps (SS) needed to rewire bipartite net-
works can be applied also to the more generic case of
undirected networks.

To show the validity of this criteria for F-rewiring of
directed signed networks (DSNs) let us observe that
the Jaccard Index (J)[27] used to assess the similarity
between two DSN with the same set of nodes and same
number of edges: G = (V,E) and H = (V, F ) is defined
as

J(G,H) =
|E ∩ F |
|E ∪ F |

=
x

2|E| − x

where x = |E ∩ F | is the number of common edges
and the last equivalence holds because the two DSNs
have the same number of edges. When estimated for
bipartite networks, our N guarantees that the number
of common edges between an initial network B and its
rewired version at the N -switching-step is asymptoti-
cally minimized.

Proposition 2.2. Let be R+ and R− the rewired ver-
sions of two bipartite networks B+ and B− obtained
through a number of switching-steps respectively equal
to N+ and N− (both computed using Equation 4), and
such that (B+, B−) = f(G) (where f is the trans-
formation function defined in section 2.2 and G a
DSN). Then the Jaccard similarity between G and
H = f−1(R+, R−) is minimized.

Proof. J(G,H) reaches a minimum when the num-
ber of common edges x between G and H reaches a
minimum. x is given by the sum of the number of
common positive and negative edges across the two
networks, namely x = x+ + x−. Given that H =
f−1(R+, R−), x+ is the number of common edges be-
tween B+ and R+. Analogously x− is the number of
common edges between B− and R−. Since R+ and R−
are rewired version of B+ and B− computed through
N+ and N− (minimizing x+ and x−, respectively) also
x = x+ + x− is minimized.

3 Results
3.1 Overview of the new functions included in BiRewire

v3.0.0
The R-package BiRewire (http://bioconductor.
org/packages/BiRewire/) was originally designed to
efficiently rewire large bipartite networks ([20]). We
have performed a major update, by including func-
tions to:

• read/write directed signed networks (DSN) from/to
simple interaction format (SIF) files (functions
birewire.load.dsg and birewire.save.dsg);

• perform the transformation f (and its inverse
f−1) to derive bipartite networks induced by pos-
itive and negative edges of a DSN, and vice-
versa (functions birewire.induced.bipartite

and birewire.build.dsg);

• F-rewire a DSN by applying the switching-algorithm
(SA) to the two corresponding induced bipartite
networks with numbers of switching-steps auto-
matically determined for both networks individu-
ally, using Equation 3 (function birewire.rewire.dsg);

• sample K rewired versions of a network: this
function runs K instances of the SA in cas-
cade; each of these instances performs a number
of switching-steps (SS) determined using Equa-
tion 3. This function can take in input a bipar-
tite network, an undirected network or a DSN
(in this case Equation 3 is used individually for
the two bipartite networks induced by the posi-
tive and negative edges of the DSN, respectively)
(birewire.sampler.* functions);

• monitor the convergence of the Markov chain un-
derlying the SA on user defined networks. This
routine samples a user-defined number of net-
works at user defined intervals of SS. For each
of these intervals, it computes a Jaccard similar-
ity [28] pair-wisely comparing the sampled net-
works to each other; finally it plots the sam-
pled networks in a plane where points proximi-
ties reflect Jaccard similarities of the correspond-
ing networks and point coordinates are computed
through the generalized multidimensional scaling
method t-SNE [29]; this function gives in output
the network coordinates of such scale reductions
and produce the plots shown in Figure 2. Also
in this case the inputted graph can be a bipar-
tite network, an undirected network or a DSN
(birewire.visual.monitoring.* functions);

• perform an analysis of the trends of Jaccard sim-
ilarity across SS. This function performs a user-
defined number of independent runs of the SA,
computing the mean value and a confidence inter-
vals of the observed pairwise Jaccard similarities
between the obtained rewired networks. The re-
sult is a dataset containing the Jaccard similarity
scores computed and sampled at user-defined in-
tervals of SS, and a plot similar to that showed in
Figures 3A and 4A. This function takes in input
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a bipartite network or an undirected network or a
DSN (birewire.analysis.* functions).

Worthy of note is that, supporting the analysis of
DSNs, our package can handle also generic directed
graphs, therefore with BiRewire3 it is now possible to
rewire any kind of unweighted networks.
We have developed also a cython wrapper of the cor-
responding C library for Python users. A first re-
lease (with some basic functions) can be found in
https://github.com/andreagobbi/pyBiRewire.

3.2 Case study 1: BioNet
The R package BioNet [30] provides a set of methods
to map gene expression data onto a large reference
biological network, and to identify (with a heuristic
method) a maximal scoring sub-network (MSS), which
a is a set of connected nodes (or module) with unex-
pectedly high levels of differential expression [31]. Sev-
eral other methods moving along the same lines exist
(as, among others, EnrichNet [6]). Here we focus on
BioNet because it can be considered a typical example
among these methods, and we show how BiRewire3
can be used to estimate the impact of the reference
network topology and the functional characterization
level (FCL), i.e. sign-directed degree, of its nodes on
the optimal module outputted by this tool.

The initial reference network used by BioNet (the
Interactome) is a large undirected protein-protein-
interaction network assembled from HPRD [32] and
encompassing 9,392 nodes and 36,504 edges. In [30],
the authors show an application of BioNet to gene
expression data from a diffuse large B-cell lymphoma
(DLBCL) patient dataset, with corresponding survival
data. After determining gene-wise P-values for differ-
ential expression and risk-association, the authors ag-
gregate them and fit a beta-uniform mixture model
to the distribution of aggregated P-values that yields
a final score (accounting for both considered factors)
for each gene: the higher this score the more a gene
is differentially expressed across the contrasted groups
of patients. Then the methods proceeds with mapping
these scores onto the Interactome nodes and, applying
a heuristic method [9], it identifies a sub-network (re-
ferred to as a module) that is a sub-optimal estimate
of the MSS. This module is shown in Figure 3C and
the BioNet package vignette contains detailed instruc-
tions on how to reproduce this result.

To evaluate the impact of the FCLs of the Interac-
tome nodes on the module outputted by BioNet when
used on the DLBCL dataset, we generated 1,000 F-
rewired versions of the Interactome with BiRewire3

and used each of them as initial reference network
in 1,000 individual BioNet runs, using the DLBCL
dataset as input.

To this aim we first conducted a BiRewire3 analy-
sis (using the dedicated function of our package) to
determine the number of switching-steps (SS) to be
performed by the switching-algorithm (SA) in order
to F-rewire the Interactome. This function makes use
of the convergence criteria we designed in [20], which is
based on the estimated time, in terms of SS, in which
the Jaccard similarity (JS) between the original net-
work and its rewired version at the k-th SS reaches
a plateau (Figure 3A). In [20] we showed that this
criteria is equivalent to other established methods to
monitor Markov chain convergence when the states
are networks. In addition its relatively simple formula-
tion consents the analytical derivation of an estimated
plateau time, i.e. our bound N . Neverthless, our pack-
age allows also a visual inspection of the optimality of
the estimated bound N showing how independent are
F-rewired versions of an initial network sampled at a
number of user-defined SS intervals as well as every N
SS (Figure 2).
These preliminary analyses resulted in a required num-
ber of SS equal to N = 170, 491 (Figure 3A) and
showed that this number of SS is actually sufficient
to generate unrelated F-rewired versions of the Inter-
actome, thus to simulate samplings from the uniform
distribution of all the possible networks with the same
number of nodes and FCLs of the Interactome (Figure
3B). Generating 1,000 F-rewired versions of the Inter-
actome sampled each N SS required ∼ 2 hours on a 4
core 2.4 Ghz computer with 8GB memory.

Running 1,000 independent instances of BioNet us-
ing each of these F-rewired Interactome as reference
network and the DLBCL dataset in input resulted into
1,000 different module solutions (rewired solutions).
For each of the nodes included in the original BioNet
module solution (Figure 3C), we quantified the ratio
of rewired solutions including them and we investi-
gated how this quantity related to the corresponding
BioNet scores (3D). As expected, we observed a sig-
nificant correlation (R = 0.51, p = 0.001). In fact, as
per the definition of the MSS, it is reasonable that
nodes with high scores (such as, for example NR3C1
and BCL2) tend to be included in the module out-
putted by BioNet regardless their edges and degree in
the reference Interactome. Similarly, nodes with large
negative scores (such as CDC2 and JUN) are included
in the module only because they link high scored nodes
and it is obvious that they do not tend to be included
in the rewired solutions, as in this case the way they
are interlinked to other nodes is crucial.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/069245doi: bioRxiv preprint 

https://github.com/andreagobbi/pyBiRewire
https://doi.org/10.1101/069245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Iorio et al. Page 9 of 13

ACTN1

APEX1

BAK1BCL2

BAG1

BCL6

BCR

CALD1

CASP3

CASP10

CCNE1
CDC2

CDK7

NR3C1

HIF1A

HMGA1

JUN

LCK

LMO2

LYN

SMAD2

SMAD4

MCM2

IRF4

MYC

PIK3R1

PRKD1

PTK2
PTPN6

RAC2

SET

PTPN2

RGS16

ANP32A

AKAP8

SRP72

DDX21

Absolute
LogFC

0

1

2

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
6

Jaccard index (JI) trend

Ja
cc

ar
d 

In
de

x

5e+02 5e+03 5e+04 5e+05

0.
01

0.
50

Jaccard index (JI) trend (log−log scale)

Switching steps

Ja
cc

ar
d 

In
de

x

Mean
C.I.
N

#SS = 8000

A
.U

.

start

#SS = 80000

start

#SS = 170491 (N)

A.U.

A
.U

.

#SS = 8e+05

A.U.

start

start

A B

C D

k-
th

 s
am

pl
e

initial
Network k = 0

k = 25

k = 50

sampled
networks

-6 -4 -2 0 2 4 6

0

20

40

60

80

100

Nodes Included in the Module

BioNet Score

In
cl

us
io

n 
fr

eq
ue

nc
y 

ac
ro

ss
 ra

nd
om

 tr
ia

ls
 (%

) Nodes Excluded from the Module

BioNet Score

-6 -4 -2 0 2 4 6

2
80

160

Node
degree

1
120

240

Node
degree

SMAD2

SMAD4
PIK3R1

CASP3
CDC2

JUN

BCL2

NR3C1

ACTN1

CCNE1 SET
ITGA6

MMP2

JUP

IDH3A

TCEB3

ASB13

STK17A
RPL13A

NUMB

DNTTIP2

FAP
ILF2

BSCL2

reference
network
negative
impact

reference
network
positive 

impact

Figure 3 BioNet study case. (A) Analysis of the Jaccard index trend across switching-steps (SS) while rewiring the BioNet
reference Interactome and estimation of the lower bound N ; (B) visual inspection of the switching-algorithm Markov chain
convergence to verify the suitability of the estimated bound (see Figure 2 legend for further details); (C) Interactome module
outputted by BioNet while analyzing the DLBCL dataset; (D) scatter plots of BioNet scores vs. frequency of inclusion in the rewired
solutions for all the nodes included in the BioNet module (left plot) and for all the other Interactome nodes contained in the DLBCL
dataset (right plot).

Nevertheless, a number of nodes (such as, SMAD4,
SMAD2 and PIK3R1) have modest score but tend to
be included very frequently in the rewired solutions.
This hints that what leads the inclusion of such nodes
in the BioNet module is their high FCL. As a confirma-
tion of this, SMAD4, SMAD2 and PIK3R1 fall over the
99th percentile when sorting all the nodes in the Inter-
actome (and included in the DLBCL) based on their
FCL (which in this case corresponds to their degree).
This is a proof that the reference network provides the
BioNet outputted module with a positive impact, and
that at least some nodes are included in the solution
because of their high FCL.
When extending this analysis to the nodes of the
Interactome (included in the DLBCL dataset) that
are not present in the module outputted by BioNet
we observed again an expected significant correlation
(R = 0.51, p < 10−16), and some nodes (such as JUP,

MMP2 and ITGA6) with high scores frequently in-

cluded in the rewired solutions (the fact that these

nodes do not appear in the BioNet outputted mod-

ule is due to the sub-optimality of the used heuristic).

However we also observed a large number of nodes

(such as RPL13A, STK17A and IDH3A) scored high

but relatively infrequently included in the rewired so-

lutions. This hints that these nodes are penalized by

their low FCL in the reference Interactome, thus prov-

ing the existence of a negative impact provided by the

reference Interactome to the BioNet outputted mod-

ule, and that at least some nodes are not included in

the solution because of their low FCL.

An indication of both these types of impacts, together

with diagnostic plots and statistics would complement

and complete the output of many valuable and widely

used tools, such as BioNet.
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3.3 Case study 2: CellNOpt
CellNOpt (www.cellnopt.org) is a tool used to train
logic models of signal transduction starting from a ref-
erence directed signed network (DSN) called a prior
knowledge network (PKN), describing causal interac-
tions among signaling species (obtained typically from
literature), and a set of experimental data (typically
phosphorylation), obtained upon various perturbatory
conditions ([23]).
CellNOpt converts the PKN into a logic model and
identifies the set of interactions (logic gates) that
best explain the experimental data. This is performed
through a set of Bioconductor packages supporting
a number of mathematical formalisms from Boolean
models to ordinary differential equations.

Through a built-in genetic algorithm CellNOpt iden-
tifies a family of subnetworks from the reference DSN
(from now, models) together with the value of the
objective function (the model score δ) quantifying at
what extent each model is able to explain the experi-
mental data (the lower this value the better is the fit of
the model to the data). By default, the best model with

the lowest score denoted δ̂ is returned to the end-users.
Note, however, that multiple models may be returned
if they cannot be discriminated given the experimental
evidence. Besides, to account for experimental noise,
users may also provide a parameter, which is called
tolerance (in percentage), that will keep all models

below a threshold defined as λ = δ̂(1 + tolerance).
Setting this tolerance parameter is non-trivial and de-
pends largely on the experimental error. One idea
would be to estimate this threshold by looking at
the expected ability of F-rewired versions of the liver-
PKN to explain the data, when they are used as in-
put to CellNOpt. In fact, even if original local node
properties are maintained, in each of these F-rewired
networks the topology of the biological pathways in-
terlinked in the liver-PKN is disrupted. As described
before, a large score calculated by CellNOpt indicates
a large disagreement between data and network logic
behavior at the measured nodes. Therefore the distri-
bution of the δs outputted by CellNOpt when using
these F-rewired networks gives an idea of the attain-
able base-line performaces, which are not derived from
biologically meaningful models but depend only on the
FCL (signed and directed node degrees) of the original
liver-PKN.
Based on these considerations, here we show how
BiRewire3 can be used to identify such a threshold
as the maximal δ value whose deviance from expec-
tation is statistically significant. Similarly to the pre-
vious case study, this expectation can be empirically
estimated by running a large number of independent

CellNOpt runs using F-rewired versions of the initial
reference signaling network and the same experimental
data. Thus accounting for the effect of the node FCLs
on both scores and outputted models. To this aim, we
used the same reference PKN network and phospho-
proteomic data used in [23], which has about 80 nodes
and 120 directed and signed edges. This was a study on
human liver cell and hence the network is called liver-
PKN hereafter. With the BiRewire3 package we gener-
ated (in less than 10 seconds, on a standard unix lap-
top) 1000 F-rewired versions of the liver-PKN, visually
inspecting (as in the previous case study) the optimal-
ity of our estimated lower bound N for the number of
switching-steps (SS) to be performed by the switching-
algorithm (SA) (Figure 4AB) between one sampled F-
rewired network and the following one. Subsequently
we run 1000 independent instances of CellNOpt (us-
ing the CellNOptR package [23], v1.16 available on
Bioconductor at https://www.bioconductor.org/

packages/CellNOptR/) on each of these F-rewired
liver-PKN networks and the same phosphoproteomic
dataset (obtaining one rewired model per each analy-
sis), as well as a final run using the original liver-PKN
network (obtaining a family of 1000 different models).
When comparing the two populations of CellNOpt
scores obtained from these two analyses we observed,
as expected, a notably statistically significant differ-
ence (t-test p-value < 10−16, Figure 4C), indicating
that in the F-rewired networks the topology of the
pathways originally interlinked in the liver-PKN is ac-
tually disrupted. Subsequently, using the distribution
of scores of the rewired models we computed empirical
p-values for the CellNOpt scores for the entire model
family outputted by the final run (making use of the
original liver-PKN).
For a given score δi corresponding to the i−th model
of the family, an empirical p-value was set equal to the
number of rewired models m such that δm ≥ δi divided
by 1000 (the number of tested f-rewired liver-PKNs).
More than 90% of the models in the outputted fam-
ily had a CellNOpt score significantly divergent from
expectation (p-value < 0.05) and the estimated score
threshold guaranteeing this (or a greater) divergence
from expectation, thus a minimal impact of the initial
liver-PKN FCLs, was equal to 0.06.
Finally, and similarly to the analysis performed in the
first study case, we quantified the tendency of each
of the nodes included in the final merged CellNOpt
model to be included in the rewired models, finding
that also in this case this is indeed proportional to the
nodes’ FCL.

In summary, BiRewire3 could be effectively used to
determine a score threshold on an analytical ground,
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based on which meaningful models could be selected
from the family outputted by CellNOpt for further
analyses, and finally assemble a consensual model so-
lution. Additionally, it could be employed to evaluate
the extent of impact of the CellNOpt reference network
on the topology of its outputted consensual model.

4 Discussion
BiRewire3 is a one-stop tool to rewire in a meaningful
way any type of unweighted networks (undirected, di-
rected, and signed) currently used to model different
datasets and relations in computational biology (in-
cluding presence-absence matrices, genomics datasets,
pathways and signaling networks) in an computation-
ally efficient way. It represents a significant and for-
mally demonstrated advance with respect to its pre-
vious version [20], whose applicability was restricted
to presence/absence matrices and undirected bipartite
networks. We have previously shown that, thanks to
an analytically derived lower bound to the number of
steps of its underlying algorithm, the computational
time requirements of BiRewire3 are vastly lower than
those of other similar tools, reducing from months
to minutes (on a typical desktop computer) when
rewiring networks with tens of thousands of nodes and
edge density ranging up to 20%. Additionally, the core
algorithm underlying BiRewire3 is based on a Markov
chain procedure that could be easily parallelized in fu-
ture implementations, to exploit the power of modern
multi-core computer architectures, thus reducing these
time requirements even further.
Our package is available as free open source software
on Bioconductor and, as we showed in our case studies,
it can be easily combined into computational pipelines
together with a wide range of existing bioinformatics
tools aiming at integrating signaling networks with ex-
perimental data.

5 Conclusion
We have presented a computational framework imple-
mented in a R package that could complement existing
network based tools. This will be useful for comput-
ing a wide range of constrained null models testing
the significance of the solutions of these tools, and to
investigate how the topology of the used reference net-
works can potentially bias these results.

Moreover, the range of applicability of BiRewire3
goes beyond computational biology, and includes all
those fields making use of tools from network theory,
from operative research, to microeconomy, and ecologi-
cal research (an example of the application of BiRewire

application in a micro-economy and technology patent
study can be found at http://arxiv.org/abs/1509.
07285).
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Figure 4 CellNOpt study case. (A) Analysis of the Jaccard index trend across switching-steps (SS) while rewiring the two
bipartite network induced by the positive (respectively negative) edges of the reference DSN (liver prior knowledge network
(liver-PKN)) and estimation of the lower bounds for the number of switching-steps; (B) visual inspection of the switching-algorithm
Markov chain convergence to verify the suitability of the estimated bounds (see Figure 2 legend for further details); (C) Comparison
of the CellNOpt scores and the rewired scores; (D) Empirical p-values of the CellNOpt scores across the entire family of models. (E)
The liver-PKN used by CellNOpt as initial reference network; (F) The model outputted by CellNOpt when using the liver-PKN as
initial reference network with superimposed the frequency of inclusion of each node in a set of 1,000 models outputted by CellNopt
using F-rewired versions of the liver-PKN as reference networks.
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