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Statistical Association Mapping of
Population-Structured Genetic Data

A. Najafi †, S. Janghorbani †, S. A. Motahari, and E. Fatemizadeh

Abstract—Association mapping of genetic diseases has attracted extensive research interest during the recent years. However, most
of the methodologies introduced so far suffer from spurious inference of the disease-causing sites due to population inhomogeneities.
In this paper, we introduce a statistical framework to compensate for this shortcoming by equipping the current methodologies with a
state-of-the-art clustering algorithm being widely used in population genetics applications. The proposed framework jointly infers the
disease causal factors and the hidden population structures. In this regard, a Markov Chain-Monte Carlo (MCMC) procedure has been
employed to assess the posterior probability distribution of the model parameters. We have implemented our proposed framework on
a software package whose performance is extensively evaluated on a number of synthetic datasets, and compared to some of the
well-known existing methods such as STRUCTURE. It has been shown that in extreme scenarios, up to 10 − 15% of improvement in
the inference accuracy is achieved with a moderate increase in computational complexity.

Index Terms—Bioinformatics, Genome-Wide Association Study, Probabilistic Graphical Models, MCMC.
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1 INTRODUCTION

LARGE-SCALE projects in life sciences, such as Human
Genome Project [1] and HapMap project [2], [3], have

provided biologists and computer scientists with an in-
valuable foundation for study and research. In addition,
emergence of high throughput sequencing technologies has
paved the way to solve the main problems in biology, such
as Genome-Wide Association Study (GWAS) [4]. The basic
purpose of GWAS is to infer statistical associations between
different regions of genome and specific physical or behav-
ioral phenotypes present in living organisms. In many med-
ical applications, as of those considered in this paper, the
aforementioned phenotypes are the affection by or vulner-
ability to a particular genetically-initiated disease. In other
words, the goal of GWAS would be to assign specific sites in
the DNA sequence, Single Nucleotide Polymorphism (SNP)
data or even intensity levels of a microarray experiment to
the causal factors underlying a specific disease [5]. Dur-
ing the recent years GWAS methods have been successful
in identifying many causal factors for different types of
diseases. However, despite major advantages, traditional
methods in this area suffer form critical drawbacks.

First, most traditional GWAS frameworks consider ge-
netic variants, such as SNPs, separately and neglect the
effect of their biochemical dependencies, a phenomenon
called epistasis [6]. This premise may lead to spurious re-
sults in occasions where multiple loci are involved in the
formation of a complex disease. In other words, multigenetic
factors exist in many complex abnormalities since multiple
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pathways may control a specific biological reaction. In this
regard, alternation of each pathway may result into the same
disease with highly similar symptoms. This shortcoming
usually increases the false discovery rate in limited sample
sizes. Recently, a number of researchers have set out to alle-
viate this problem by introducing various statistical and/or
experimental tools [7], [8].

The second major shortcoming, which has triggered the
idea behind the current paper, is the assumption of genetic
homogeneity for the population under study. This assump-
tion is not plausible in real-world datasets since different
individuals may have come from different ancestral origins.
In such scenarios, also known as “cryptic populations”
[9], attempting a naive association mapping may lead to
incorrect outcomes since averaging the statistical results
over the whole population produces noisy statistics and
decreases the significance levels of the causal genes [10],
[11], [12]. In addition, self-reported ancestries often do not
provide sufficient evidence [13]. In order to rectify this effect
several approaches have been proposed, yet each one suffers
from its own drawbacks. In particular, majority of previous
algorithms use a population stratification strategy to cancel
the effect of data structures by clustering the individuals
first, and then feeding each cluster to a GWAS module,
separately [14]. However, the unsupervised clustering phase
ignores the information provided by the disease labels, and
its accuracy will highly depend on allele frequencies. This
will degrade the performance of the overall framework over
small datasets.

In this paper, we address all of the mentioned problems
by proposing a novel method for association mapping in the
presence of hidden population structures. In other words, it
has been assumed that the population under study consists
of numerous latent sub-populations with different genetic
backgrounds. More importantly, these differences in genetic
ancestries are assumed to correlate with distinct genetic
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vulnerability to the disease, resulting in different disease
infection models for each sub-population. We have shown
that integration of the distinctions both in allele frequencies
and also the disease models highly improves the identifica-
tion of latent structures as well as causal genetic factors. We
have developed a model-based statistical framework which
combines genotype clustering algorithms with current asso-
ciation mapping strategies to form a unified mathematical
tool with a significantly higher accuracy.

The paper is organized as follows. In Section 2 related
works in association mapping and GWAS are reviewed. Sec-
tion 3 explains the basic ideas and mathematical notations
in this work. In Section 4, the proposed model is explained,
while in Section 5 the statistical inference of model parame-
ters from data is discussed. Section 6 presents our computer
simulations and experimental results. Conclusions are made
in Section 7.

2 BACKGROUND AND RELATED WORKS

So far, GWAS methods have been conducted on a wide
range of abnormalities and resulted in numerous scientific
discoveries. For instance, in [15], [16] and [17] a number of
causal loci for Type I diabetes have been identified, while
in [18], [19], [20], [21] the same is carried out for type II
diabetes. GWAS methods have also been put to use for more
complicated anomalies such as different types of cancer [22].
Researchers in [23], [24], [25], [26] investigate the causal
factors for breast cancer, while [27], [28], [29] have identified
a number of disease-causing genes for prostate cancer. The
application of GWAS methods are extended to genetically
initiated mental disorders as well, such as Parkinson’s dis-
ease as in [30], [31], [32], Bipolar Disorder as in [33], [34], and
Schizophrenia [35], [36]. Many of such findings are currently
being used to diagnose and treat various diseases in gene
therapeutic centers worldwide [37].

Despite novel achievements of GWAS methods [38], the
effect of population structures may generate spurious re-
sults. Based on this motivation, a variety of approaches have
been proposed by researchers to solve such problems. One
approach is to design family-based studies for association
mapping instead of case/control groups. Although several
versions of these methods exist [39], most of them are
underpowered since the data needed for such methods is
difficult to obtain [4], [40].

A class of well-known approaches applies appropriate
clustering methods to case/control groups in order to iden-
tify the latent structures within data. Such methods are
used as a preprocessing stage before the actual association
mapping. In particular, principal component analysis (PCA)
[41], mixed model approaches [42] and algorithms using the
STRUCTURE framework [9] are being widely used. In PCA-
based methods, continuous axes of variation with the most
amount of information about genetic variability, also known
as principal components will be determined, which reveal
information regarding population structures of the data [41],
[43]. A faster and more accurate version is proposed in [44].
More recent studies show that PCA is less robust comparing
with nonlinear methods such as spectral dimensionality
reduction [45], [46]. Despite of relative improvements in

results, top principal components do not necessarily rep-
resent true genetic structures since their application lacks
an appropriate biological plausibility. The same argument
holds for spectral techniques. In fact, they mix structures
with long distance LD, family-relatedness or artifacts [47].
In Mixed Model Approaches, the phenotypes are modeled
as a mixture of fixed and random effects. These methods,
however, may have a lower performance in comparison to
their counterparts [47]. Several versions of these methods
including [48], [49] or the faster version in [50] have been
proposed so far.

Among the most popular approaches is the seminal
work introduced in [9] which is known as a state-of-the-
art clustering method based on a Bayesian framework,
called STRUCTURE. More recent methods motivated by this
approach also exist, see [51] and [52]. As suggested in [9],
one can apply STRUCTURE to case/control groups in an
unsupervised scenario to identify hidden structures. As we
will show in this paper, this procedure undermines the true
potentials of Bayesian estimation in GWAS methodologies.
A combination of the many of the above methods is used in
[53] where PCA is combined with Random Forest, and also
in [54] where PCA meets Linear Mixed Models.

Our proposed algorithm is built upon STRUCTURE.
However, it takes the disease infection labels of a GWAS
dataset into account during the clustering phase. This way,
the disease infection model, i.e. association mapping, and
clustering, i.e. identification of latent population structures,
will be carried out simultaneously and interactively.

3 PROBLEM FORMULATION

We are interested in finding the causal genomic variants
of a particular phenotype in a given population. In most
cases of interest, the observable phenotype is the affection
by a particular genetic disease. To this end, N affected and
unaffected individuals are sampled from the population.
Each individual is labeled indicating whether or not he/she
possesses the phenotype.

Each individual is genotyped at L genomic loci. Each
locus can take J distinct values indicating distinct allele
types obtained either from SNP sets or microsatelite data.
The data obtained from individuals can be represented by
D = (X,Y ) where

X ∈ {1, 2, . . . , J}N×L represents the genotype data
of individuals obtained either from the SNP sets or
microsatellite data.

Y ∈ {0, 1}N demonstrates the the labels showing
whether each individual is associated with a partic-
ular phenotype, such as a particular disease or not.

As it is mentioned, our primary aim is to infer causal
genomic variants of the population given the data D. In a
simplifying model, all affected individuals share the same
set of genomic loci as the cause of the given phenotype.
In this case, one can perform several statistical inference
strategies to obtain the variants given the data. In our
more realistic study, however, people in the population
are affected differently due to the fact that individuals
are originated from K hidden sub-populations and the
set of causal variants are different in each sub-population.
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As discussed before, the presence of such loci in genome
is tightly related to genetic evolutionary pathways such
as independent genetic drifts. Also, extrinsic evolutionary
forces such as natural selection may affect individuals of the
same species differently, as a result of the differences in the
environmental factors of their habitat.

Our goal is to obtain K different sets of causal variants
from the data D. Note that it is assumed that K is known.
In practice, the number of sub-population can be inferred
via trial-and-error methods.

Sub-populations are differentiated based on their minor
allele frequencies (MAF). In other words, associated with
each location j is a hidden number pj,ℓ,k indicating the
frequency of the ℓth allele in the kth sub-population. We
use an array P = [pj,ℓ,k] to indicate the MAF of all sub-
populations, i.e.,

P ∈ RJ×L×K represents the frequency of alleles at
each locus for each sub-population.

The ith individual is originated from a sub-population
zi ∈ {1, · · · ,K}. We denote the hidden vector of associations
to sub-populations by Z = [zi], i.e.,

Z ∈ {1, 2, . . . ,K}N represents the sub-population
of origin for individuals.

Finally, the model underlying the corresponding com-
plex phenotype for the kth sub-population is denoted by
Mk. In particular, Mk indicates the causal genomic loci
affecting the kth sub-population. We denote the vector of
models by M , i.e.,

M = {M1,M2, . . . ,MK} represents the disease-
causing model in each sub-population.

In fact, M models the mathematical relation of disease
labels with all other parameters of the problem. In Sections 1
and 2, a concise overview of previously introduced models
in GWAS, their cons, pros and computational complexities
is presented. The most important assumption in this study,
is letting the complex disease model M to vary for each
sub-population. Several recent findings in the pathology
of complex genetic diseases support such mathematical as-
sumption [5], [11], [17]. This is due to the fact that functional
misbehavior of vital processes in living organisms can occur
from multiple sources of genetic abnormalities rather than
one.

4 THE PROPOSED MODEL

In this section, we provide a probabilistic model governing
the main parameters of the problem: D = (X,Y ) and
H = (P ,Z,M). D stands for data and H for hidden
parameters. Clearly,

P(D,H) = P(D|H)P(H). (1)

We need to present a model incorporating our knowl-
edge into the priors, i.e., defining P(H), and the way data
are generated from the hidden parameters, i.e., defining the
conditional distribution P(D|H).

4.1 Modeling of Prior Distributions

We assume statistical independence among prior knowl-
edge of allele frequencies P , information regarding sub-
populations of origin Z and also the disease causing models
M , as in [9]. This assumption is biologically plausible since
in reality there are not much evidence for statistical linkage
of these quantities, i.e.,

P(H) = P(P )P(Z)P(M). (2)

To model P(P ), we note that p∗,ℓ,k =
{p1,ℓ,k, p2,ℓ,k, . . . , pJ,ℓ,k} is a probability distribution
and it sums to one. Therefore, similar to [9], we use the
Dirichlet distribution to model the allele frequencies:

p∗,ℓ,k ∼ D (λ1 , λ2 , . . . , λJ , ) (3)

where λs are user-specific parameters, all of which can be set
to one in case there is no prior information. We also assume
that p∗,ℓ,k for ℓ and k are independent.

Assuming that sub-populations have the same number
of individuals, a random individual belongs to the kth
sub-population with probability 1/K. From independent
sampling of individuals, hence, we obtain

P (Z = (k1, · · · , kN )) =
N∏
i=1

P(zi = ki) =
1

KN
. (4)

In order to discuss the mathematical models of a com-
plex disease, we first take into account a number of bio-
logically related assumptions. First, it is assumed that all
the individuals are labeled in correspondence with one
particular genetic disease. Moreover, we assume that the
disease of interest has multigene causal pathways. In other
words, the biological complexity of the disease strongly
suggests that different, and apparently independent genetic
abnormalities may lead to the same misfunctionality in
body. In this regard, it would be reasonable to assume that
different subgroups of a population are associated with dif-
ferent causal factors which justifies decomposing the disease
model into K independent sub-models, where each sub-
model is related to a specific genetic sub-population.

Based on the above-mentioned assumptions, a general
mathematical model for a complex genetic disease in each
sub-population assumes statistical dependence between the
disease and a particular group of SNPs or genetic variations.
Mathematically speaking, disease-causing sites denoted by
S can be decomposed into {S1, S2, . . . , SK}, where Sk

includes all the loci associated with the disease in the kth
sub-population.

Various assumptions regarding |Sk|, i.e. the number of
causal loci in the kth sub-population, can be made. A naive
approach would be to consider single locus hypothesis
testing which ignores epistatic relations among genetic sites.
More complicated assumptions incorporate investigation of
multiple genetic markers instead of one which lead to bet-
ter results, yet suffer from highly increased computational
burdens. We have assumed |Sk| to be drawn from a Poisson
distribution with an adjustable parameter ηk:

|Sk| ∼ e−ηk
ηk

|Sk|

|Sk|!
. (5)
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User can choose large values for ηk in order to incor-
porate more causal variants in the model. This, in turn,
increases the computational complexity of the proposed
statistical inference schemes.

An appropriate prior for choosing elements in each Sk is
to promote those combinations of loci which are physically
close to each other in genome. This way local epistatic
relations in formation of a complex disease can be appropri-
ately addressed. Therefore, one can rewrite the conditional
probability distribution of P (Sk| |Sk|) as:

P (Sk| |Sk|) = P
(
S
(1)
k

) |Sk|−1∏
i=1

P
(
S
(i+1)
k |S(1)

k , . . . , S
(i)
k

)
(6)

where P
(
S
(i+1)
k |S(1)

k , . . . , S
(i)
k

)
takes non-zero values only

for a fraction of S(i+1)
k which are located in ∆ neighborhood

of at least one of the previously determined causal loci,
i.e. S

(1)
k , . . . , S

(i)
k . Again, ∆ is a user specific parameter

and indicates the extent of epistasis in genome which we
wish to consider. Based on the above assumptions, the prior
distribution for the disease model can be expressed as:

P (M) =
K∏

k=1

P (Sk| |Sk|)P (|Sk|) . (7)

4.2 Data Modeling
To model the generation of data given the hidden parame-
ters, we note that

P (D|H) = P (X|H)P (Y |X,H) . (8)

Therefore, we discuss about the two factors separately. First,
we argue that

P (X|H) = P (X|P ,Z) . (9)

This is due the fact that, in our model, individuals attain
their genomic variants from the sub-population that they are
originated from, and the disease model only affects people
with certain genotypes.

For the sake of simplicity, we assume linkage equi-
librium among genetic loci as well as Hardy-Weinberg
equilibrium in each sub-population of origin. In addition,
the sub-population specific frequencies between different
groups are completely independent. In proceeding sections,
these assumptions enable us to draw independent samples
from the allele frequency distributions. In the absence of
linkage disequilibrium (LD), genotype matrix probability
distribution can be formulated by a series of multinomial
functions as follows:

P (X|P ,Z) =
N∏

n=1

L∏
ℓ=1

2∏
α=1

p
x
(α)
n,ℓ ,ℓ,zn

, (10)

where x
(α)
n,ℓ denotes the genotype of the nth individual in

his/her ℓth locus of the αth chromosome (here we have
focused on diploid organisms such as humans).

To model the second factor in Equation (8), we note that

P (Y |X,H) = P (Y |X,Z,M) . (11)

This is due to the fact that whether or not a person is affected
is independent of the MAFs of his/her sub-population.

Fig. 1. A Bayesian Net-
work Model describing
the relation between ob-
served data: genotype
matrix X, disease in-
fection labeles Y , and
unknown sub-population
specific parameters: al-
lele frequency matrix P ,
membership information
Z and hybrid disease
model M .

Considering independence in susceptibilities of individuals
to the given disease, one can write

P (Y |X,Z,M) =
N∏

n=1

P (yn|Xn, zn,Mn) . (12)

Given zn and Mn, one can obtain the causal loci of the
disease for each person of interest. Let us denote this set of
loci for the nth individual by Wn. Obviously, Wn can take
J2|Szn | possible combinations. Each combination for Wn

infects the individual with an unknown probability denoted
by Fzn (Wn). Hence,

P (yn|Xn, zn,Mn) = (Fzn (Wn))
yn (1− Fzn (Wn))

1−yn .
(13)

A Bayesian network can be used to capture all the
dependencies between data and hidden parameters. Fig. 1
presents the graphical model of this network.

5 INFERENCE

In the Bayesian inference framework, we would like to
obtain the posterior of the hidden parameters given the
data, i.e. P(H|D). In this section, we present an algorithm
based on the Markov-Chain Monte-Carlo (MCMC) method
to achieve such a goal.

It is worth mentioning that the proposed statistical
model presented in the preceding section can be viewed as
a generalisation of the model used by STRUCTURE for un-
labelled datasets. In particular, if we remove the labels from
our model, the Bayesian inference amounts to unsupervised
clustering of individuals based on their genotyped data
which has been previously carried out in [9]. In a GWAS,
however, we wish to incorporate labeled data samples and
take advantage of the additional information provided by
labels during the inference.

Conventional frameworks intend to correct for the effect
of population stratification by first clustering the data sam-
ples, and then feeding each cluster of data into a GWAS
module to infer causal factors in a separate phase. We show
that clustering and finding causal disease factors are needed
to be inferred simultaneously.
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5.1 MAP Estimation via Gibbs Sampling

We set out to elaborate upon previously developed numer-
ical methods to maximize P (H|D), which indicates the
posterior probability distribution of allele frequencies, sub-
population memberships and the disease models based on
an observed dataset. In order to do so, we have taken advan-
tage of the Markov-Chain Monte-Carlo (MCMC) methods,
which not only have demonstrated top-notch performances
in a variety of numerical optimization applications but
are also easy to implement. These methods are extremely
useful for obtaining samples from a probability distribution,
especially in cases where the closed form formula for gen-
erating the samples is either unknown or too complex to be
directly used, as in the case of our problem. In the following
we briefly discuss an effective numerical technique in the
MCMC family, known as Gibbs Sampling, which has been
employed in this study.

There are a handful of problems in which a number
of independent samples from a known high-dimensional
distribution π(θ1, θ2, θ3, ..., θn) are needed. However, direct
sampling from π is not numerically feasible. In such cases,
Gibbs sampling guarantees generation of independent sam-
ples which converge to the desired distribution π, should
the ergodicity condition is satisfied. The procedure for gener-
ating these samples is as follows:

1) sample θ
(j+1)
1 from π

(
θ
(j+1)
1 |θ(j)2 , · · · , θ(j)n

)
,

...
i) sample θ

(j+1)
i from π

(
θ
(j+1)
i |θ(j+1)

1 , · · · , θ(j+1)
i−1 , θ

(j)
i+1, · · · , θ

(j)
n

)
,

...
n) sample θ

(j+1)
n from π

(
θ
(j+1)
n |θ(j+1)

1 , · · · , θ(j+1)
n−1

)
.

Performing steps 1 through n is called an iteration.
It is shown that if the number of iterations required for
convergence to the steady state, also known as the burn-
in period, is sufficiently large then the Markov chain closely
imitates the desired distribution. The number of iterations
between two consecutive samples, shown by c, should also
be sufficiently large. Fortunately, it is easy to show that these
conditions hold for the problem at hand, thus making the
MCMC method applicable to our algorithm.

The analogy between the model at hand and the Gibbs
sampling framework mentioned above becomes clear by
replacing (θ1, θ2, θ3) with (P ,M ,Z). However, our experi-
mental observations confirm that maximizing the posterior
distribution for disease models in the final stage of each
iteration, instead of sampling from it, results in higher
convergence rates. Hence, the sampling of the posterior
probabilities can be done by iterating the following steps:

1) sample P (m+1) from P
(
P |D,M (m),Z(m)

)
,

2) sample Z(m+1) from P
(
Z|D,M (m),P (m+1)

)
,

3) find M (m+1) by maximizing P
(
M |D,Z(m+1),P (m+1)

)
,

where m denotes the index of previous iteration.

5.2 Inference of Allele Frequencies

Since minor allele frequencies P are independent of the
disease model, the first step of the proposed inference
algorithm can be simplified into sampling of P (m) from
P
(
P |X,Z(m−1)

)
. Recall from Section 4 that the prior dis-

tribution for allele frequencies, i.e. P
(
P |Z(m−1)

)
, is mod-

eled via a Dirichlet distribution with parameters λ1, . . . , λJ .
Also, P

(
X|P ,Z(m−1)

)
which resembles the probabilistic

model for generating genotype data from MAFs is assumed
to be a multinomial probability distribution. Hence, the
posterior probability distribution for allele frequencies can
be written as:

p∗,ℓ,k ∼ D (λ1 + n1,ℓ,k , λ2 + n2,ℓ,k , . . . , λJ + nJ,ℓ,k)
(14)

where D indicates a Dirichlet distribution with parameters
λj + nj,ℓ,k , j = 1, 2, . . . , J . The relation in (14) directly
follows from the fact that Dirichlet distribution is the conju-
gate prior for multinomial distribution. λs are user-specific
parameters while the quantities nj,ℓ,k are defined as:

nj,ℓ,k =

∣∣∣∣∣
2∪

α=1

{
∀n | x(α)

n,ℓ = j , zn = k
}∣∣∣∣∣ . (15)

In other words, nj,ℓ,k represents the number of chromo-
somes in the kth sub-population of the dataset which con-
tain the jth allele type in their ℓth genetic locus. These
parameters indicate the empirical abundance of specific
allele types in each locus and sub-population.

5.3 Inference of Sub-population Memberships

In the second step of the algorithm, each person is as-
signed to a cluster based on current estimates of other
target variables and also observed data. Mathematically
speaking, one has to sample from the posterior distribution
P
(
Z|X,Y ,M (m−1),P (m)

)
to obtain a modified estimate

of the membership information Z(m).
In this stage we need to acquire a likelihood function

for the disease label of each individual Y , based on current
estimates of disease model M and genotype data X . That
would resemble the use of Fz (X) functions in our proposed
model. In this step, P

(
Z(m)|X,Y ,M (m−1),P (m)

)
can be

written as:

P
(
Z|X,Y ,M (m−1),P (m

)
=

P
(
Y |X,Z,M (m−1)

)
P
(
X|Z,P (m)

)
P (Z)

P
(
Y |X,M (m−1)

)
P
(
X|P (m)

) . (16)

For the nth individual the equation reduces to the following
form:

P
(
zn = k|yn,Xn,M

(m−1),P (m)
)
∝

P
(
yn|Xn,M

(m−1)
k , zn = k

)
P
(
Xn|P (m), zn = k

)
P (zn = k) (17)
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Once (17) is computed for all k ∈ {1, 2, . . . ,K}, we can
normalize the quantities in order to attain a discrete prob-
ability distribution. z(m)

n can then be achieved by sampling
from this discrete probability distribution.

5.4 Inference of Disease Models
The final step of our modified Gibbs sampling procedure
corresponds to finding the most probable disease models for
each sub-population according to the posterior probability
distribution of Mks, i.e. P

(
M |X,Y ,Z(m)

)
. It should be

reminded that given the genotype data of an individual,
his/her infection to the disease is assumed to be indepen-
dent from MAFs. A notable fact is that Mk may be inferred
solely from {(Xn, yn, zn) |n = 1, 2, . . . , N}. In this regard,
the inference can be done by any of the previously intro-
duced disease model identification methods in the GWAS
literature. However, in this study we use our general disease
model proposed in Section 4.2.

It is clear that the formulation P
(
M |X,Y ,Z(m)

)
can

be written as:

P
(
M |X,Y ,Z(m)

)
∝ P

(
Y |X,Z(m),M

)
P (M) . (18)

By replacing the equations from (13) into (18), one can
alternatively have:

P(M |X,Y ,Z(m)) ∝
K∏

k=1

P (Sk| |Sk|)P (|Sk|)

N∏
n=1

(Fzn (Wn))
yn (1− Fzn (Wn))

1−yn . (19)

Disease model selection step implies the maximization
of P

(
M |X,Y ,Z(m)

)
with respect to variables Sk and

Fk (.) for all k = 1, 2, . . . ,K . It is easy to investigate that
maximization with respect to probabilities Fk (.) has an
analytical solution. Optimal disease probabilities at the mth
iteration, F (m)∗

k , can be obtained via the following relation
(calculations are presented in the Appendix A):

F
(m)∗
k (Ck,i) =

ωk,i

Ωk,i
, (20)

where Ck,i represents the ith combination of the causal
factors in the kth sub-population. Obviously, for the kth
sub-group we have Ck,i ∈ {1, 2, . . . , J}2|Sk|. Ωk,i and ωk,i

are defined as:

Ωk,i =

∣∣∣∣∣
2∪

α=1

{
∀n

∣∣ W (α)
n = Ck,i , z(m)

n = k
}∣∣∣∣∣

ωk,i =

∣∣∣∣∣
2∪

α=1

{
∀n

∣∣ W (α)
n = Ck,i , z(m)

n = k , yn = 1
}∣∣∣∣∣

k = 1, 2, . . . ,K, i = 1, 2, . . . , J2|Sk|. (21)

All F ∗
k (Ck,i) , k = 1, 2, . . . ,K are calculated indepen-

dently for each cluster as well as for each combination Ck,i.
The intuition behind equation (21) seems obvious, since the
probability of disease infection for a group of individuals
with a particular allele combination and in a specific sub-
population is estimated by the empirical ratio of those who
are infected, to the number of all the individuals having that

combination. By substituting the optimal disease infection
probabilities into (13), the following formulation is achieved:

N∏
n=1

(
F ∗
zn (Wn)

)yn
(
1− F ∗

zn (Wn)
)1−yn

=
K∏

k=1

J2|Sk|∏
i=1

e−nk,iH(Pk,i), (22)

where nk,i denotes the number of chromosomes with{
Wn = Ck,i , z(m)

n = k
}

, and H (p) , −p log p −
(1− p) log (1− p) denotes the Shannon entropy. Likewise,
Pk,i indicates the empirical ratio of disease infection in the
kth sub-population for those individuals with the allele
combination Ci,k. Again, the proof is given in Appendix A.

Maximization of (19) with respect to the remaining vari-
ables, i.e. the sets Sk , k = 1, 2, . . . ,K , does not have an
analytical solution and should be determined via exhaustive
searching in a valid solution space. This is an essential
step in almost all GWAS methodologies. Mathematically
speaking, for all possible choices of |Sk| and loci in Sk

the following objective function should be evaluated and
consequently maximized:

S∗
k = argmax

Sk

P (Sk| |Sk|)P (|Sk|) .
J2|Sk|∏
i=1

e−nk,iH(Pk,i) ,

k = 1, 2, . . . ,K. (23)

The above optimization problem, in its simplest form,
requires a search on the total possible subsets of SNPs to
be solved which renders this approach inapplicable even
for moderate numbers of SNP loci. However, it should be
noted that by choosing η (the expected number of genetic
loci involved in the formation of disease) wisely, one can
control the computational complexity of the search. In other
words, genetic diseases are mostly caused by abnormalities
in a limited number of SNPs, say < 10, rather then the
whole set of SNPs in genome ∼ 106. This fact will sig-
nificantly reduce the search space since for |Sk| ≫ η the
objective function in (23) becomes negligible and should not
be checked. Moreover, by imposing the prior assumption
regarding the consideration of epistasis only for neighboring
SNPs (choosing relatively small values for epistasis length
∆) the valid search space will be reduced even further and
the computational complexity of the optimization becomes
practically tractable.

Under mild condition including the ergodicity criteria,
one can investigate that the series(

P (m),Z(m),M (m)
)
,(

P (m+c),Z(m+c),M (m+c)
)
,(

P (m+2c),Z(m+2c),M (m+2c)
)
,

...

for sufficiently large m and c will resemble independent
samples of the posterior distribution of the overall model. It
should be noted that initial value of P , M and Z, denoted
by P (0), M (0) and Z(0), are selected according to their
corresponding prior probability distributions. Drawing Z
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from a uniform distribution seems reasonable unless some
prior information including geographical, ethnic or racial
characteristics of the individuals are present.

6 EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed
statistical framework are presented. Moreover, performance
of our method has been compared with conventional GWAS
methodologies as well as state-of-the-art clustering frame-
works in the area of population genetics. We will show
that the proposed framework surpasses both conventional
GWAS algorithms and unsupervised clustering methods in
determining the causal factors of the disease and also iden-
tifying the hidden population structures. The next part will
discuss experimental results over synthetic data in addition
to providing explanations regarding the generation of these
datsets. Final part of the section is devoted to representation
and analysis of computer simulations and comparisons.

6.1 Synthetic Data

In order to test the performance of our algorithm, we devel-
oped simulated data using our data generation model dis-
cussed in Section 4 whose hidden parameters were known
prior to testing our framework. The data generation model
takes into account realistic assumptions underlying living
organisms such as population stratification, genetic barriers
and linkage equilibrium.

For the sake of simplicity, we have assumed that the
dataset consists of two hidden sub-populations, i.e. K = 2.
Inspired by the attributes of real genotyped datasets, we
have also assumed that most of the genotyped loci have
same MAFs in both sub-populations, which are considered
as random values in the range (0, 0.1). Consequently, only a
small fraction, denoted by γ, of the loci have sub-population
specific frequencies and thus can be useful during the clus-
tering; However, these loci are not assumed to be known a
priori. We have assumed γ = 5% in all of our simulations
while the number of geotyped loci varies between 20 and
5000.

In the next phase, disease labels will be generated for
each individual based on the statistical infection model dis-
cussed in the preceding sections. Causal factor numbers and
corresponding genetic loci are determined through random
sampling from prior distributions with η = 2 (expected
number of causal loci) and ∆ = 10 (the physical extent of
linkage disequilibrium in genome). It is worth mentioning
the causal loci are assumed to be different in each sub-
population. This assumption models the fact that several
different malfunctions in the biological pathways lead to
the same disease. Moreover, a number of possible allele
combinations of causal factors are chosen to be disease
causing, i.e. with F (Ci,k) > 0.7 which implies a high risk
of infection if Ci,k is exposed, while the other combinations
are assumed to be neutral, i.e. F (Ci,k) < 0.05. According
to therapeutic properties of many complex diseases, com-
bination of minor alleles at SNP loci with a moderate or
higher linkage disequilibrium have been identified as the
main causal factor of the illness [4], [5]. These assumptions
are appropriately addressed during the data generation

phase via parameter settings. Finally, it should be noted
that the total number of iterations and the burn-in period
for our MCMC implementation are set to 20000 and 10000,
respectively.

6.2 Results
We have compared the performance of our method
to STRUCTURE [9], in determining the hidden sub-
populations within the dataset. STRUCTURE is known as
the state-of-the-art unsupervised clustering algorithm for
genotype data. The results are depicted in Fig. 2 and Fig. 3
for datasets of size N = 600 and 1000, respectively. STRUC-
TURE ignores the disease labels since its core algorithm is
designated for unsupervised scenarios. However, we have
observed that if use only the case group, i.e. the group
with yn = 1, the performance of STRUCTURE will improve
for large datasets. However, it is evident that for small
number of loci, i.e. L < 1000, the proposed framework has a
significantly improved performance over STRUCTURE and
its variant. Moreover, in extreme scenarios STRUCTURE has
an accuracy around 50% in a two-class problem which ren-
ders this method inapplicable in such cases. The mentioned
supermacy for the proposed method is due to employment
of disease labels and an appropriate disease model during
the inference, while STRUCTURE only uses only allele types
in informative loci.

Fig. 4 illustrates the region in N -L plane (number of
individuals vs. number of genotyped loci) in which the
methods have shown a clustering accuracy of 80% or higher.
In this regard, the borders of this region is shown for
the proposed method and STRUCTURE in blue and red
colors, respectively. As it can be seen, the proposed method
encompasses a relatively larger area in the plane which
indicates the method outperforms unsupervised clustering
algorithms when the number of individuals or the number
of genotyped loci are small. It worth mentioning that for
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Fig. 2. Accuracy in identification of hidden sub-populations as a function
of the number of genetic loci, for our proposed method and the STRUC-
TURE framework with both all data points and cases only. Dataset
consists of overall 600 individuals, and only 5% of genetic loci have
different allele frequencies between the two hidden sub-populations.
The proposed method surpassed the state-of-the-art, specifically in low
loci number regimes.
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Fig. 3. Accuracy in identification of hidden sub-populations as a function
of the number of genetic loci, for our proposed method and the STRUC-
TURE framework with both all data points and cases only. Dataset
consists of overall 1000 individuals, and only 5% of genetic loci have
different allele frequencies between the two hidden sub-populations. As
can be seen the performance of STRUCTURE in “cases only” mode has
been improved, however, the proposed method still performs better.

practical reasons it is common for researchers to reduce
the number of genotyped loci in genome-wide association
study since the inherent complexity of the problem usually
scales exponential with L. On the other hand, the number
of individuals in a GWAS dataset is limited due to financial
issues in acquiring of the data samples.

An important aspect of any GWAS methodology is its
capability for correct identification of disease-causing sites
in a given dataset. The performance of the proposed frame-
work is shown in Fig. 5 where a number of Manhattan plots

10
3

0

100

200

300

400

500

600

700

Number of Genotyped Loci

N
um

be
r 

of
 In

di
vi

du
al

s

 

 

The Proposed Framework

STRUCTURE

Accuracy > 80%

Accuracy < 80%

Borders

Fig. 4. The area in N -L plane (number of individuals and number of
genotyped loci) in which the accuracy of clustering methods are above
80% in a two-class problem. The proposed method is compared with the
STRUCTURE framework. It can be seen that our method has an accept-
able performance in a relatively larger area of the plane, implying a more
robust performance for small size datasets. The achieved improvement
is due to employing disease infection labels during the clustering.
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Fig. 5. Comparison of disease-causing site identification via conven-
tional GWAS (Blue) and the proposed clustering-based framework
(Red). (Up): statistical significance level, i.e. − log (p-value), is com-
puted over the whole population (Blue plot), and over the inferred 1st
sub-population. (Down): the same procedure for the 2nd sub-population
has been done. Evidently, conventional hypothesis testing without cor-
rection for the effect of population stratification results in small sig-
nificance levels and spurious inferences. However, once the hidden
sub-populations are correctly identified, disease-causing sites can be
robustly inferred.

are depicted to show the statistical significance level of the
genetic loci being tested. By statistical significance we sim-
ply mean − log (p-value), where all p-values are computed
according to the hypothesis of being a causal factor. As it
can be seen, the significance level of the main causal loci
corresponding to each of the hidden sub-populations are
relatively small, hence, resulting into spurious inferences
(blue plots). The main reason for this phenomenon is the
lack of an appropriate population stratification to separate
different case/control groups. As a result, different sub-
populations would suppress the significance level of each
other by introducing noisy signals. However, effective clus-
tering of the dataset and computing the significance level
of each causal factor only within its corresponding sub-
population achieves a considerably higher significance level
and avoids mis-identifications. the latter can be achieved
by our proposed framework while conventional clustering
algorithms have been failed to effectively find the latent
population structures.

In order to further illustrate the performance of the pro-
posed method we have compared its accuracy with five rival
methodologies. The rival methods are simple single-locus
and bi-locus hypothesis testing algorithms implemented in
PLINK toolbox [55], an improved genetic algorithm (IGA)
framework introduced in [56], GBOOST which is designated
to capture mutual epistatic relations [57], simple hypothesis
testing with a PCA-based population stratification module
[41], and a GWAS method inspired by linear support vector
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Accuracy
K = 1 K = 2

PLINK I 64% 19%

PLINK II 93% 27%

IGA 32% 7%

GBOOST 94% 30%

PCA-based 65% 34%

SVM-based 71% 13%

Proposed 79% 74%
TABLE 1

Performance comparison of the proposed framework with five rival
methodologies in terms of accuracy in identification of causal factors.

Two sets of datasets have been employed for this test which consists of
K = 1 and K = 2 hidden sub-populations, respectively. As can be

seen, when K > 1 the proposed method outperforms rival algorithms.

machines (SVM) proposed in [7]. Two sets of datasets have
been used for this experiment, which consist of K = 1 and
K = 2 hidden sub-populations, respectively. The results
have been shown in TABLE. 1. It should be noted that
parameters for each method have been tuned to achieve
the best performance. For the case of K = 1 almost all
methods have an acceptable performance, while PLINK
and GBOOST perform marginally better. However, it can
be observed that when there are strong hidden population
structures, as in the case of K = 2, the accuracy of the
proposed framework has significantly surpassed the rivals.
As a result, all the mentioned methodologies face with
spurious statistical inferences which result in erroneous
decisions. Also, it has been seen that PCA-based methods
for population stratification are not useful in extreme cases.

7 CONCLUSIONS

Population structures are shown to have a tremendous
impact on the accuracy of many genome-wide association
mapping studies. The majority of methods which are in-
tended to rectify this shortcoming are based on unsuper-
vised clustering of genotype data in a preprocessing stage to
cancel the effect of population structures, and then feeding
each cluster for a GWA study separately. This strategy
confronts sever problems in small-size datasets since the
MAFs do not necessarily suffice for robust identification
of sub-populations. On the other hand, a variety of recent
medical discoveries verify that most of complex diseases are
multigene and thus may have several infection models ac-
cording to genome. Based on this fact, this paper proposes a
novel statistical framework to perform association mapping
and population structure identification simultaneously and
interactively. We have shown that in extreme scenarios, such
as many real-world datasets, the accuracy of the proposed
framework in identifying population structures can be im-
proved up to 10% to 15%. Moreover, false discovery rate in
association mapping stages are dropped dramatically.

In our future works, we will mainly focus on the effect
of population admixtures, i.e. multiple genetic ancestries for
each individual, which has been neglected in this study
for simplicity. In addition, it is possible to transform the
mathematical core of the current study from a parametric
viewpoint, to a Bayesian non-parametric setting which is
shown to be more robust against parameter configurations.

APPENDIX A
ANALYTIC SOLUTION FOR DISEASE INFECTION
PROBABILITIES

In this section we provide the proof for obtaining equations
(21) and (22). In order to maximize P

(
M |X,Y ,Z(m)

)
, one

can simply aim to maximize its logarithm:

log P
(
M |X,Y ,Z(m)

)
= log P

(
Y |X,M ,Z(m)

)
+ log P (M)

=
K∑

k=1

log [P (Sk| |Sk|)P (|Sk|)] +
N∑

n=1

yn log (Fzn (Wn))

+
N∑

n=1

(1− yn) log (1− Fzn (Wn)) . (24)

Obviously, only the two last summands depend on infec-
tion disease probabilities. Since Wn is not continuous and
takes only discrete values, one can rewrite the mentioned
summands as:

K∑
k=1

J2|Sk|∑
i=1

∑
n∈Ri,k

yn log (Fk (Ci,k))+

(1− yn) log (1− Fk (Ci,k)) (25)

where Ci,k indicates the ith possible combinations of 2 |Sk|
alleles. The factor of 2 corresponds to the diploid assump-
tion. Accordingly, Ri,k =

{
n|Wn = Ci,k , z

(m)
n = k

}
. By

calculating the derivatives of (25) with respect to Fk (Ci,k)
and omitting the constant factors, the above equation is
simplified to:

∀i, k ⇒
∑

n∈Ri,k

yn
F ∗
k (Ci,k)

− 1− yn
1− F ∗

k (Ci,k)
= 0 (26)

which alternatively means:

∀i, k ⇒ F ∗
k (Ci,k) = Pi,k =

1

|Ri,k|
∑

n∈Ri,k

yn (27)

Pi,k indicates the empirical disease infection ratio for
individuals in Ri,k. By substitution of the above optimal
disease infection probabilities into (25), one simply achieves
the following equation in terms of Sk and the inputs of the
original problem:

K∑
k=1

J2|Sk|∑
i=1

|Ri,k| ]Pi,k log (Pi,k) + (1−Pi,k) log (1− Pi,k)]

= −
K∑

k=1

J2|Sk|∑
i=1

|Ri,k|H (Pi,j) , (28)

where H (·) denotes the Shannon entropy. As a result, we
have:

N∏
n=1

(
F ∗
zn (Wn)

)yn
(
1− F ∗

zn (Wn)
)1−yn

=
K∏

k=1

J2|Sk|∏
i=1

e−nk,iH(Pk,i), (29)

which is equation (22) and the proof is complete.
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