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Abstract

De novo creation of protein coding genes involves formation of short ORFs from
noncoding regions; some of these ORFs might then become fixed in the population.
De novo created proteins need to, at the bare minimum, not cause serious harm to the
organism, meaning that they should for instance not cause aggregation. Therefore,
although the creation of the short ORFs could be truly random, but the fixation
should be of subject to some selective pressure. The selective forces acting on de novo
created proteins have been elusive and contradictory results have been reported. In
Drosophila they are more disordered, i.e. are enriched in polar residues, than ancient
proteins, while the opposite trend is present in yeast. To the best of our knowledge no
valid explanation for this difference has been proposed.

To solve this riddle we studied structural properties and age of all proteins in 187
eukaryotic species. We find that, on average, there are small differences between
proteins of different ages, with the exception that younger proteins are shorter.
However, when we take the GC content into account we find that this can explain the
opposite trends observed in yeast (low GC) and drosophila (high GC). GC content is
correlated with codons coding for disorder-promoting amino acids, and inversely
correlated with transmembrane, helix and sheet promoting residues. We find that for
the youngest proteins, i.e. the ones that are most likely to be de novo created, there
exists a strong correlation with GC and structural properties. In contrast, this strong
relationship is not seen for ancient proteins. This leads us to propose that structural
features are not a strong determining factor for fixation of de novo created genes.
Instead these proteins resemble random proteins given a particular GC level. The
dependency on GC content is then gradually weakened during evolution.

Author Summary

We show that the GC content of a genomic area is of great importance for the
properties of a protein-coding de novo created gene. The GC content affects the
frequency of the codons and this affects the probability for each amino acid to be
included in a de novo created protein. The codons encoding for Ala, Pro and Glu
contain 80% GC, while codons for Lys, Phe, Asn, Tyr and Ile contain 20% or less. Pro
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and Gly are disorder-promoting, while Phe, Tyr and Ile are order-promoting.
Therefore random protein sequences at a high GC will be more disordered than the
ones created at a low GC. The structural properties of the youngest (orphan) proteins
match to a large degree the properties of random proteins when the GC content is
taken into account. In contrast structural properties of ancient proteins only show a
weak correlation with GC content. This suggests that even after fixation of de novo
created proteins largely resemble random proteins given a certain GC content.
Thereafter, during evolution the correlation between structural properties and GC
weakens.

Introduction 1

Proteins without any detectable homologs outside one genome are often referred to as 2

orphans. Orphan protein coding genes can be created by gene duplication, lateral 3

transfer of genetic material and de novo gene creation, that are of particular interest, 4

as they are the only source of completely novel protein coding material and present a 5

rare chance for full-frontal functional novelty. Further, studies of the properties of the 6

genes might provide unique insights into the fundamental processes in the formation 7

and selective pressure of all genes since clearly, in the strict sense, all protein 8

superfamilies were once created by a de novo mechanism. 9

Before the genomic era, the scientific consensus held that de novo creation of new 10

genes was rare - instead it was believed that the vast majority of all genes were 11

originally generated in an ancient “big bang”. However, when the first complete 12

genomic sequences were initially published, this hypothesis was not supported [1]. In 13

fact, to this day, when analysing complete genomes from closely related genomes, a 14

surprisingly high number of orphan proteins persist [2–4]. It has later been shown that 15

some of the initially assigned orphan proteins are not de novo created but rather a 16

result of limited phylogenetic coverage of the genomes [5]. 17

Today, supported by the vast amount of complete genome sequences available and 18

improved search methods [6], many of the orphan proteins detected, at least in yeast, 19

appear to be created through de novo formation [7, 8]. Some studies indicate that, in 20

yeast, there is a large set of proto-genes: ORFs that remain on the verge of becoming 21

fixed as bona fide protein-coding genes in the population [7]. This gives a possible 22

background in explaining how novel proteins can be generated from non-coding 23

genetic material. In other species the genomic coverage has been more limited and 24

therefore the studies have been less detailed. 25

It is clear that not all identified orphan proteins are de novo created. Several 26

reasons for this exists. Some orphans might be classified as such primarily because the 27

relationship with other proteins are missed. This problems is enhanced with a limited 28

amount of closely related genomes and for fast evolving proteins. In addition gene 29

duplication, lateral transfer, gene losses and domain rearrangements also make it 30

difficult to detect the true relationship between all proteins. To accurately detect de 31

novo created genes, the availability of several completely sequenced genomes not only 32

from closely related species, but also from a set of numerous and evenly spaced taxa is 33

essential. Even when this is present the best that can be obtained is a set of orphans 34

strongly enriched in de novo created proteins. 35

The availability of complete genomes separated at different evolutionary distances 36

also enables studies at different ages [3, 5, 7]. Here, a gene can be unique to a specific 37

species, or even to a strain; alternatively it can be present pervasively across a 38

taxonomic group. Even more ancient orphans may be defined as superfamilies that are 39

unique to a kingdom of life [9, 10]. Using methods such as ProteinHistorian it is 40

possible to assign an age to each protein [11]. 41
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After de novo creation the gene needs to become fixed in the population. The 42

selective forces governing this process have been studied by examining the properties 43

of the de novo created proteins that are fixed in the population. Intrinsic disorder, low 44

complexity, subtelomeric location, high β-sheet preference as well as other features 45

have been associated with de novo created genes and orphan proteins [12, 13]. It has 46

also been proposed that with age proteins (i) accumulate interactions, (ii) become 47

more often essential and (iii) obtain lower β-strand content and higher stability [14]. 48

Some aspects of these, such as the fact that orphans on average are short, are likely 49

related to a de novo creation mechanism. However, other features, including intrinsic 50

disorder [4, 15], are not obviously related to the bona fide gene genesis and could 51

instead be the result of the selective pressure acting during fixation. 52

In yeast, we have earlier reported that the most recent orphans, i.e. the ones 53

unique to S. cerevisiae, are less disordered than the average yeast proteins [3]. Studies 54

enabled by the sequencing of Drosophila pseudoobscura provide the opposite picture, 55

i.e. the youngest proteins are more disordered than ancient [4]. 56

To the best of our knowledge the origin of this difference has not been explained. 57

Could the selective forces for de novo creation be that disparate between two different 58

eukaryotes, or could the de novo genetic mechanisms be different, or is it an artefact 59

caused by evolutionary rates or evolutionary distances between the related genomes? 60

Alternatively, there might exist some genomic feature that is different between 61

drosophila and yeast that could explain the difference of the intrinsic disorder in their 62

orphan proteins. In addition to hugely different sizes and different gene structures, the 63

GC content differs significantly between the genomes of different taxa. The GC 64

content of Saccharomyces genomes is roughly 40%, while in Drosophila the GC 65

content is 55%. 66

To obtain a better understanding of the structural properties affecting the de novo 67

creation of proteins, we studied the age of proteins in 187 eukaryotic genomes. 68

Significantly more than used in earlier studies. Due to the frequency of lateral transfer 69

in prokaryotic mechanisms age estimates of prokaryotic genes is more troublesome 70

than for eukaryotic genes. Therefore, we focus on eukaryotic organisms in this study. 71

We find that the most striking difference between young and old proteins is their 72

difference in length. Surprisingly all other properties show a large overlap between 73

ancient and orphan proteins. However, we find that structural features in orphan 74

proteins differ significantly between low-GC and high-GC genes. Orphans in low GC 75

genes are more disordered and have less secondary structure than in high-GC genes. 76

In older proteins this relationship is much weaker, supporting a model where de novo 77

creation starts from random non-coding ORFs and then gradually adapts the features 78

of ancient proteins. 79

Materials and Methods 80

Datasets 81

To start, protein data for 400 eukaryotic species were obtained from OrthoDB, release 82

8 [16]. These species are divided into 173 Metazoans and 227 Fungi, for a total of 83

4,562,743 protein sequences. For each species, a complete proteome was also 84

downloaded from UniProt Knowledge Base [17]. 85

Age estimate 86

The ProteinHistorian software pipeline [11] is aimed at annotating proteins with 87

phylogenetic ages. This method requires a phylogenetic tree relating a set of species, 88
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and a protein family file, containing the orthology relationships between the proteins 89

of the species in the tree. The pipeline will then assign each protein to an age group, 90

depending on the species tree and the ancestral family reconstruction algorithm used 91

to identify protein families. For our application, we used ProteinHistorian with default 92

parameters, the NCBI phylogenetic tree [18], and protein orthology data obtained 93

from OrthoDB. The OrthoDB method is based on all-against-all protein sequence 94

comparisons using the Smith-Waterman algorithm and requiring a sequence alignment 95

overlap of at least 30 amino acids across all members of an orthologous group. 96

Therefore, the age group can be thought of as the level in the species tree on which a 97

shared sequence of at least 30 AAs first appeared, i.e. it assigns multi-domain proteins 98

to the age of its oldest domains. 99

One problem that exists using the NCBI phylogenetic tree is the presence of many 100

polytomic branches, especially at the genus level. The cases when more than one of 101

species were present in a multi-furcated branch are problematic, because 102

ProteinHistorian can not distinguish between its proteins being specific to that species 103

and proteins shared among the entire group. To solve this, we converted the NCBI 104

tree to a fully binary by forcing no polytomy on the terminal branches. 105

Identification and definition of orphans 106

Proteins present in OrthoDB are only those with orthologs in at least one other 107

species, i.e. proteins without orthologs (singletons) are not present in OrthoDB. 108

Therefore, to obtain a set of candidate orphan proteins, the complete proteomes of all 109

species were downloaded from Uniprot. Thereafter, BLAST was used to extract 110

proteins not present in the OrthoDB dataset, obtaining 356,884 candidate orphan 111

proteins. However, a large fraction of these proteins are not orphans but are missing 112

from OrthoDB for other reasons, including that they were not present when the 113

database was created or that they have undergone large domain rearrangements. We 114

would assume that truly de novo created orphans do not contain domains found in 115

other proteins. Therefore to ensure that we have a unique set of orphan proteins we 116

filtered out proteins with hits in the Pfam-A database, by using hmmscan. We believe 117

that, due to the very stringent criteria used here, the majority of this remaining set is 118

constituted of de novo created proteins, and we refer to them as orphans throughout 119

the rest of this paper. These proteins are specific to the species taxonomic level, i.e. 120

we expect not to find them in other species in the dataset, even in the same genus. For 121

Saccharomyces cerevisiae, that has several strains in the dataset, we also included the 122

strain specific proteins in the orphan group. 123

Among the OrthoDB proteins, we defined genus Orphans those that were assigned 124

age = 1 (2 in the case of S. cerevisiae, because several strains are present in the 125

dataset) by ProteinHistorian. These proteins are specific to the taxonomic level 126

immediately superior to the one of orphans, i.e. genus Orphans are genus-specific. By 127

this definition, taxonomies represented by a single genus in the dataset have no genus 128

Orphans; for this reason, we selected for our final dataset only those species that have 129

at least one other species within the same genus. 130

Proteins having the maximum age according to ProteinHistorian were defined as 131

ancient: these proteins are thought to be present in the common ancestor of all Fungi 132

(taxon id = 4751) or all Metazoa (taxon id = 33208). Finally, proteins whose 133

calculated age is between genus orphans and ancient were defined as intermediate. 134

This final dataset amounts to 1,782,675 proteins distributed across 187 species. On 135

average, 73 orphans were found in a genome, 0.8% of all proteins are defined orphans 136

and 0.6% as genus orphans. 137

This shows that for most genomes we do a very conservative estimate of the 138

number of orphans. When comparing to earlier published sets of orphans in yeast and 139
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drosophila our numbers are significantly lower. 140

For instance, in Saccharomyces cerevisiae (reference strain s288c), we identified 16 141

orphans and 5 genus orphans, out of 6466 total proteins. As a comparison, in our 142

earlier study we have reported 157 species-specific and 125 genus-specific orphans [19] 143

and Vidal en co-workers reported 143 species-specific (ORFs1) and 609 genus-specific 144

(ORFs2−4) proteins [20]. In a more detailed view, 50-70% of the proteins earlier 145

described as orphans are here classified as Intermediate. Further, the majority of yeast 146

proteins classified as genus-specific orphans are equally divided between intermediate 147

and ancient. This shows that the identification of exact what proteins are de novo 148

created remains a difficult proteins and depends on the genomes included in the study. 149

Following the same trend, in Drosophila pseudoobscura we could identify only 6 150

orphan proteins, in comparison to the much higher numbers (228) reported 151

previously [4]. Four species were found to have more than 5% of orphans: Ciona 152

intestinalis (5.8%), Colletotrichum gloeosporioides (6.4%, Botryotinia fuckeliana 153

(6.5%) and Apis mellifera (7.2%). 154

In conclusion we do believe that the conservative estimate orphans here is suitable 155

for this study as our primarily aim is not to estimate the exact number of orphans but 156

to examine properties of proteins of different ages. In particular we do believe that 157

among orphans as well as among genus orphans there is a significant fraction of de 158

novo created proteins. 159

Assigning GC content 160

To assign the GC content of each gene, we downloaded nucleotide coding sequences 161

(CDS) data for each species from the European Nucleotide Archive [21] and mapped 162

each 163

sequence. The mapping was performed using the Uniprot KnowledgeBase mapping data 164

(ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/idmapping/idmapping.165

In OrthoDB, each protein has a primary, internal identifier, and a secondary identifier 166

that we could use to search the Uniprot mapping file. The corresponding EMBL 167

identifier was used to download the CDS data from ENA 168

(https://www.ebi.ac.uk/ena/ ). We could map 1,357,518 out of 1,782,675 proteins 169

(∼76% of the dataset). The GC content was then calculated for each mapped protein 170

coding gene individually. 171

Generally, the GC% of a coding region is higher than that of a non-coding region of 172

DNA [22]; therefore, we expect that, for any given species, the GC of coding segments 173

would be higher than the taxonomic GC. To examine this the genome wide GC 174

content of were downloaded, for each species, from NCBI Genome Reports 175

(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME REPORTS/eukaryotes.txt); Indeed for 176

94% of the species the CDS sequence is higher than the taxonomic GC. Therefore we 177

find it more relevant to define the genomic GC content as the average, for each species, 178

of the GC of its CDS. Anyhow, results computed for predicted structural properties 179

against the GC content of the genome wide DNA (taxonomic GC) are shown in 180

Supplementary material see Fig. ??. 181

Predicted properties of proteins 182

Intrinsic disorder content was predicted for all the proteins by using IUPred in its long 183

disorder mode [23]. A single amino acid residue was then labelled as disordered if its 184

intrinsic disorder was > 0.5. The disorder content of a protein is shown as the 185

percentage of its disordered amino acid residues. 186

We used SCAMPI [24] to predict the percentage of transmembrane residues of each 187

protein. Low-complexity regions were predicted using the software SEG [25]. For each 188
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protein, we indicate as SEG the percentage of residues in low-complexity regions. 189

PSIPRED ( [26]) was used to predict the secondary structure of all the proteins in 190

the dataset. Here, the secondary structure was predicted using only a single sequence 191

and not a profile. This reduces the accuracy but the overall frequencies should be 192

rather accurately predicted. We annotated each protein with the percentage of its 193

residues predicted to be in each type of structure (alpha helix, beta strand, coil). 194

Propensity scales 195

TOP-IDP [27] is a measure of the disorder-promoting vs. avoiding propensity of single 196

amino acids. For each protein, a single propensity was calculated by averaging the 197

TOP-IDP values of all its residues. 198

We express the hydrophobicity of each protein as the average score of all its 199

residues using the Hessa hydrophobicity scale [28]. 200

For each protein, we computed the propensity of each amino acid to be in one of 201

the four possible secondary structures (helix, sheet, coil, turn) by using the energy 202

function-based propensity scales proposed earlier [29]. The average propensity for each 203

secondary structure was then calculated for each protein. 204

Random proteins at different GC contents 205

To test whether the studied intrinsic properties (disorder, transmembrane, TOP-IDP 206

and hydrophobicity), as well as the frequency of any given amino acid, were solely 207

dependent on GC content, we used a set of 21,000 random ORFs, generated as follows: 208

at each GC content ranging from 20 to 90%, in steps of 1%, a set of 400 ORFs 209

(equally divided into 300, 900, 1,500 and 2,100 bp long) was generated so that its 210

content of GC was fixed. The ORFs were generated by randomly selecting codons 211

among the 61 non-stop codons. The probability to select one codon given a GC 212

content of GCfreq is set accordingly: 213

Probability =
Q

3

i=1
δ(Ni|GC)∗GCfreq+δ(Ni|AT )∗(1−GCfreq) (1)

where Ni is the nucleotide of the codon in position i and δ(N |GC is equal to 1 if 214

the nucleotide N is guanine or cytosine and zero otherwise, etc. Finally, start and stop 215

codons are added. These ORFs were then translated to polypeptides, and all their 216

intrinsic properties, as well as the frequencies of their amino acid were computed, as 217

described above. 218
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Results 219

The assignment of age to all proteins is based on the ProteinHistorian pipeline [11]. In 220

the youngest, orphan group, only proteins that are (a) not present in any other of the 221

400 eukaryotic genomes in OrthoDB [16] release 8 and (b) that do not share any 222

Pfam-A domain with any other eukaryotic protein are present. Less than 1% of the 223

proteins in the dataset are classified as orphans, see Fig. 1a. 224

In the next group, genus orphans, only proteins that are unique to a genus are 225

included; this group also makes less than 1% of the proteomes. Given that these 226

estimates are significantly more conservative than earlier methods it can be assumed 227

that a large fraction of both orphans and genus orphans. 228

Finally 10% of the proteins are assigned as intermediate and close to 90% of the 229

genes are ancient. This provides a more strict assignment than most earlier studies see 230

methods for details. 231

Orphans are shorter versions of older proteins. 232

The average length of the proteins increases by age, see Fig 1b. The average length is 233

100 amino acids in orphans, 150 in genus orphans, 300 for intermediate and 500 for the 234

ancient proteins. This highlights the well-established fact that eukaryotic proteins 235

expand during evolution. The expansion can occur by several mechanisms, including 236

domain-fusions [30], additional secondary structure elements [31] and expansion within 237

intrinsically disordered regions [12]. 238

As coding regions on average have higher GC content than non-coding regions [22], 239

it could therefore be expected that GC content would increase by length [32] and 240

therefore by age, but we could not clearly observe this trend, see Fig 1c. It can be 241

however seen how the distribution ofGC in orphans is wider than in ancients, with 242

many genes having less than 40% GC, most likely a consequence of fewer and shorter 243

genes. 244

Next, we compared predicted structural properties of all proteins see Fig. 1d-i. 245

First it can be noted that none of these properties present a trend as strong as in 246

length. The amount of predicted disorder ranges between 20% and 40% of the amino 247

acids, with the highest average in the orphan and intermediate groups. In orphans, 248

the distribution is bimodal with many completely disordered proteins. Partly this is 249

what is expected for a set of shorter proteins, but certainly it could also indicate there 250

is a preference for a subset of orphans to be disordered. 251

The fraction of transmembrane residues is on average ∼30% in orphan proteins, 252

with a decreasing trend towards ancient (20%). Here, in particular, there are very few 253

young proteins with no predicted transmembrane regions, while these are frequent 254

among the ancient proteins. A similar decreasing trend can be found for low 255

complexity: here orphans have on average 20% of residues in low complexity regions, 256

while less than 10% in ancient proteins. The other structural properties appear to be 257

unaffected by age but with a wider distribution among the younger (and shorter) 258

proteins. 259

Although some general trends differencing orphans and ancient proteins can be 260

observed, with the exception of length, the relationship actually differs largely between 261

different organisms. For instance when studying intrinsic disorder the orphans and 262

genus orphans of S. cerevisiae s288c are remarkably non-disordered (∼3% of the amino 263

acids) as shown before [19] see Fig. 2A. The closely related species Candida albicans 264

shows a similar trend; see Fig. 2B, while some other Saccharomycetaceae do not. 265

In contrast, but also consistent with earlier studies [15], Drosophila orphans are 266

more disordered than their ancient proteins. orphans and genus orphans in most 267

Drosophila genome are more disordered than the ancient, see Fig. 2C. In worm, 268
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orphan proteins appear to be consistently more disordered than progressively older 269

ones, across all the considered Caenorhabditis species, see Fig. 2D. 270

In general, it is apparent that the variation among the species is quite large, as in 271

some organism orphans are more disordered than ancient proteins, while in others the 272

opposite appears to be the case. What could possibly explain this difference? 273

One possibility is that the more complex regulations in animals require more 274

disordered residues in comparison with yeast. But the average disorder content is 275

similar in all eukaryotic species, contradicting this idea. We also noted that yeast is 276

also one of the genomes with lowest GC content (∼40%). Therefore, we decided to 277

examine the properties of proteins from different age groups in respect with to their 278

GC content. 279

Orphans are more disordered in high-GC genomes 280

To identify the origin of the different properties of orphan vs. ancient proteins in 281

different organisms, we studied the distribution of structural properties for all genomes 282

against the corresponding GC content see Fig. 3. 283

For proteins of all ages, disorder, low complexity and coil frequency increase on 284

average with GC, while transmembrane, helix and sheet frequency decrease. Further, 285

the dependency of GC is clearly stronger for younger proteins, indicating that it is 286

related to the creation of the protein and then gradually lost during evolution. 287

Notable is that intrinsic disorder shows a clear, directly proportional dependency 288

on GC: higher GC corresponds to more disorder. At the extreme (over 60% GC), 289

more than 50% of the residues are predicted to be disordered in orphan proteins, while 290

for ancient proteins the disorder percentage is about 30%. At low GC (below 40%) the 291

disorder percentages is lower and similar in ancient and orphan proteins (15%). Other 292

structural properties show a similar behaviour; for orphans the transmembrane and 293

coil contents are high in low-GC genomes, while sheet and helix contents are high. For 294

the ancient and intermediate proteins there is a much weaker relationship with GC. 295

The GC is not constant over a genome. In general coding regions have higher GC 296

than non-coding regions [33]. Further, there are also variation in GC between different 297

regions of a genome, so when a non-coding region is turned into a gene the local GC 298

will decide the amino acid content of the protein. Therefore, it might be more relevant 299

to study the GC of each gene individually. 300

A strong relationship between GC and structural properties of 301

orphan genes. 302

In Fig. 4 we show the dependency of structural properties on GC content for 303

individual genes. In addition to the variation for protein of the four age groups, we 304

have examined the structural properties for a set of random proteins generated from 305

codons at a given GC frequency, for details see methods. It can be seen that the 306

structural properties of these random genes are clearly GC dependent. 307

Orphans, and genus orphans, show a definite dependency of all studied properties 308

on GC, thus indicating that, broadly, orphan proteins appear to be simklar to random 309

protein in their nature, given a certain GC level see Fig. 4. In contrast ancient and 310

intermediate proteins the structural features are only loosely dependent on GC, and 311

they appear to contain less sheet and more helical residues than expected by random. 312

When studying Fig. 4 in more detail a few notable differences between the random 313

proteins and the orphans can be observed: orphans are more disordered; contain more 314

low complexity regions but fewer sheets independently of the GC level. 315

It should be recalled that what we describe above is based on predicted structural 316

features and they are a reflection of the sequence of a protein. If a certain group of 317
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proteins is predicted to be more disordered, or contain more sheets, it is quite likely a 318

consequence of changes in amino acid frequencies, in such a way that the frequency of 319

order-/disorder-promoting amino acids changes. 320

Property scales 321

Next, we studied the relationship of the four age groups of proteins given six different 322

amino acid scales, describing their structural preferences. The difference between the 323

scales and the predicted features used above is that scales are describing general 324

properties and are directly calculated from amino acid sequences, while the predicted 325

features are also based on other properties. For disorder we used the TOP-IDP 326

scale [27], for hydrophobicity we used the biological hydrophobicity scale [28], while 327

sheet, turn, coil and helix propensities were analysed using structure-based 328

conformational preferences scales [29]. 329

In agreement with the predicted values, the average properties in the four groups of 330

proteins are rather similar see Fig. ?? However, when taking the GC content into 331

account all properties of the younger proteins shows a strong correlation with GC, see 332

Fig. 5. To a very large degree the properties of the orphan proteins follow what would 333

be expected from random proteins (black line). However, regardless of GC, orphan 334

proteins are more disordered and hydrophobic, have slightly higher turn and helical 335

propensities, and also lower sheet propensities. 336

Interestingly, also the propensities of the two groups of older proteins change by 337

GC; however, this dependency is much less pronounced than in younger or random 338

proteins. We should remember that amino acid preferences and GC content are 339

coupled both ways: changes of amino acid composition will not only affect the 340

properties but also the codons used and thereby the GC; so it is possible that the 341

relationship between properties and GC for ancient proteins is an indirect consequence 342

of the amino acid preferences and not that the disorder is caused by high GC. The big 343

difference seen between orphan and ancient proteins indicates that, given evolutionary 344

time, the selective pressure to change the GC level is weaker than the selective 345

pressure to change the protein properties. 346

Discussion 347

The GC content affects the codon usage between different genomes [34] and it has 348

been argued that the GC content might be solely responsible for the codon bias [35]. 349

The difference in codon usage causes differences in amino acid frequencies, in such a 350

way that some amino acids are more frequent in higher GC content levels. Obviously, 351

the reverse could also be true, i.e. that high disorder content increases the GC content 352

of a gene. But if this was the case the correlation should be stronger for ancient 353

proteins and not for orphans as we observe here given the fact that ancient proteins 354

should have more time to adjust to the selective pressure. To study the effect of GC 355

content on amino acid frequency we examined the frequency of all 20 amino acids in 356

proteins of different age and GC content. 357

The influence of GC on amino acid preferences 358

How can changes in GC content affect proteins? In a random DNA sequence, the 359

frequency of different codons changes depending on GC, and this, in turns, affects the 360

expected amino acid frequencies. Clearly, the GC content has a strong influence on 361

the structural features of these random proteins (see black lines in Fig. 4 and 5. 362
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In Fig. 6, the expected and observed amino acid frequencies at different GC 363

contents are explored. For most amino acids the observed amino acid frequencies are 364

surprisingly well correlated with what is expected from the codons alone. However, a 365

few notable exceptions exist: 366� For Pro, Arg, Trp, Tyr, Phe and Ile, the frequencies in orphan proteins resemble 367

the random proteins and are strongly dependent on GC content, while the 368

frequencies in ancient proteins are much less dependent on GC content. This 369

suggests that there exists a selective pressure to gradually adjust the frequencies 370

of some amino acids to an optimal level. 371� Asn and Ala, on the other hand, change in frequency also in ancient proteins, 372

indicating that the selective pressure to change the frequency of these amino 373

acids is lower and it is possible that their frequency is really affected by the GC 374

content of the genome. 375� Further, Glu, Gln and Asp are more frequent than expected, at any GC level. 376

Here, the frequency found in orphans is intermediate to what is expected by 377

chance and what is found in ancient proteins. This indicates a gradual 378

adjustment of the frequency of these amino acids during evolution. These amino 379

acids are coded by only two codons, i.e. there exists a selective pressure to 380

increase their frequency to a higher level than the 3.3% expected by chance. 381� Finally, Cys and His are less frequent, independently of GC content, in real 382

genes than in random ones, indicating their special roles in protein function and 383

folding as well as their rareness. 384

In Fig. 7 the GC content of the codons of each amino acid is compared with the 385

propensity of that amino acid to be in a certain structural region. Three amino acids, 386

Ala, Gly and Pro are “high GC” amino acids, i.e. they have more than 80% GC in 387

their codons, while five amino acids, Lys, Phe, Asn, Tyr and Ile, have “low GC codons” 388

have less than 20% GC in their codons. The other twelve amino acids show weaker 389

dependency with GC content, see Fig. 7. 390

All three “high GC” amino acids are intrinsic disorder-promoting (high TOP-IDP), 391

while four out of five “low GC” amino acids are order-promoting (low TOP-IDP) 392

residues. Therefore at high GC content, DNA codons coding for hydrophilic, 393

disorder-promoting amino acid are prevalent in any given protein, by simple statistics, 394

while DNA sequences low in GC tend to contain codons for hydrophobic amino acids, 395

associated with low intrinsic disorder. 396

A comparison between the GC level and structural preferences is shown in Fig. 7. 397

All scales correlate with the GC frequencies with coefficients ranging from -0.42 to 398

0.39. The strongest correlations are found with β propensity (-0.42) and TOP-IDP 399

(0.39) and the weakest with hydrophobicity (0.16). The difference in correlation is 400

mainly caused by the high and low GC amino acids; for example Ile, which is a very 401

strong sheet breaker, is very frequent in turns and rather neutral in most other scales. 402

This contributes to the stronger correlation of disorder and sheet scales with GC 403

compared to other scales. Gly, on the other hand, is a strong helix breaker but not too 404

unfavourable in transmembrane regions, partly explaining why a stronger correlation 405

is observed between GC and TOP-IDP than between GC and hydrophobicity. 406

so 407

Conclusions 408

We have studied the properties of proteins and their age in a large set of eukaryotic 409

genomes, with a particular focus on the youngest proteins that are most likely to be de 410
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novo created. As shown before, the youngest proteins are shorter than ancient 411

proteins, but surprisingly we do find that on average for other structural features the 412

young and old proteins are rather similar. We observe that the properties of youngest 413

proteins vary significantly with the GC content. At high GC the youngest proteins 414

become more disordered and contain less secondary structure elements, while at low 415

GC the reverse is observed. We do show that these properties can be explained by 416

changes in amino acid frequencies caused by the different amount of GC in different 417

codons. The influence of this can be seen in the frequency of the amino acids that 418

have a high or low fraction of GCs in their codons, such as Proline. 419

In a random sequence, the most disorder-promoting amino acid, Pro, only 420

represents less than 5% of the amino acids at 40% GC, but 10% at 60% GC. This 421

actually agrees well with what is observed in the youngest proteins: 5% at 40% GC vs. 422

9% at 60% GC, see Fig. 6. Interestingly, even ancient proteins show a similar but 423

significantly weaker trend. Here, the fraction of Pro increases from 4.5% to 6%. 424

Similar changes in frequencies can be observed for several amino acids. 425

On average, young proteins are more disordered than ancient proteins, but this 426

property is strongly related to the GC content. In a low-GC genome the disorder 427

content of an orphan protein is ∼30% while in a high-GC genom eit is over 50%, see 428

Fig. 3. 429

Here we show that GC content of a genome strongly affects the amino acid 430

distribution in de novo created proteins. It appears as if de novo created proteins that 431

become fixed in the population are very similar to random proteins given a certain GC 432

content. Codons coding for disorder promoting residues are on average richer in GC, 433

explaining the earlier contrasting observations between the low disorder among 434

orphans in a yeast (a low GC organism) and the high disorder among orphans in 435

Drosophila (a high GC organism). 436
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Figure 1. Overview of the proteins assigned to the four age groups in this study.
Orphan proteins are proteins unique to one strain/species; genus orphans are found at
the immediately superior level (species/genus); Intermediate are found in more general
taxonomic levels, but not assigned to be present in the ancestor to all
fungi/metazoans. ancient proteins are supposed to be present in the ancestral
genomes. In this plots are shown (a) the fraction of proteins belonging to each age
group, (b) the average length, in amino acids, (c) the average GC content of the genes,
(d) Intrinsic disorder (long) predicted by IUpred (% of disordered residues), (e)
percentage of transmembrane residues, (f) fraction of residues in low-complexity
regions, (g) fraction of residues predicted to be coil, (h) fraction of residues to
predicted to be in a beta sheet and (i) fraction of residues predicted to be in a helix.
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Figure 2. For six selected species (two strains of S. cerevisiae, C. Albicans, D.
melanogaster, D. sechellia and C. elegans), intrinsic disorder (% of amino acid
predicted as disordered by IUpred long) is shown as violin plots for proteins in the
different age groups.
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Figure 3. Structural properties of proteins of different ages plotted against the GC
content of the genome (coding regions). For clarity only the ancient (blue) and orphan
(red) proteins are shown individually, but the linear fitted lines for genus orphans
(pink line) and intermediate ones (light blue) are also shown.
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Figure 4. Running averages of predicted structural properties of proteins of different
age, orphans (red), genus orphans (pink), intermediate (light blue) and ancient (blue).
The black lines represent randomly generated proteins at a given GC frequency.
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Figure 5. Running averages of structural properties computed from amino acid
scales, of proteins of different age, orphans (red), genus orphans (pink), intermediate
(light blue) and ancient (blue). The black lines represent randomly generated proteins
at a given GC frequency.
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Figure 6. The relationship of each amino acid frequency with the GC content and
age of the protein. A black line represents the expected values. The amino acids are
sorted by the GC content in their codons.
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Figure 7. The percentage of GC in all codons encoding an amino acid is plotted as
non-filled bars and the values for the different propensity scales as filled bars. (a)
TOP-IDP, (b) Hessa transmembrane scale (c-f) Koehl secondary structure preference
scale. For each scale the Pearson (R) correlation with GC is also shown.
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S2 Fig

Orphans Genus
orphans

Intermediate Ancient
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

<
T
O
P
-I
D
P
>

Orphans Genus
orphans

Intermediate Ancient

0.0

0.5

1.0

1.5

2.0

2.5

3.0

<
H

y
d
ro

p
h
o
b
ic

it
y
>

 (
H

e
ss

a
)

Orphans Genus
orphans

Intermediate Ancient

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

<
T
u
rn

 p
ro

p
e
n
si

ty
>

Orphans Genus
orphans

Intermediate Ancient

−0.05

0.00

0.05

0.10

0.15

<
C

o
il 

p
ro

p
e
n
si

ty
>

Orphans Genus
orphans

Intermediate Ancient
−0.3

−0.2

−0.1

0.0

0.1

<
B

e
ta

 p
ro

p
e
n
si

ty
>

Orphans Genus
orphans

Intermediate Ancient

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

<
A

lp
h
a
 p

ro
p
e
n
si

ty
>

Violin plots showing several properties calculated from propensity scales, as average
score. (a) Intrinsic disorder using the TOP-IDP scale, (b) hydrophobicity using the

Hessa scale, (c-f) secondary structure preferences.
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