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Abstract1

Background2

HIV patients are more likely to contract bacterial pneumonia and more likely to die3

from the infection. Unfortunately, there are few tests to quickly diagnosis the etiol-4

ogy of these dangerous infections. Several biomarkers may be useful for diagnosing5

the most common pneumonia-causing organism, S. pneumoniae, but studies utilizing6

the standard statistical approach provide little concrete guidance for the HIV-infected7

population.8

Methodology and Findings9

Using a Bayesian approach, I analyze data from a cohort of 280 HIV patients with10

x-ray confirmed community acquired pneumonia. First, I use a variety of techniques11

to establish predictor significance and to identify their optimal cutoffs. Next, in lieu12

of cutoffs, I find the continuous and combined likelihood ratios for every value of13

each biomarker, and I compute the associated posttest probabilities. As expected, I14

find the three biomarkers with good clinical yield and a statistically significant asso-15

ciation with S. pneumoniae are C-reactive protein (CRP), procalcitonin (PCT), and16

lytA gene PCR (lytA). Based on Bayesian clinical yield, optimal cutoffs are largely17

equivocal. The optimal dichotomous cutoff for CRP is essentially any value between18

10 mg/dL and 30 mg/dL (∆pposttest ≈ 0.49). The optimal cutoff for PCT is any value19

between 2 ng/mL and 40 ng/mL (∆pposttest ≈ 0.35). The optimal cutoff for lytA is any20

value less than 6 log10 copies/mL (∆pposttest ≈ 0.45). Further, I find that continuous21

likelihood ratios provide much more accurate posttest probabilities than dichotomous22

cutoffs. For example, starting with the empirical pretest probability, a lytA approach-23

ing 0 copies/mL lowers the probability of S. pneumoniae infection to less than 15%,24

while a result of 10 copies/mL raises the probability to greater than 65%. However, a25

lytA value just above or below the suggested cutoff of 8000 copies/mL or my new opti-26

mal cutoff of 30, 000 copies/mL leaves the posttest probability of infection essentially27
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unchanged from the pretest probability.28

Conclusion29

CRP, PCT, and lytA all provide significant value in diagnosing the etiology of pneumo-30

nia in HIV patients. The optimal dichotomous cutoffs for lytA, CRP, and PCT need to31

be adjusted for pneumococcal diagnosis in this population. However, continuous and32

combined likelihood ratios avoid discarding valuable quantitative information, and a33

combined likelihood ratio can be easily computed without the need for prior logistic34

regression. Importantly, there is significant overlap between these biomarkers such that35

only one of the three biomarkers at a time should be used to update clinical probabil-36

ities. Thus, it is ill-advised to combine the likelihood ratios of different biomarkers to37

produce a posttest probability. Finally, I provide a simple web application to quantita-38

tively calculate the posttest probability of S. pneumoniae infection in HIV patients with39

x-ray confirmed pneumonia: http://meyerapps.org/pneumococcal_etiology_hiv.40

Introduction41

Respiratory infections are among the most common causes of death and disease worldwide,42

and regions with a high incidence of HIV are the hardest hit. HIV infected individuals are at43

least twenty five times more likely to develop a bacterial pneumonia compared to their un-44

infected peers [1, 2]. Approximately sixty percent of acute lower respiratory tract infections45

in HIV patients have a bacterial etiology, and seventy percent of those infections are caused46

by Streptococcus pneumoniae [3]. Despite the etiologic concordance between HIV-infected47

and uninfected populations, the morbidity and mortality from invasive S. pneumoniae in-48

fection is much higher in HIV patients. Some demographic subgroups are thirty to one49

hundred times more likely to develop disseminated pneumococcal disease following pneumo-50

coccal pulmonary infections [2,4]. Nevertheless, there are many other respiratory pathogens51

that frequently infect HIV patients [2, 3]. The most common bacteria include Haemophilus52
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influenzae, Staphylococcus aureus, and Legionella pneumophila each with their own local53

variation in empiric treatment. Mycobacteria species including M. tuberculosis account for54

nearly twenty percent of pulmonary infections in HIV patients while viruses, fungi, and par-55

asites make up the remaining ten percent of infections [3]. In every case, it is important56

to rapidly diagnose the infecting organism both for treatment success and for antimicrobial57

stewardship.58

There are many biomarkers with clinical potential for rapidly evaluating pneumonia eti-59

ology [5, 6]. To identify infections and hint at an organism, physicians follow core body60

temperature, white blood cell count and the erythrocyte sedimentation rate [7]. Unfortu-61

nately, these markers are considered relatively non-specific for particular organisms. More62

recently, there are a number of biomarkers referred to collectively as acute phase reactants63

that have been validated for a wide range of clinical applications [7]. Among the most com-64

mon is C-reactive protein (CRP), a protein that is synthesized in the liver, and was originally65

identified as a serological fraction in patients with S. pneumoniae-infected patients [7–10].66

Despite its identification in pneumococcal infections, CRP became known as a non-specific67

inflammatory marker with application in a wide range of disciplines from rheumatology to68

cardiology [7]. For respiratory infections, studies show that CRP levels tend to be higher in69

S. pneumoniae and L. pneumophila pulmonary infections compared to infections by atyp-70

ical organisms [11]. Furthermore, several studies suggest that a high CRP can be used to71

determine disease severity for bacterial infections [8, 12]. Despite some success, CRP re-72

tains its stigma as a non-specific marker of inflammatory disease. A different acute phase73

biomarker, procalcitonin (PCT), appears to be more valuable then CRP for the evaluation74

of acute respiratory infections [13–15]. Several randomized control trials show that PCT75

can be used both to track disease status and to guide antibiotic administration [16]. In76

contrast to CRP, studies generally demonstrate that PCT is relatively specific for bacterial77

infections. The evidence for PCT is so overwhelming that the federal Agency for Health-78

care Research and Quality recommends its use for initiating and discontinuing antibiotics in79
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patients with generic respiratory infections [17]. However, as of yet, there is relatively little80

evidence for the use of PCT in several important populations including HIV patients and81

patients with cystic fibrosis [17]. In the last five years, a real time polymerase chain reaction82

(rtPCR) test for the pneumococcal gene lytA (lytA) in nasopharyngeal swabs has proven to83

be sensitive and specific for the colonization of S. pneumoniae [18–20]. Moreover, tests for84

nasopharyngeal lytA are significantly higher in HIV patients with pneumococcal pneumo-85

nia than in asymptomatic HIV-infected controls [21, 22]. In addition, analyses of data from86

HIV-uninfected patients show that lytA densities of greater than 8, 000 copies/mL may be87

a useful diagnostic indicator for S. pneumonia pulmonary infections [23].88

Despite some connection between biomarkers and pneumonia etiology, in the absence of89

specific randomized control trials (RCT) for every possible population and use case, it is90

difficult to translate most of these tests into actionable guidance. Even when there are good91

RCTs, it is difficult for clinicians to know how to extrapolate study results to their particular92

patient population. Moreover, in the vast majority of clinical studies, investigators prefer93

to reduce continuous quantitative tests to just two categories via a dichotomous cutoff (i.e.94

a test cutoff where test results are either greater than or less than the threshold value)95

[24,25]. That choice largely stems from the dominant approach to statistical analyses called96

frequentist statistics, which focuses on determining whether samples are drawn from the97

same or different underlying distributions. For example, in the initial case of evaluating98

biomarkers, investigators enroll a large number of patients with a disease (based on a gold99

standard confirmatory test) and a similarly large number of asymptomatic controls. Each100

patient is tested for the biomarker. Then, investigators use a statistical test to determine101

whether patients and controls are drawn from the same underlying biomarker distribution;102

assuming they are from the same distribution, researchers compute the probability (the103

p−value) of the identified level of extremeness by chance alone. Once the biomarker test is104

statistically significant by p−value, they use other metrics to identify the clinical cutoff that105

maximizes the true positive rate and simultaneously minimizes the false positive rate [24–26].106
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Thus, the practice of frequentist inference revolves around quantifying the probability of107

incorrectly classifying a person given their test result.108

For clinical applications, there are at least three major problems with the frequentist109

approach. First, for most people frequentist probabilities are not a natural way to reason.110

For individual patients, a clinician wants to know the probability that a patient has a par-111

ticular disease; at best, a standard frequentist analysis only computes the probability that112

the patient is misclassified as diseased. Second, since frequentist statistics generally find113

the probability of sample extremeness, reasoning with frequentist statistics is most natural114

and convenient with dichotomous cutoffs (e.g. disease and not disease) [26]. Therefore,115

the approach implies that clinicians and researchers should throw out possibly informative116

quantitative differences between patients who may fall on the same side of the dichotomous117

threshold. There is no clear reason to prefer eliminating such a distinction [27–30]; if any-118

thing, there are good reasons to prefer retaining the additional information in quantitative119

biomarkers. Third, frequentist inference eliminates the possibility of easily defining a prior120

probability [31]. Certainly a 60 year-old HIV patient with a CD4 count of 50 cells/mL, with121

a 100 pack-year smoking history, and a viral load of 100, 000 copies/mL on no prophylaxis is122

not at the same risk for pneumonia as a 30 year-old with CD4 count of 700 cells/mL, with123

no smoking history, and an undetectable viral load. Therefore, even though it is compar-124

atively easy to calculate empirical prior probabilities for many diseases, incorporating that125

information is essentially impossible.126

By contrast, a Bayesian statistical approach easily answers all of these challenges. First,127

Bayesian probabilities are the natural way that humans reason. Clinicians always implicitly128

begin with a prior probability of disease [31]. In fact, the practice of building and ranking129

a differential diagnosis is founded on the Bayesian principle of prior probability. Next,130

clinicians perform a test and subsequently update their degree of belief that a patient has a131

particular disease [27,28,31]. Mathematically, a likelihood ratio is the most convenient means132

to update the probability of disease [31]. Although most Bayesian analyses of biomarker tests133
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fall into the same dichotomous trap as their frequentist contemporaries, that is certainly not134

necessary or particularly helpful. One can calculate likelihood ratios for every possible test135

result, and those continuous likelihood ratios can be used to update the pretest probability of136

disease for individual patients [26,27,29]. Then, clinicians are left with a simple, interpretable137

probability that represents the probability of disease.138

In this study, I find that CRP, PCT, and lytA can all independently aide in the diagnosis139

of pneumococcal pneumonia, but they cannot be combined to produce improved results. In140

addition, the current cut points for each test do not optimize their discriminatory power.141

According to the best traditional method and a more modern Bayesian approach, the cutoffs142

should be increased for etiology determination. Nevertheless, optimizing the cutoff is prob-143

ably not ideal for clinical utility. Instead, combined and continuous likelihood ratios can be144

easily computed and retain all of the quantitative information inherent in the tests. I find145

that retaining the quantitative information improves the accuracy of posttest probabilities146

relative to setting a single cutoff. Last, I provide a web application that allows clinicians to147

quickly input test results and compute a posttest probability of S. pneumoniae respiratory148

infection. Although, the web application serves a single defined purposed, my hope is that a149

similar approach can be easily incorporated into lab result reporting systems within existing150

electronic medical record applications.151

Methods152

The data used in this study was collected and analyzed previously in a separate manner [22].153

I downloaded the data from Data Dryad [32]. The data included a total of 280 HIV infected154

patients. Patients were admitted to the study after having a confirmatory chest x-ray for155

community acquired pneumonia. There were many available predictors in the dataset includ-156

ing age, Bartlett score, CD4 count, Bactrim prophylaxis status (either taking or not taking),157

HAART therapy status (either taking or not taking), CURB65 score, proANP, proADM,158
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copeptin, procalcitonin, C-reactive protein, and bacteremia. In addition, there were three159

response variables including bacteremia (either bacteremic or not bacteremic), pneumococ-160

cal etiology by standard criteria (either confirmed or ruled out), and pneumococcal etiology161

by expanded criteria. Pneumococcal etiology was established if a sputum culture, Gram’s162

stain, urinary pneumococcal antigen, or blood culture revealed pneumococci. The dataset163

included an additional criteria to establish an expanded definition of pneuomococcal etiol-164

ogy; that criteria was a threshold of 8×103 copies/mL. I chose to omit that criteria to avoid165

internal circularity in interpreting the results. Here, I used only pneumococcal diagnosis as166

the response variable.167

All analyses were performed in the R statistical programming language [33]. I used168

several libraries to import, split, combine, filter, and reshape the data [34–37]. I used169

the plotting library ggplot2 to generate all of the figures in this manuscript [38]. I used170

the supplementary functions provided by cowplot to make final, publication-ready figures171

[39]. Everything not provided by these packages, I custom coded. I made available all172

of my code, figures, and data on Github: https://github.com/ausmeyer/pneumococcal_173

colonization_analysis_redo.174

I performed univariate logistic regression with every available predictor using the standard175

etiology criteria as the response (some results are only on Github). Then, I used age, CRP,176

PCT, and lytA in all pairwise combinations as predictors in a multivariate logistic model.177

Age was not a significant predictor, and I therefore eliminated it from all subsequent analyses.178

Statistical significance in multivariate regression was established with the p−value of each179

predictor variable. Next, I computed the sensitivity and specificity for every predictor value180

in the dataset. The sensitivity and specificity were computed as181

sensitivity(x) =
TPx

TPx + FNx

, (1)

specificity(x) =
TNx

TNx + FPx
, (2)
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where x represents each biomarker value. Thus, TPx is the number of true positives at x,182

FPx is the number of false positives at x, TNx is the number of true negatives at x, and183

FNx is the number of false negatives at x. I calculated the Youden index [24,25] empirically184

at each biomarker value as185

J(x) = (sensitivityx + specificityx − 1), (3)

where J is the Youden J index. For the standard method, I found the ideal cutoff value for186

each biomarker as the biomarker value, x, that maximized the Youden J(x).187

The transition to Bayesian statistics required computing several additional quantities [31].188

The easiest and most extensible approach for clinical decision-making involves the use of189

likelihood ratios to update the probability of disease after administering a clinical test [31].190

In an effort to compute likelihood ratios over the range of data with relatively smooth191

behavior, I narrowed the upper limit of CRP to 35 mg/dL. This design decision had no192

effect on the analysis other than to eliminate inappropriate edge effects in the data that193

resulted from the relatively small boundary sample size.194

I started by calculating the empirical pretest probability in the dataset as the prevalence195

of pneumococcal disease. Then, the LR+ and LR− were calculated with a simple ratio of196

sensitivity and specificity relations:197

LR + (x) =
sensitivityx

1− specificityx
, (4)

LR− (x) =
1− sensitivityx
specificityx

, (5)

where x again is every value of each biomarker. The associated confidence interval was198

calculated in accordance with [40] as199
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e
±ξ1−α

2
×
√
β(x)

, (6)

where 1− α is the standard confidence level and

β(x) =
1

TPx
− 1

TPx + FNx

+
1

FPx
− 1

FPx + TNx

. (7)

At first glance, this notation may seem overly formal. However, the ξ1−α
2

is simply the200

standard quantile of the normal distribution on the desired confidence interval. If that is201

unclear, the code is publicly available in the Github repository. Starting with the pretest202

probability, I found the posttest positive and negative probabilities at each possible biomarker203

cutoff. That required first calculating the pretest odds from the pretest probability. Then,204

I updated the odds by multiplying the pretest odds by the relevant likelihood ratio (either205

LR+ or LR−). The odds were converted back to probabilities to produce two posttest206

probability values at each cutoff. To find the optimal cutoff, I took the difference of the two207

posttest probabilties at each point with208

∆pposttest = pposttest+ − pposttest−. (8)

Finally, the optimal cutoff value of a biomarker is simply the test value that maximizes the209

difference in the two posttest probabilities.210

Next, I proceeded to calculate the continuous likelihood ratio by two different means. In211

the first, I used the methodology of Simel et al. [26]. This method requires first fitting a212

logistic model [27], then computing the likelihood ratio using the logistic parameters. Thus,213

I used the logistic probability function,214
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f(x) =
1

1 + e−(α+βx)
. (9)

Then, with the values from the logistic fit (as in Simel et al.), I calculated the continuous215

likelihood ratio for each value of the biomarkers with216

x′ =
ln [ p′

1−p′ ]− α
β

, (10)

LR(x) = eβx−x
′
, (11)

where p′ is the pretest probability of the relevant condition. In this case, I used the empir-217

ical pretest probability. In addition, to ensure the appropriate behavior of the continuous218

likelihood ratio function, I computed the continuous likelihood ratio for a range of pretest219

probabilities from 0.05 to 0.95 in increments of 0.05 (result not shown).220

Finally, owing to the multiplicative nature of likelihood ratios, I computed point esti-221

mates of the combined likelihood ratio. There could be some debate about the best way222

to accomplish the calculation empirically. For example, one could calculate the point es-223

timate on an interval by multiplying the LR+ of a biomarker cutoff value n by the LR−224

for the cutoff point at n + 1. In the end, I chose to compute the empirical likelihood ratio225

point estimates by multiplying the LR+ and LR− at a single cutoff value n. After some226

simplification, this equation takes the form227

LRcombined(x) = LR +x ×LR−x, (12)

=
sensitivityx

1− specificityx
× 1− sensitivityx

specificityx
, (13)

=
sensx − sens2x
specx − spec2x

, (14)
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which could be further simplified into a quadratic form utilizing only TPx, FPx, TNx, and228

FNx. However, that simplification adds little clarity. I then repeated that calculation at229

every biomarker value, x, in the dataset. Then, in the same manner as above, I used230

the continuous and empirically combined likelihood ratios to update the empirical pretest231

probability to obtain the plotted posttest probabilities.232

An accompanying website to compute the posttest probability of pneumococcal infec-233

tion is available: http://meyerapps.org/pneumococcal_etiology_hiv. Code and data234

for the web application are freely available on Github: https://github.com/ausmeyer/235

pneumococcal_etiology_hiv. I built the website using the shiny server framework and the236

plotly interactive plotting library [41,42].237

Results238

Biomarkers can help to identify S. pneumoniae etiology239

Univariate logistic regression revealed that only three of the predictive biomarkers had a240

strong connection with pneumococcal etiology (Fig. 1). These three were C-reactive pro-241

tein (n = 41; pintercept = 1.71 × 10−3; ppredictor = 2.56 × 10−3), procalcitonin (n = 233,242

pintercept = 4.46× 10−9; ppredictor = 4.38× 10−5), and lytA (n = 264, pintercept = 2.94× 10−14;243

ppredictor = 9.45×10−14). However, every pairwise combination of predictors in a multivariate244

logistic regression model failed to produce statistical significance in the additional predictor.245

Therefore, there is substantial overlap among the three predictors. From a clinical perspec-246

tive, this means that only one predictor should be used to update the posttest probability247

of pneumococcal infection. Also, from logistic regression alone, there is no reason to prefer248

one of the three markers over any other.249
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Figure 1: Logistic fit of real pneumococcal diagnostic status. The red points show the actual
pneumococcal status of HIV patients in this study. Patients with pneuomococcal etiology
are coded as 1 and those without pneumococcal etiology are coded as a 0. In A, I show the
fit for C-reactive protein. In B, I show the fit for procalcitonin. In C, I show the fit for lytA.

In the interest of statistical simplicity, most modern medical tests utilize a dichotomous250

cutoff (a single line that divides positive tests from negative tests), even for tests that are251

clearly non-binary in nature. To help identify the ideal cutoff, I computed the sensitivity and252

specificity for each available test value in the dataset (Fig. 2). For CRP, the established “nor-253

mal” range is generally less than 3 mg/dL or less than 10 mg/dL for some high sensitivity254

tests. By contrast, I found an equivalence point between 20 mg/dL and 22.5 mg/dL where255

the sensitivity and specificity were both above 75%. In the CRP “normal” range, the speci-256

ficity to diagnose pneumococcal pneumonia approached zero. Similarly for procalcitonin,257

there was equivalence near 2 ng/mL where both sensitivity and specificity were approxi-258

mately 75%, which is far above the normal cutoff of 0.5 ng/mL. For lytA, I again found259

an equivalence point at approximately 4.5 log10 copies/mL with a similar sensitivity and260

specificity. Thus, plotting sensitivity and specificity suggested the same conclusion as that261

from logistic regression; each of the tests provided similar value in diagnosing pneumococcal262

pneumonia. However, a different statistic is required to identify the ideal cutoff.263
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Figure 2: Sensitivity and specificity plots at all possible cutoff values. The blue line shows
the specificity. The red line shows the sensitivity. In A, I show the cutoff values for C-
reactive protein. In B, I show the cutoff values for procalcitonin. In C, I show the cutoff
values for lytA. The ideal plot would see the blue line quickly approach one with relatively
little decline in red. Unfortunately, that behavior is not present for these tests.

Standard approach to identify a cutoff value for S. pneumoniae264

For the three statistically significant biomarkers, I found that each filled a similar receiver265

operator characteristic (ROC) tract (Figs. 3A, 3B, and 3C). Each biomarker diverged far266

from the diagonal and displayed a similar tradeoff between true positives and false positives.267

As expected, it was difficult to find the ideal dichotomous cutoff by ROC alone. Therefore,268

I computed the Youden index and plotted it both against the traditional false positive rate269

and against the more useful biomarker concentration (Fig. 3). According to the Youden270

index, the optimal false positive rate for CRP was 0.3 and the optimal biomarker cutoff was271

16.67 mg/dL. For procalcitonin, the optimal dichotomous false positive rate was 0.34 and the272

optimal biomarker cutoff was 2.22 ng/mL. For lytA, the optimal false positive cutoff was 0.27273

and the optimal concentration was 4.47 log10 copies/mL or 2.95×104 copies/mL. Each cutoff274

was significantly higher than that used to diagnosis anything in the HIV-uninfected popula-275

tion. Therefore, HIV patients were either hyper-responders for inflammatory biomarkers or,276

more likely, S. pneumoniae caused a much larger inflammatory reaction than the average277

for all bacterial infections.278
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Figure 3: Receiver Operating Characteristic (ROC) plots and Youden index plots of each
biomarker. In A, I show the ROC curve for C-reactive protein. In B, I show the ROC curve
for procalcitonin. In C, I show the ROC curve for lytA. In D, I show the Youden index
versus false positive rate for C-reactive protein. In E, I show the Youden index versus false
positive rate for procalcitonin. In F, I show the Youden index versus false positive rate for
lytA. In G, I show the Youden index versus the actual test values for C-reactive protein.
In H, I show the Youden index versus the actual test values for procalcitonin. In I, I show
the Youden index versus the actual test values for lytA. The Youden index is a measure of
how informative each biomarker cutoff is for pneumococcal etiology. In red overlaying blue,
I show the optimal dichotomous cutoff for each biomarker. The optimal value for C-reactive
protein is 16.67 mg/dL, for procalcitonin is 2.22 ng/mL, and for lytA is 4.47 log10 copies/mL
or 2.95 × 104 copies/mL. By Youden index, any value of lytA less than 5 log10 copies/mL
or 105 copies/mL is essentially identical.
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Bayesian approach to identify the optimal cutoff value279

In contrast to the standard approach that focuses on applying various statistical tests with280

a probability of incorrectness, a Bayesian approach couches the problem itself in terms of281

probabilities. Thus, every question to be answered requires a prior probability. In clinically-282

oriented statistics, the prior probability is often the disease prevalence in the näıve case or the283

pretest probability when more information is available. With a pretest probability, Bayesian284

statistics updates the probability of an event as new evidence becomes available. In clinical285

statistics, the easiest method to update the probability is via likelihood ratios to update286

pretest odds. In the case of dichotomous cutoffs, there is always a likelihood ratio positive287

(LR+) to update the odds after a positive test and a likelihood ratio negative (LR−) to288

update the odds after a negative test.289

I calculated the likelihood ratio positive and likelihood ratio negative as well as the 95%290

confidence interval for each biomarker (Fig. 4). The three biomarkers all had an extensive291

range where the confidence band did not overlap one, which implies statistical significance.292

The lytA biomarker displayed the longest and most valuable range of likelihood ratio neg-293

ative values; thus, a negative lytA test at most cutoffs lowered the posttest probability of294

pneumococcal infection. By contrast, there were few cutoff values for procalcitonin where a295

negative test lowered the posttest probability of pneumococcal pneumonia. Also important296

for clinical use, there were significant upper boundary effects for each of these tests. Al-297

though it may be unintuitive, both PCT and lytA seemed to have a threshold above which298

positive tests on higher cutoffs did not raise the posttest probability as much as a positive299

test at a lower cutoff. Perhaps the sampling was not sufficient to denote the real population300

distribution. Alternatively, it may be the case that other pneumonia etiologies become more301

likely for higher cutoffs.302
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Figure 4: Likelihood ratios for each available cutoff in the data. The blue points show
the likelihood ratio for a positive test result. The red points show the likelihood ratio for a
negative test. Likelihood ratio positive values between two and five have a small effect, those
between five and ten have moderate effect, and those greater than ten have large effect. The
inverse is true for the likelihood ratio negative (e.g. 1/2, 1/5, etc). A likelihood ratio of one
means the test is uninformative. In A, I show the values for C-reactive protein with the 95%
CI in gray. In B, I show the values for procalcitonin with the 95% CI in gray. In C, I show
the values for lytA with the 95% CI in gray. In D, I show the values for C-reactive protein
zoomed in and removing the 95% CI. In E, I show the values for procalcitonin zoomed in and
removing the 95% CI. In F, I show the values for lytA zoomed in and removing the 95% CI.
In black dash, I show the y = 1 line. The limited sample size for C-reactive protein make it
difficult to assess the upper limit. The traditional cutoff for procalcitonin = 0.5 ng/mL may
need to be adjusted upward to improve clinical yield. The cutoff of lytA = 8×103 copies/mL
may be lower than ideal; the primary value of lytA compared to procalcitonin is in lytA’s
negative predictive value. For PCT, LR− would be maximized nearer the lower detectable
limit with little loss in positive predictive value.

Rather than the Youden J index, Bayesian statistics suggests a very different manner303

of identifying the optimal dichotomous cutoff. From a Bayesian perspective, the value of a304

particular cutoff on a clinical test is most directly understood as the maximum difference305

between the posttest probability after a postive test and the posttest probability after a306
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negative test. Thus, the most valuable test is the one that most dramatically moves the307

posttest probability.308

I used the pretest probability in the sample along with the LR+ and LR− to plot the309

predicted posttest probabilities for every possible cutoff in the data (Fig. 5). If the cutoff were310

set to a point on the x-axis, any positive test for that cutoff had the plotted posttest positive311

probability and any negative test had the plotted posttest negative probability. Then, to find312

the optimal cutoff I subtracted the posttest negative probability from the posttest positive313

probability. In dramatic contrast to the Youden index, this calculation showed that the vast314

majority of available cutoffs were essentially identical. For CRP, although the optimal value315

was 30.6 mg/dL, any value greater than 10 mg/dL produced a similar posttest probability316

difference. Likewise for PCT, the optimal cutoff was 17.4 ng/mL, but cutoffs up to 40 ng/mL317

were similarly informative. Interestingly, the optimal cutoff for lytA was exactly the same318

value as that found by the Youden index, 4.47 log10 copies/mL or 2.95× 104 copies/mL.319
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Figure 5: Probability plots for each biomarker. In A, I show the posttest probability cal-
culations for C-reactive protein. In B, I show the posttest probability calculations for pro-
calcitonin. In C, I show the posttest probability calculations for lytA. In D, I show the
difference between the positive posttest probability and negative posttest probability for C-
reactive protein. In E, I show the difference between the positive posttest probability and
negative posttest probability for procalcitonin. In F, I show the difference between the pos-
itive posttest probability and negative posttest probability for lytA. In red dash, I show the
pretest probability. In terms of Bayesian information, the ideal dichotomous cutoff is that
value that maximizes the difference between the positive posttest probability and the nega-
tive pottest probability. Thus, the optimal cutoff for C-reactive protein is 30.6 mg/dL, for
procalcitonin is 17.4 ng/mL, and for lytA is 4.47 log10 copies/mL or 2.95× 104 copies/mL.
The optimal cutoff of lytA by Bayesian yield is almost identical to that by Youden index.
However, as with Youden index, any value less than 5 log10 copies/mL is essentially identical.
In addition, by Bayesian yield there is no clear ideal value for any biomarker; many values
perform similarly well.

Quantitative likelihood ratios improve probability calculations320

Although Bayesian analysis suggests somewhat different cutoffs, its real value lies in the321

ability to easily incorporate quantitative data into probabilistic belief. Thus, I computed a322

continuous likelihood ratio for each biomarker (Fig. 6). I found that PCT displayed very323

different behavior from that of either CRP or lytA. There were few values of PCT that324

lowered the pretest probability of pneumococcal etiology. By contrast, depending on the325

result CRP and lytA could either raise or lower the posttest probability of infection. Un-326

fortunately, in every case computing continuous likelihood ratios smoothed over potentially327

informative edge effects in the data. Therefore, I calculated the posttest probabilities using328
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both the combined and the continous likelihood ratio values (Fig. 7). Throughout most329

biomarker values, continuous and combined likelihood ratios produced remarkably similar330

posttest probabilities. For CRP and lytA, the posttest probability calculated with the com-331

bined likelihood ratio was essentially identical to that calculated with the continuous logistic332

function; the only significant deviations were near the ends of the test range. For PCT,333

there were more significant differences between the combined and continuous posttest prob-334

abilities. Using the combined likelihood ratios, procalcitonin levels greater than 20 ng/mL335

did not produce higher posttest probabilities. Thus, it appeared that higher values of CRP336

and lytA encoded ever increasing clinical probabilities while PCT displayed a more narrow337

informative range.338
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Figure 6: Continuous likelihood ratios for several pretest probabilities [26]. In A, I show the
likelihood ratios for C-reactive protein with the actual pretest probability in the data. In B,
I show the likelihood ratios for procalcitonin with the actual pretest probability in the data.
In C, I show the likelihood ratios for lytA with the actual pretest probability in the data.
The dashed line is the uninformative likelihood ratio at LR = 1.
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Figure 7: Posttest probability calculations using combined likelihood scores. In A, I show
the calculated posttest probability combining the LR+ and LR− values at each point for
C-reactive protein. In B, I show the calculated posttest probability combining the LR+ and
LR− values at each point for procalcitonin. In C, I show the calculated posttest probability
combining the LR+ and LR− values at each point for lytA. In D, I show the calculated
posttest probability using the continuous LR values for C-reactive protein. In E, I show
the calculated posttest probability using the continuous LR values for procalcitonin. In F,
I show the calculated posttest probability using the continuous LR values for lytA. In G, I
show A and D overlay to display their correlation. In H, I show B and E overlay to show their
correlation. In I, I overlay C and F to show their correlation. The bottom row shows that
one can empirically calculate posttest probability without the need for logistic regression. In
red dash, I show the pretest probability of pneumococcal infection.

In terms of clinical utility, my analysis showed that CRP and lytA were broadly capable339
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of making a pneumococcal diagnosis either highly likely or highly unlikely. A CRP test340

result of less than 5 mg/dL meant the posttest probability of pneumococcal etiology was341

less than 15%. That was also the case for lytA values of less than 2.5 log10 copies/mL. On342

the other end of the spectrum, relatively high levels of CRP and lytA resulted in posttest343

probabilities approaching 70%. Also, there was a clear warning to those setting dichotomous344

cutoffs on these tests. For each biomarker, the combined posttest probability intersected the345

pretest probability at almost exactly the optimum value suggested by the Youden index. If346

the cutoff was set at that value, test results nearby were almost completely uninformative347

(manipulating the available web application may show this most clearly). Since many or most348

test results fall in a relatively narrow range near the optimal cutoff, setting any dichotomous349

cutoff could be extremely misleading for clinicians interpreting the test results.350

Discussion351

In this study, I showed that each of the three biomarkers CRP, PCT, and lytA displayed352

a moderate connection to pneumonia etiology. Of the three, CRP and lytA were similarly353

valuable in determining pneumococcal etiology whereas PCT displayed the least diagnostic354

power. I showed that existing cut points for all three tests were not the ideal cutoffs for355

diagnosing pneumococcal pneumonia in HIV patients. Thus, cutoffs need to be adjusted for356

etiology discrimination. Then, I utilized a Bayesian framework to calculate the likelihood357

ratios for every possible cutoff. Throughout each clinical test range, the LR+ and LR− were358

statistically significant. Next, I showed that the standard approach to cut point identification359

failed to find the clinical cutoff that optimized for posttest probability yield for CRP and360

PCT. Furthermore, for lytA I found that the Youden index and the optimal Bayesian cutoff361

were identical, and yet different from the existing cut point. Then, using two different362

methods, I showed that it was unnecessary and wasteful to discard the quantitative data363

inherent in these tests. For each biomarker, there was no indication of a cut point that lead364
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to categorical diagnoses; lower values led to a lower posttest probability while higher values365

led to a higher posttest probability. I showed that even in the absence of a logistic regression366

model one can easily calculate an empirical combined likelihood ratio for every possible test367

result. Finally, I showed that the quantitative value of these tests can be dramatic. For CRP368

and lytA, the posttest probability of pneumococcal pneumonia is greater than 65% with high369

values of each test. By contrast, when test values approach zero, the posttest probability of370

pneumococcal pneumonia vanishes to less than 15%. Thus, with a Bayesian approach these371

biomarkers can dramatically lower the uncertainty of S. pneumoniae infection following chest372

x-ray confirmed pneumonia in HIV patients.373

Although there are a number of prior studies that evaluate the value of various biomarkers374

in the diagnosis and treatment of pneumonia, relatively few use biomarkers to help diagnose a375

particular infectious etiology. Furthermore, almost none give concrete guidance to clinicians376

regarding the posttest probability of a particular organism. In most cases, investigators note377

a “statistically significant” difference in the distribution of test results between healthy and378

diseased populations. For example, many papers suggest CRP [8, 11] and PCT [11, 13–17]379

can add value to either the diagnosis or treatment of a wide range of ailments. Specifically,380

PCT can shorten the duration of clinical treatment and improve time-to-treatment. I found381

only one paper where PCT proved capable of distinguishing between typical and atypical382

pneumonia [13]. By contrast, there are several studies showing that lytA can differentiate383

pneumococcal from non-pneumococcal pneumonia [22]. Unfortunately, beyond suggesting a384

single dichotomous cutoff, none of those studies provide information regarding the proba-385

bility of S. pneumoniae infection. Therefore, they fail to answer the most relevant clinical386

question... with this test result, how much more or less likely is S. pneumoniae infection?387

Even in studies where the relative risk is calculated, the inability to incorporate a pretest388

probability into the relative risk ratio means that the accuracy of posttest estimation is389

severely diminished. Hopefully my analysis and/or open source web application can provide390

direct guidance to clinicians treating HIV patients.391
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In addition to the interpretation challenges with clinical biomarkers, there may be further392

issues with the standard approach to calculating clinical cutoffs. To find a cutoff, typically393

investigators use some permutation of the ROC curve. Briefly, ROC curves plot the true394

positive rate (i.e. sensitivity) against the false positive rate (i.e. 1 − specificity). The395

curve provides the clinical cost-benefit ratio of the loss in test specificity to gain in test396

sensitivity. Intuitively, a curve far from the diagonal indicates a good test and one near397

the diagonal indicates a poor test. Formally, there are two common ways to compute the398

optimal dichotomous cutoff. One, the area under the curve (AUC) approach, is intuitively399

simple; it finds the biomarker value that places the curve closest to the (0, 1) point. Thus,400

AUC maximizes the true positive rate and simultaneously minimizes the false positive rate.401

However, work in basic statistics shows that the AUC calculation method requires the use402

of an additional term that causes the statistic to deviate from the ideal unweighted classifi-403

cation/misclassification point [24]. By contrast, the Youden J index (i.e. max[y(x)− x] on404

the ROC) always provides the optimal dichotomous cutoff [24]. Although the two quantities405

agree in many situations, the Youden index is the preferred metric when they do not. When406

the goal of a study is to find the ideal cutoff, there is no other weighting (e.g. economic407

weighting) involved, and the data exclude the possibility of Bayesian analysis, I recommend408

using the Youden J index rather than the more common AUC method.409

Although dichotomous cutoffs for clinical tests are the tradition, there is no reason to410

prefer a single cutoff. To the contrary, many clinical tests provide quantitative data and411

in most cases setting a single cutoff on a continuous variable throws out useful clinical412

information. There are several available approaches to retain at least some quantitative413

information. One method involves calculating so called multilevel likelihood ratios. In that414

case, the investigator defines more than a single cutoff to produce several ordinal categories415

[28–30]. Such an approach is most useful when the data itself is ordinal (e.g. a pain scale416

from 1 to 10 or a Likert scale where the numbers can be ranked but the distance between417

adjacent numbers has no meaning). However, most modern clinical tests contain either418
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interval (e.g. temperature in fahrenheit where zero degrees has no physical meaning) or419

ratio (e.g. weight, height, etc. where the number zero has a clear physical meaning) data420

types. In such cases, investigators can calculate a likelihood ratio for each possible test result.421

Although there is at least one existing approach to make such a computation, it requires422

first fitting a logistic regression curve and subsequently using coefficients of the fit. Although423

that approach may be relatively simple for biostatistics professionals, it is far from obvious424

how it may be applied more broadly. More importantly, the logistic function itself makes425

certain fundamental assumptions about the relationship between predictor and response426

variables. For example, it assumes that there are just two response states; an assumption427

that essentially all biomarkers violate. For most clinical tests, there are a number of possible428

etiologies that might fit into various portions of the test range. For example, in this study the429

combined PCT curve above 10 ng/mL deviates significantly from that calculated with logistic430

regression. Moreover, the combined likelihood ratio actually declines past 30 ng/mL. One431

possible and likely interpretation of this result is that other, more inflammatory infections432

like H.influenzae or S.aureus dominate higher ranges of the PCT test. By contrast, lytA433

being very specific for S.pneumoniae shows no such deviation until the edge of the test range434

where low sampling distorts the otherwise strong correlation. Thus, there are clear practical435

reasons to prefer the combined likelihood ratio calculation. Whatever the case, to improve436

the usability of clinical studies, there is no reason to throw out clinical information in favor437

of simple cutoffs. Continuous or combined likelihood ratios provide the ideal explanatory438

framework for reporting new clinical tests.439
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