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Abstract	22	

1. A	crucial	step	in	the	use	of	DNA	markers	for	biodiversity	surveys	is	the	assignment	of	Linnaean	23	

taxonomies	(species,	genus,	etc.)	to	sequence	reads.	This	allows	the	use	of	all	the	information	24	

known	based	on	the	taxonomic	names.	Taxonomic	placement	of	DNA	barcoding	sequences	is	25	

inherently	probabilistic	because	DNA	sequences	contain	errors,	because	there	is	natural	26	

variation	among	sequences	within	a	species,	and	because	reference	databases	are	incomplete	27	

and	can	have	false	annotations.	However,	most	existing	bioinformatics	methods	for	taxonomic	28	

placement	either	exclude	uncertainty,	or	quantify	it	using	metrics	other	than	probability.	29	

2. In	this	paper	we	evaluate	the	performance	of	a	recently	proposed	probabilistic	taxonomic	30	

placement	method	PROTAX	by	applying	it	to	both	annotated	reference	sequence	data	as	well	31	

as	unknown	environmental	data.	Our	four	case	studies	include	contrasting	taxonomic	groups	32	

(fungi,	bacteria,	mammals,	and	insects),	variation	in	the	length	and	quality	of	the	barcoding	33	

sequences	(from	individually	Sanger-sequenced	sequences	to	short	Illumina	reads),	variation	34	

in	the	structures	and	sizes	of	the	taxonomies	(from	800	to	130	000	species),	and	variation	in	35	

the	completeness	of	the	reference	databases	(representing	15%	to	100%	of	the	species).	36	

3. Our	results	demonstrate	that	PROTAX	yields	essentially	unbiased	assessment	of	probabilities	37	

of	taxonomic	placement,	and	thus	that	its	quantification	of	species	identification	uncertainty	is	38	

reliable.	As	expected,	the	accuracy	of	taxonomic	placement	increases	with	increasing	coverage	39	

of	taxonomic	and	reference	sequence	databases,	and	with	increasing	ratio	of	genetic	variation	40	

among	taxonomic	levels	over	within	taxonomic	levels.	41	

4. Our	results	show	that	reliable	species-level	identification	from	environmental	samples	is	still	42	

challenging,	and	thus	neglecting	identification	uncertainty	can	lead	to	spurious	inference.	A	43	

key	aim	for	future	research	is	the	completion	and	pruning	of	taxonomic	and	reference	44	

sequence	databases,	and	making	these	two	types	of	data	compatible.	45	
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Introduction	52	

In	this	paper,	we	use	the	term	‘DNA	barcoding’	to	refer	to	molecular	species	identification	with	53	

the	help	of	‘barcoding’	genes,	which	are	short	sequences	of	DNA	that	vary	greatly	between	54	

species	but	little	within	species	(Hebert	et	al.	2003).	DNA	barcoding	has	revolutionized	biological	55	

studies	by	increasing	the	speed	and	reliability	of	assigning	Linnaean	taxonomies	to	biological	56	

specimens	(Ratnasingham	and	Hebert	2007).	When	combined	with	high-throughput	sequencing,	57	

barcoding	can	be	applied	to	bulk	samples	or	environmental	DNA,	which	approach	we	call	here	58	

‘DNA	metabarcoding’	(Taberlet	et	al.	2012;	Yu	et	al.	2012).	59	

In	the	metabarcoding	pipeline,	DNA	is	extracted	from	a	bulk	sample	containing	potentially	60	

multiple	species,	a	taxonomically	informative	gene	is	PCR-amplified,	and	the	resulting	PCR-61	

products	are	sequenced.	The	raw	sequence	output	is	processed	through	a	bioinformatics	pipeline	62	

that	includes	denoising	and	removal	of	low	quality	and	chimeric	sequences,	assignment	of	63	

sequences	to	their	samples,	and	grouping	similar	sequences	into	‘operational	taxonomic	units’	64	

(OTUs).	OTUs	are	meant	to	represent	distinct	biological	taxa,	usually	distinct	species.	The	term	65	

OTU	indicates	that	the	clusters	are	not	necessarily	biological	species	but	that	they	can	be	66	

considered	as	species	hypotheses.	This	is	because	OTUs	are	typically	defined	phenetically	using	a	67	

sequence-similarity	threshold.	Finally,	in	a	crucial	step,	the	researcher	wishes	to	know	the	species	68	

identities	behind	the	OTUs,	i.e.	to	place	them	into	a	Linnaean	taxonomy.	69	

Taxonomic	placement	of	OTUs	to	high-level	ranks	(phylum,	class,	order)	is	relatively	70	

straightforward	(e.g.	Yu	et	al.	2012),	whereas	placement	to	lower	ranks	(family,	genus,	species)	71	

has	remained	more	difficult.	This	is	partly	because	of	the	limited	information	contained	in	the	72	

short	sequences	generated	by	high-throughput	sequencing	platforms,	and	partly	because	of	the	73	

incomplete	nature	of	reference	databases,	with	missing	taxa	and	limited	within-taxon	sampling	74	

(Lou	and	Golding	2012).	Furthermore,	widely	applied	methods	for	low-level	taxonomic	placement	75	

lack	a	proper	assessment	of	identification	reliability.	For	example,	a	user	of	the	Barcode	of	Life	76	

Database	System	(www.boldsystems.org,	accessed	5	Aug	2016)	encounters	the	warning	“this	77	

search	only	returns	a	list	of	the	nearest	matches	and	does	not	provide	a	probability	of	placement	78	

to	a	taxon”.	As	we	discuss	in	more	detail	below,	the	ability	to	conduct	reliable	low-level	taxonomic	79	

placement	would	make	major	contributions	to	species-level	analyses,	community-level	analyses,	80	

as	well	as	metabarcoding	methodology	itself.	81	
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The	value	of	assigning	species	names	to	barcoding	sequences	is	that	it	allows	one	to	link	the	82	

samples	to	the	rest	of	our	vast	biological	knowledge	(Janzen	et	al.	2005).	For	instance,	if	83	

mammalian	DNA	isolated	from	a	mosquito	blood	meal	can	be	reliably	assigned	to	red	fox	(Vulpes	84	

vulpes),	it	enables	one	to	combine	the	sample	with	many	other	kinds	of	information.	These	may	85	

include	information	on	the	red	fox’s	behaviour,	population	growth	rate,	age	structure,	geographic	86	

distribution,	habitat	requirements,	and	trophic	position,	such	as	its	top-down	control	of	rodent	87	

vectors	of	Lyme	disease	(Levi	et	al.	2012).	More	generally,	accurate	low-level	taxonomic	88	

placement	of	metabarcoding	sequences	improves	many	kinds	of	assessments	of	the	structure	and	89	

function	of	communities,	and	how	these	change	over	space,	time,	or	environmental	gradients.	For	90	

example,	species-level	identifications	of	gut	contents	or	faeces	allows	the	construction	of	high-91	

resolution	food	webs	(e.g.	Wood	et	al.	2015).	As	another	example,	environmental	change	can	be	92	

inferred	through	species-level	identification	of	ancient	DNA,	derived	e.g.	from	lake	sediments	93	

(Pansu	et	al.	2015).	As	a	further	example,	in	food	and	medicine,	DNA	barcoding	can	be	used	to	94	

improve	food	safety	and	wildlife	forensics	(Staats	et	al.	2016),	e.g.	through	the	detection	of	falsely	95	

labelled	products	(Wong	and	Hanner	2008)	and	forbidden	ingredients	(Coghlan	et	al.	2012).	As	a	96	

final	example,	metabarcoding	can	be	used	to	monitor	nature	reserves	and	to	detect	endangered	97	

species,	e.g.	rare	rainforest	mammals	from	the	residual	blood	meals	of	leeches	(Schnell	et	al.	98	

2012).	99	

The	ability	to	conduct	accurate	low-level	taxonomic	placement	would	also	contribute	to	the	100	

metabarcoding	methodology	itself.	Although	OTUs	are	meant	to	represent	single	species,	101	

biological	species	can	unintentionally	be	split	or	merged	during	OTU	clustering.	Accurate	species-102	

level	taxonomic	placement	enables	one	to	merge	multiple	OTUs	that	receive	identical	taxonomic	103	

placements.	Conversely,	cases	in	which	a	single	OTU	is	assignable	with	equal	confidence	to	104	

multiple	species	can	be	used	to	identify	taxonomic	groups	that	would	benefit	the	most	from	105	

better	reference	databases	or	where	taxonomic	revision	may	be	needed.	In	addition,	accurate	106	

low-level	taxonomic	placement	makes	it	easier	to	detect	and	remove	contaminant	OTUs.	107	

As	demonstrated	by	the	above	examples,	for	many	kinds	of	purposes	it	is	of	critical	importance	to	108	

know	when	we	can	and	when	we	cannot	reliably	identify	an	OTU	down	to	family,	genus,	or	109	

species.	Many	kinds	of	bioinformatics	programs	are	currently	available	for	taxonomic	placement.	110	

These	can	be	classified	into	three	general	categories:	similarity-based,	similarity/phylogeny-based,	111	

and	phylogenetic-placement-based.	The	most	common	are	those	that	compare	the	similarities	112	
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between	the	environmental	sequences	and	the	sequences	of	the	reference	database:		BLAST	113	

(Altschul	et	al.	1997),	MEGAN	(Huson	et	al.	2007),	BOLD	(Ratnasingham	and	Hebert	2007),	UTAX	114	

(Edgar	2013),	NBC	(Wang	et	al.	2007),	and	the	Geneious	Sequence	Classifier	(Kearse	et	al.	2012).	115	

Similarity-based	methods	find	the	most	phenetically	similar	reference	sequence,	and	they	do	not	116	

thus	define	taxonomic	clades	based	on	fundamental	principles	from	systematic	biology	related	to	117	

synapomorphies	(shared,	derived	characters).	The	second	category	of	similarity/phylogeny-based	118	

methods	is	represented	by	the	Statistical	Assignment	Program	(SAP),	which	first	uses	BLAST	to	119	

create	a	group	of	sequence	homologues	for	an	OTU	(Munch	et	al.	2008).	Multiple	phylogenetic	120	

trees	are	then	generated	for	the	OTU	and	its	homologues,	and	taxonomic	placement	is	guided	by	121	

the	summarised	position	of	the	OTU	within	the	trees.	The	third	category	of	phylogenetic-122	

placement-based	methods	includes	pplacer	(Matsen	et	al.	2010)	and	the	Evolutionary	Placement	123	

Algorithm	(EPA)	(Berger	et	al.	2011).	These	methods	first	construct	a	single	maximum-likelihood	124	

phylogeny	from	all	available	reference	sequences,	after	which	they	place	the	OTUs	within	the	125	

phylogenetic	tree.	126	

A	major	challenge	affecting	all	taxonomic	placement	methods	is	that	reference	databases	are	127	

incomplete,	and	that	they	may	contain	mislabelled	reference	sequences.	This	is	especially	128	

problematic	when	trying	to	identify	a	sequence	within	a	large	taxonomic	clade	in	regions	of	high	129	

biodiversity	where	many	organisms	have	yet	to	be	sequenced.	Ideally,	uncertainty	due	to	130	

incomplete	or	mislabelled	reference	sequences	should	result	in	taxonomic	placement	to	higher	131	

taxonomic	ranks,	not	to	the	most	similar	reference	sequence	that	happens	to	be	available.	Thus	132	

far,	only	heuristic	solutions	to	this	problem	have	been	proposed.	For	example,	in	MEGAN,	a	133	

lowest-common-ancestor	(LCA)	assignment	algorithm	uses	several	best	BLAST	hits	to	determine	134	

the	taxonomic	level	into	which	the	assignment	is	given,	but	incomplete	reference	databases	may	135	

still	lead	to	false	annotations.	136	

In	our	previous	work,	we	developed	the	bioinformatics	pipeline	PROTAX	(PRObabilistic	TAXonomic	137	

placement,	Somervuo	et	al.	2016)	which	accounts	explicitly	for	incompleteness	of	taxonomic	and	138	

reference	databases.	This	is	achieved	by	placing	environmental	sequences	into	a	Linnaean	139	

taxonomy	that	is	typically	only	partly	populated	by	reference	sequences.	The	taxonomic	140	

placements	generated	by	PROTAX	include	known	taxonomic	units	(species	present	in	the	Linnaean	141	

taxonomy)	for	which	reference	sequences	are	available,	known	taxonomic	units	for	which	142	

reference	sequences	are	not	available,	and	unknown	taxonomic	units,	such	as	species	or	genera	143	
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that	are	missing	from	the	Linnaean	taxonomy.	A	key	feature	of	PROTAX	is	that	it	is	probabilistic,	144	

i.e.	it	decomposes	the	probability	of	one	among	all	possible	assignment	outcomes.	In	the	ideal	145	

case,	one	of	the	outcomes	obtains	a	high	probability	whereas	the	other	taxonomic	placements	146	

obtain	probabilities	close	to	zero.	In	ambiguous	cases,	several	outcomes	obtain	a	non-negligible	147	

classification	probability,	and	thus	reliable	taxonomic	placement	can	be	achieved	only	at	a	higher	148	

taxonomic	rank.	PROTAX	is	based	on	a	statistically	rigorous	model,	making	its	classification	149	

probabilities	unbiased,	as	shown	in	Somervuo	et	al.	(2016)	for	simulated	data	and	a	small-scale	150	

empirical	case	study.	In	other	words,	if	PROTAX	assigns	an	80%	probability	for	placement	to	a	151	

given	taxonomic	unit	for	100	sequences,	the	classification	will	be	on	average	correct	for	80	of	152	

those	sequences,	whereas	it	will	not	be	correct	for	20	of	the	sequences.	153	

This	paper	has	two	aims.	The	first	aim	is	to	evaluate	the	potential	of	DNA	(meta)barcoding	for	154	

obtaining	species-level	identifications,	given	the	current	state	of	taxonomic	databases,	sequence	155	

reference	databases,	and	sequencing	technologies.		The	second	aim	is	to	evaluate	the	156	

performance	of	PROTAX	as	a	general	tool	for	taxonomic	placement.	To	address	both	aims,	we	157	

apply	PROTAX	to	four	contrasting	case	studies,	which	differ	greatly	in	their	taxonomic	scope	158	

(fungi,	insects,	mammals,	and	bacteria),	the	number	of	species	involved,	the	coverage	and	quality	159	

of	the	reference	databases,	and	the	sequencing	technology	applied	to	environmental	data.	For	160	

each	case	study,	we	conduct	two	kinds	of	analyses.	First,	we	examine	how	well	PROTAX	is	able	to	161	

classify	validation	sequences	sampled	from	the	reference	database.	Second,	we	apply	PROTAX	to	162	

environmental	sequence	data	to	examine	the	level	of	species	identification	resolution	that	can	be	163	

expected	to	be	achieved	by	different	kinds	of	empirical	studies.	164	

Materials	and	methods	165	

We	consider	four	case	studies,	for	each	of	which	we	use	three	kinds	of	data:	a	taxonomy	database,	166	

a	reference	sequence	database,	and	environmental	sequences	originating	from	an	empirical	study	167	

(Table	1).	The	case	studies	vary	greatly	in	many	aspects:	their	taxonomic	scopes	(mammals,	fungi,	168	

insects	and	bacteria),	the	sizes	and	coverages	of	the	taxonomies	and	the	reference	databases,	the	169	

barcoding	gene	used,	and	the	sequencing	technology	applied.	These	influence	e.g.	the	level	of	170	

overlap	among	genetic	variation	between	consecutive	taxonomic	levels	(Fig.	1),	with	obvious	171	

implications	to	the	possibility	of	species-level	taxonomic	placement.	As	the	four	case	studies	vary	172	

simultaneously	in	many	aspects,	their	comparison	does	not	enable	asking	e.g.	whether	it	is	173	
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generally	easier	to	identify	insects	or	fungi.	Instead,	they	are	selected	to	be	diverse	in	order	to	174	

illustrate	the	many	kinds	of	issues	that	influence	the	accuracy	of	taxonomic	placement.	175	

For	each	case	study,	we	first	utilized	the	taxonomy	and	reference	sequence	databases	to	176	

parameterize	the	PROTAX	statistical	model.	To	do	so,	we	followed	Somervuo	et	al.	(2016),	except	177	

for	small	modifications	that	we	describe	below.	We	then	used	the	parameterized	model	to	classify	178	

a	set	of	well-identified	reference	sequences,	with	the	aim	of	evaluating	the	classification	accuracy	179	

of	PROTAX	at	different	taxonomic	levels,	and	to	assess	if	the	classification	probabilities	are	180	

unbiased.	Finally,	we	clustered	the	environmental	data	to	OTUs,	roughly	at	the	species	level,	181	

picked	the	most	common	sequence	to	represent	each	cluster,	and	used	the	parameterized	182	

PROTAX	model	for	probabilistic	taxonomic	placement	of	these	OTUs.	The	aim	here	was	to	assess	183	

how	large	a	fraction	of	environmental	data	can	be	reliably	classified	to	each	taxonomic	level,	and	184	

to	examine	which	fraction	of	environmental	sequence	data	represents	the	two	unknown	185	

categories	included	in	PROTAX:	species	that	are	present	in	the	taxonomy	but	for	which	reference	186	

sequences	are	available,	and	species	that	are	missing	from	the	taxonomy.	187	

We	first	describe	the	three	data	types	(taxonomy	database,	reference	database,	and	188	

environmental	data)	that	we	acquired	for	each	case	study,	as	well	as	make	some	remarks	about	189	

the	particularities	of	each	case	study.	We	then	explain	how	PROTAX	was	fit	to	these	data	and	how	190	

we	assessed	PROTAX’s	performance	in	probabilistic	taxonomic	placement.� 191	

Identifying	mammals	from	leech	blood	meals	192	

Taxonomy	database.	We	used	the	NCBI	taxonomy	(NCBI	Resource	Coordinators	2016)	of	all	clades	193	

within	Mammalia.	This	database	has	high	coverage	as	it	includes	all	6674	species	for	which	194	

molecular	data	are	available.		The	taxonomy	is	classified	to	the	four	levels	of	order,	family,	genus	195	

and	species.	For	some	species,	classifications	to	intermediate	levels	or	species-level	were	missing.		196	

Reference	sequence	database.	We	used	all	available	mammalian	mitochondrial	16S	rRNA	gene	197	

sequences	(mt	16S	rRNA)	downloaded	from	GenBank	(Clark	et	al.	2016).	We	removed	ambiguous	198	

bases	and	kept	only	sequences	of	length	300-1600	bp.	We	included	at	most	10	sequences	of	per	199	

species,	resulting	in	a	database	of	2627	sequences	representing	1315	different	species.		200	

Environmental	sequences.	We	used	mammalian	mt	16S	rRNA	gene	sequences	(see	Schnell	et	al.	201	

2012	for	further	details	on	primer)	derived	from	residual	blood	meals	of	~20,000	haematophagous	202	
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leeches	collected	in	the	central	Annamite	mountains	of	Vietnam	and	Laos	(Yu	et	al.,	unpublished	203	

data).	DNA	extraction	was	conducted	using	the	Qiagen	QIAquick	PCR	purification	kit,	and	204	

sequencing	by	Illumina	HiSeq	2000.	Raw	reads	were	denoised	with	bfc	(Li	2015),	chimeras	205	

removed	by	UCHIME	(Edgar	et	al.	2011),	and	the	sequences	assigned	to	samples	using	the	QIIME	206	

(Caporaso	et	al.	2010)	script	split_libraries.py.	The	reads	were	clustered	into	OTUs	at	98%	207	

similarity	using	CROP	(Hao	et	al.	2011).	OTUs	that	were	not	identified	as	vertebrate	mt	16S	rRNA	208	

based	on	BLAST	against	GenBank	were	removed.	209	

Remarks.	As	we	use	here	individual,	very	short	single-read	(typically	100	bp)	sequences	provided	210	

by	Illumina	HiSeq,	we	aim	to	demonstrate	how	PROTAX	performs	in	the	case	of	high	identification	211	

uncertainty,	rather	than	attempting	to	identify	the	specimens	as	well	as	would	be	possible	e.g.	by	212	

including	an	assembly	step.	To	illustrate	the	effect	of	sequence	length,	we	parameterized	the	213	

model	both	for	full	length	and	short	length	sequences.	214	

Identifying	insects	from	individually	sequenced	specimens	215	

Taxonomy	database.	We	compiled	a	list	of	all	species	of	the	class	Insecta	(excluding	Psocodea)	216	

recorded	in	Greenland,	based	on	Böcher	et	al.	2015,	with	additions	from	Wirta	et	al.	(2016).	The	217	

environmental	sequence	data	(see	below)	comes	from	the	same	study	region	as	that	of	Wirta	et	218	

al.	(2016),	and	thus	the	taxonomic	database	is	expected	to	cover	the	species	of	the	region	219	

relatively	well.	The	1332	taxa	were	classified	to	the	four	levels	of	order,	family,	genus	and	species.	220	

Most	of	the	taxa	were	defined	to	species,	but	a	fraction	as	a	sole	representative	of	a	genus.	221	

Reference	sequence	database.	We	used	barcode	sequences	of	specimens	collected	from	222	

Zackenberg,	Greenland.	The	reference	database	included	the	standard	cytochrome	c	oxidase	223	

1	(CO1)	barcode	sequence	for	241	morphologically	identified	insect	species	(deposited	in	BOLD	224	

under	dataset	dx.doi.org/10.5883/DS-ZACKANIM).	225	

Environmental	sequences.	We	used	7939	CO1	sequences	from	insect	tissue	caught	on	sticky	traps	226	

mimicking	a	flower	in	northeast	Greenland.	Each	sequence	(deposited	in	BOLD	with	the	code	227	

ZACKD)	represents	a	separate	specimen	(Tiusanen	et	al.,	unpubl.	data)	that	was	Sanger	sequenced	228	

in	one	direction.	229	

Remarks.	As	here	both	the	taxonomy	database	as	well	as	the	reference	database	are	specifically	230	

tailored	to	the	environmental	data,	and	as	here	the	environmental	sequence	data	consist	of	high	231	

quality	sequences,	this	case	study	is	aimed	to	illustrate	a	best	case	scenario.		232	
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Identifying	wood-inhabiting	fungi	from	saw	dust	samples		233	

Taxonomy	database.	We	used	the	Index	Fungorum	database	(www.indexfungorum.org),	classified	234	

into	the	six	levels	of	phylum,	class,	order,	family,	genus,	and	species.	We	reduced	the	amount	of	235	

redundancy	in	the	taxonomy	by	removing	likely	synonyms,	such	as	old	names	of	species	that	had	236	

been	renamed.	The	resulting	taxonomy	consists	of	130	795	species.		237	

Reference	sequence	database.	To	construct	the	reference	database	of	75	104	sequences,	we	used	238	

the	UNITE+INSD	sequence	database	(https://unite.ut.ee/)	consisting	of	fungal	ITS	region,	239	

complemented	with	the	database	of	Ovaskainen	et	al.	(2013).	In	order	to	increase	the	coverage	of	240	

the	reference	sequences	for	poorly	studied	species	groups,	we	also	included	those	species	241	

hypothesis	(SH)	from	UNITE	that	were	more	than	97%	divergent	from	the	other	reference	242	

sequences.	We	extracted	the	ITS2	region	of	the	reference	sequences	using	ITSx	software	243	

(Bengtsson-Palme	et	al.	2013).	The	majority	(73%)	of	the	reference	sequences	were	annotated	to	244	

the	species	level,	but	many	only	to	the	genus	(11%)	level	or	family	or	higher	levels	(16%).	We	245	

included	at	most	five	sequences	per	species.	246	

Environmental	sequences.	We	used	fungal	ITS2	sequences	originating	from	the	study	of	247	

Ovaskainen	et	al.	(2013).	The	saw	dust	samples	originate	from	100	spruce	logs	sampled	in	autumn	248	

2008	in	a	natural	forest	in	southern	Finland.	DNA	extraction	was	conducted	using	the	Power	Soil	249	

DNA	isolation	kit	(MoBio	Laboratories,	Inc.,	Carlsbad,	CA,	USA),	and	sequencing	was	done	on	a	250	

Genome	Sequencer	FLX	(454	Life	Sciences,	Roche,	Branford,	CT,	USA).	We	removed	all	sequences	251	

that	were	shorter	than	150	bp,	resulting	in	259	327	sequences.			We	used	cutadapt	(Martin	2011)	252	

to	detect	the	presence	of	ITS4	primer	in	order	to	be	sure	that	the	sequence	represented	ITS2	253	

region.	To	cope	with	homopolymer	errors,	all	consecutive	repetitions	of	the	same	nucleotide	were	254	

removed	as	in	Ovaskainen	et	al.	(2010,	2013),	both	for	reference	and	environmental	sequences.	255	

Environmental	sequences	were	clustered	using	UCLUST	(Edgar	2010)	with	99%	identity	threshold.		256	

Remarks.	This	case	study	is	aimed	to	illustrate	how	PROTAX	copes	with	a	very	large	taxonomy	that	257	

is	only	poorly	covered	by	reference	sequences.	We	further	use	the	fungal	case	study	to	examine	258	

how	additional	information	can	be	incorporated	into	the	PROTAX	model:	in	addition	to	the	259	

baseline	model,	we	constructed	an	alternative	model,	where	we	gave	more	weight	to	species	that	260	

are	expected	to	be	found	from	the	geographic	area	where	the	sampling	was	conducted	(for	more	261	

details,	see	below).	262	
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Identifying	bacteria	from	a	food	production	pipeline	263	

Taxonomy	database.	The	taxonomy	used	for	bacteria	is	different	from	other	taxonomies	in	the	264	

sense	that	it	is	not	an	independent	Linnaean	taxonomy	but	it	was	generated	from	the	Ribosomal	265	

Database	Project	(RDP)	reference	sequences	(Wang	et	al.	2007)	and	therefore	fully	coincides	with	266	

the	reference	sequence	database	(see	below).		The	RDP	reference	taxonomy	contains	both	267	

bacteria	and	archaea,	and	it	is	well	curated	down	to	the	genus	level.	Here	we	included	the	six	268	

levels	of	domain,	phylum,	class,	order,	family	and	genus.	The	taxonomy	consists	of	60	phyla	269	

classified	to	2175	genera.		270	

Reference	sequence	database.	For	the	reference	sequence	database,	we	used	the	RDPClassifier	271	

training	sequences,	labeled	to	the	genus	level	(trainset15_092015.fa	from	272	

RDPClassifier_16S_trainsetNo15_rawtrainingdata.zip,	available	at	273	

rdp.cme.msu.edu/misc/resources.jsp).	274	

Environmental	sequences.	We	used	bacterial	16S	rRNA	gene	sequences	from	the	study	of	Hultman	275	

et	al.	(2015),	who	aimed	to	understand	the	effect	of	food-preparation-surface	microbiomes	on	the	276	

end	product.	The	samples	originate	from	surfaces	of	a	food	processing	facility,	from	raw	food	277	

material,	and	from	cooked	food	products.	As	detailed	in	Hultman	et	al.	(2015),	total	DNA	was	278	

extracted	from	the	samples	using	a	bead	beating	method.		The	V1	to	V3	region	was	PCR-amplified	279	

and	sequenced	with	454	GS	FLX.	The	reads	were	quality	filtered,	chimeras	were	removed,	and	280	

reads	were	assigned	to	OTUs	with	QIIME	(Caporaso	et	al.	2010)	using	97%	similarity.	281	

Homopolymers	were	treated	as	in	the	fungal	data.	The	raw	sequence	reads	can	be	downloaded	282	

from	Sequence	Read	Archive	(SRA)	of	the	NCBI	under	BioProject	number	PRJNA293141.	283	

Remarks.	As	noted	above,	the	bacterial	case	study	differs	fundamentally	from	the	other	case	284	

studies	as	the	taxonomy	database	is	not	independent	of	the	reference	sequence	database.	285	

Compared	especially	to	mammals	and	Greenland	insects,	the	taxonomy	is	likely	to	be	incomplete.	286	

Thus	with	this	case	study	we	were	interested	in	examining	whether	the	environmental	sample	287	

includes	a	high	fraction	of	material	that	PROTAX	would	classify	to	belong	to	missing	branches.	288	

Fitting	the	PROTAX	model	289	

PROTAX	converts	sequence	similarities	into	probabilities	of	taxonomic	classification	in	a	290	

hierarchical	manner,	starting	from	the	root	node	of	the	taxonomy	and	proceeding	towards	the	291	

species	nodes.	Each	node	divides	its	probability	into	its	child	nodes	by	means	of	a	multinomial	292	
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regression	model.	The	predictors	used	in	the	multinomial	regression	can	be	chosen	in	many	ways.	293	

While	the	results	of	Somervuo	et	al.	(2016)	suggest	that	a	combination	of	similarity-based	and	294	

phylogenetic-based	predictors	yields	the	best	performance	both	for	simulated	and	real	data,	in	295	

this	study	we	used	solely	similarity-based	predictors.	296	

The	regression	model	for	each	taxonomic	node	containing	seven	predictors	!", … , !%.	The	baseline	297	

case	where	all	the	seven	predictors	are	zero	corresponds	to	a	child	node	that	represents	a	missing	298	

branch	of	the	taxonomy.	Predictor	!"	is	an	indicator	variable	for	a	known	child	node	that	contains	299	

no	reference	sequences,	whereas	predictor	!&	is	an	indicator	variable	for	a	known	child	node	that	300	

contains	at	least	one	reference	sequence.	Predictors	!'	and	!(	are,	respectively,	the	mean	and	the	301	

maximum	value	of	pairwise	sequence	similarities	between	the	query	sequence	and	the	reference	302	

sequences.	To	allow	PROTAX	to	account	in	the	predictions	for	the	availability	of	the	number	of	303	

reference	sequences	(with	which	e.g.	maximal	similarity	is	expected	to	increase	just	by	chance),	304	

we	included	as	predictors	also	the	log-transformed	number	of	reference	sequences	representing	305	

the	child	node	(!)),	and	the	interactions	between	log-transformed	number	of	reference	sequences	306	

and	mean	(!*)	and	maximal	(!%)	similarities.	307	

We	calculated	pairwise	sequence	similarities	using	LAST	(Kielbasa	et	al.	2011)	with	the	following	308	

deviations	from	the	default	parameters.	We	set	the	LAST	argument	-T	1	to	make	the	similarity	309	

score	represent	the	entire	overlap	alignment	length	between	two	sequences,	excluding	only	the	310	

possible	overhangs.	We	set	the	gap	open	penalty	to	(-a	1).	In	order	to	get	meaningful	values	to	the	311	

mean	sequence	similarity	predictor	of	the	PROTAX	model,	we	set	the	maximum	number	of	initial	312	

matches	per	query	position	(-m)	values	between	1000	and	3000	instead	of	the	default	value	10.	313	

We	replaced	pairwise	sequence	similarities	that	were	missing	from	LAST	output	by	zeros,	and	314	

converted	sequence	similarities	to	the	range	[0,1]	by	dividing	the	alignment	score	by	the	315	

alignment	length.		316	

We	generated	training	data	to	parameterize	the	PROTAX	model	as	described	in	Somervuo	et	al.	317	

(2016),	i.e.	by	modifying	both	the	taxonomic	tree	itself	as	well	as	its	coverage	by	the	reference	318	

sequences	to	mimic	the	different	kinds	of	outcomes:	(i)	known	species	with	reference	sequences,	319	

(ii)	known	species	without	reference	sequences,	and	(iii)	unknown	species	or	unknown	higher	320	

taxonomic	branches.	For	each	case	study,	we	generated	in	total	1000	training	data	points,	out	of	321	

which	100	represented	the	category	(iii),	with	an	even	distribution	over	the	taxonomic	levels.	The	322	

remaining	900	sequences	representing	categories	(i)	and	(ii)	were	generated	by	randomly	323	
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selecting	one	of	the	species	present	in	the	database,	and	generating	training	data	directly	for	that	324	

species,	or	if	not	possible,	for	another	species	that	was	taxonomically	as	close	to	the	selected	325	

species	as	possible.	For	example,	if	the	selected	species	had	no	reference	sequences,	we	selected	326	

the	closest	species	that	had	at	least	one	such	sequence,	selected	one	sequence	to	represent	the	327	

query	sequence,	and	removed	all	the	other	sequences	to	mimic	a	species	with	no	reference	328	

sequences.	329	

In	our	baseline	analyses,	we	assumed	a	priori	that	all	species	that	are	part	of	the	Linnaean	330	

taxonomy	are	equally	likely	to	be	present	in	the	empirical	sample.	If	there	is	prior	information	331	

about	which	species	are	more	likely	to	be	found	from	an	empirical	sample	than	others,	such	332	

information	can	be	incorporated	into	PROTAX	by	a	weighting	scheme,	which	can	be	considered	as	333	

an	informative	prior	in	the	context	of	Bayesian	analyses.	To	illustrate	the	influence	of	the	prior,	we	334	

conducted	an	alternative	version	of	the	fungal	analyses,	where	we	gave	more	prior	weight	for	335	

those	species	that	are	known	to	occur	in	Finland,	as	our	environmental	samples	originate	from	336	

there.	From	the	list	of	Finnish	6645	fungal	species,	we	could	map	4718	names	to	the	130	795	337	

species	taxonomy.	In	the	weighted	analysis,	we	assumed	a	priori	that	each	sequence	present	in	338	

our	environmental	sample	represents	one	of	the	species	known	to	occur	in	Finland	with	339	

probability	90%,	and	thus	dividing	the	remaining	probability	of	10%	among	the	remaining	species.	340	

We	derived	maximum	a	posteriori	(MAP)	parameter	estimates	for	the	PROTAX	models	using	the	341	

Bayesian	approach	presented	in	Somervuo	et	al.	(2016),	except	that	in	the	present	study	we	342	

parameterized	the	models	separately	for	each	taxonomic	level.	The	model	parameters	for	each	343	

level	include	the	seven	regression	coefficients	corresponding	to	each	of	the	predictors,	as	well	as	344	

the	probability	by	which	the	reference	sequence	is	mislabeled	(Somervuo	et	al.	2016).	345	

Evaluating	the	performance	of	PROTAX	346	

We	used	the	parameterized	PROTAX	models	to	perform	taxonomic	placements	of	both	reference	347	

sequences	as	well	as	environmental	sequences.	In	the	first	set	of	analyses,	we	performed	348	

taxonomic	placements	for	1000	validation	sequences,	which	were	chosen	from	the	reference	349	

sequence	database	in	the	same	way	as	the	training	sequences	described	above.	While	PROTAX	350	

yields	for	each	of	these	the	full	probability	distribution	over	possible	outcomes,	we	selected	here	351	

only	the	outcome	with	the	highest	probability.	We	considered	a	taxonomic	placement	as	352	

“plausible”	if	the	classification	probability	was	at	least	50%,	and	as	“reliable”	if	the	classification	353	
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probability	was	at	least	90%.	To	examine	the	overall	confidence	of	classifications,	we	computed	354	

the	proportions	of	plausible	and	reliable	classifications	at	each	taxonomic	level.	To	assess	if	the	355	

probabilities	of	taxonomic	placement	were	unbiased,	we	ordered	the	classification	probabilities	356	

from	lowest	to	highest,	and	computed	a	cumulative	sum	of	both	these	probabilities	as	well	as	the	357	

indicator	variables	describing	whether	the	outcome	predicted	with	highest	probability	was	a	358	

correct	one.	We	then	plotted	these	two	cumulative	sums	against	each	other.	If	the	classification	359	

probabilities	are	unbiased,	such	a	plot	should	follow	the	identity	line.	360	

In	the	second	set	of	analyses,	we	performed	taxonomic	placements	for	the	environmental	361	

sequence	data.	As	the	mammalian,	fungal	and	bacterial	case	studied	involved	a	large	number	of	362	

sequences	generated	by	high-throughput	methods,	we	first	clustered	these	sequences.	The	data	363	

submitted	to	PROTAX	involved	1514	(mammal),	4163	(fungi),	and	6855	(bacteria)	OTUs,	and	7939	364	

individual	insect	sequences.	365	

To	visualize	community	composition	within	each	environmental	data	set,	we	used	Krona	(Ondov	366	

et	al.	2011)	to	plot	for	each	case	study	a	pie	chart	that	shows	the	expected	number	of	sequences	367	

representing	each	taxonomic	unit.	To	compute	the	expected	abundances,	we	did	not	account	only	368	

for	the	highest	probabilities,	but	we	summed	over	the	entire	distribution	of	predicted	probabilities	369	

(ignoring	values	lower	than	0.01	for	computational	reasons).	To	visualize	the	quality	of	the	370	

classifications,	we	colored	the	charts	to	show	six	categories.	The	first	three	categories	consisted	of	371	

well-identified	taxonomic	units	for	which	the	proportion	of	sequences	for	which	the	classification	372	

was	reliable	was	(1)	in	the	range	50%-100%,	(2)	in	the	range	0%-50%,	or	(3)	0%.	The	remaining	373	

three	categories	consisted	of	non-identified	taxonomic	units	for	which	the	proportion	of	374	

sequences	for	which	the	classification	was	reliable	was	(4)	in	the	range	50%-100%,	(5)	in	the	range	375	

0%-50%,	or	(6)	0%.	Above,	well-identified	taxonomic	unit	refers	to	a	single	taxonomic	unit	for	376	

which	reference	sequences	were	available,	whereas	non-identified	taxonomic	units	refers	to	the	377	

union	of	taxonomic	units	without	reference	sequences	and	unknown	branches	of	the	taxonomy.	378	

Results	379	

As	expected	based	on	our	earlier	results	(Somervuo	et	al.	2016)	and	the	fact	that	PROTAX	is	a	380	

statistical	model	fitted	to	training	data,	PROTAX	yielded	essentially	unbiased	probabilities	of	381	

taxonomic	placement	for	all	the	cases	considered.	This	is	evidenced	by	the	fact	that	all	lines	in	Fig.	382	

2	generally	follow	the	identity	lines,	the	small	deviations	being	attributable	either	to	sampling	383	
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error	due	to	finite	sizes	of	the	validation	data	sets,	or	to	issues	related	to	model	misspecification,	384	

the	latter	of	which	we	return	to	in	the	Discussion.	The	probabilities	shown	in	Fig.	2	are	level-385	

specific,	thus	asking	e.g.	how	well	genera	can	be	separated	within	a	known	family,	or	how	well	386	

species	can	be	separated	within	a	known	genus.	For	high	taxonomic	levels,	these	probabilities	are	387	

lowest	for	fungi,	which	is	consistent	with	the	fact	that	for	fungi	there	is	the	greatest	amount	of	388	

overlap	in	sequence	similarities	among	consecutive	taxonomic	levels	(Fig.	1).	For	example,	if	389	

within-species	similarities	are	sometimes	lower	than	among-species	similarities,	accurate	390	

taxonomic	placement	to	the	species-level	is	not	always	possible.	391	

When	performing	a	taxonomical	placement	of	environmental	samples,	PROTAX	works	in	a	392	

hierarchical	manner	starting	from	the	root	of	the	tree,	and	proceeding	level	by	level	towards	the	393	

tips	of	the	tree	that	represent	typically	species.	The	probabilities	of	taxonomic	placement	for	a	394	

given	level	(illustrated	in	Figs.	3	and	4)	are	thus	obtained	by	multiplying	the	level-specific	395	

conditional	probabilities	(illustrated	in	Fig.	2)	for	all	levels	lower	than	or	equal	to	the	focal	level.	396	

Figure	3	shows	the	proportions	of	the	reference	sequences	(black	lines)	and	environmental	397	

sequences	(gray	lines)	that	were	possible	to	identify	reliably	(dashed	lines)	or	plausibly	398	

(continuous	lines).	Let	us	first	make	two	obvious	remarks.	First,	as	the	threshold	for	plausible	399	

identification	(>50%	probability	of	taxonomic	placement)	is	lower	than	that	of	reliable	400	

identification	(>90%	probability	of	taxonomic	placement),	the	proportion	of	plausible	401	

identifications	is	always	higher	than	that	of	reliable	identifications.	Second,	as	the	lower	level	402	

taxonomic	placements	are	conditional	on	the	higher	level	ones,	the	fraction	of	reliable	(and	403	

plausible)	identifications	decreases	monotonously	with	taxonomic	level.	404	

Beyond	the	above	made	trivial	remarks,	Fig.	3	shows	a	number	of	interesting	results.	As	the	first	405	

result,	that	we	derive	from	the	taxonomic	placement	of	the	validation	sequences,	reliable	species-406	

level	identification	(dashed	black	lines	in	Fig.	3)	was	most	successful	for	insects	(74%	of	the	407	

sequences),	followed	by	mammals	(46%)	and	fungi	(15%).	These	numbers	do	not	reflect	only	the	408	

resolution	of	the	barcoding	sequences	(Fig.	1),	but	also	the	fact	that	the	insect	taxonomy	and	409	

reference	sequence	databases	were	restricted	to	species	occurring	in	Greenland,	whereas	the	410	

mammalian	and	fungal	databases	were	global	and	thus	were	larger	and	more	heterogeneous	411	

(Table	1).	For	mammals,	full-length	mt	16S	sequences	(black	crosses	in	Fig.	3C)	can	be	expectedly	412	

classified	with	much	higher	confidence	than	fragmented	sequences	(black	dots	in	Fig.	3C),	the	413	
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latter	corresponding	to	the	nature	of	the	environmental	data.	In	case	of	bacteria,	reliable	genus-414	

level	identification	was	possible	for	the	majority	(62%)	of	the	cases.	415	

As	the	second	result,	Fig.	3	shows	that	taxonomic	placement	of	environmental	sequences	is	often	416	

less	reliable	than	that	of	reference	sequences	(mammals	and	fungi),	but	sometimes	environmental	417	

sequences	can	be	identified	essentially	equally	reliably	(insects)	or	even	more	reliably	(bacteria)	418	

than	reference	sequences.	The	main	reason	why	taxonomic	placement	of	environmental	419	

sequences	for	mammals	was	much	more	difficult	than	that	of	reference	sequences	is	simply	that	420	

in	our	case	study	the	environmental	sequences	were	very	short	fragments.	If	fragmenting	the	421	

reference	sequences	equally	much	(into	100	bp	segments),	their	taxonomic	placement	became	422	

essentially	equally	unreliable	than	that	of	reference	sequences	(lines	with	black	dots	in	Fig.	3C).	In	423	

case	of	fungi	(Fig.	3A),	the	reason	for	the	difference	between	the	taxonomic	placement	of	the	424	

reference	and	environmental	sequences	was	not	only	a	similar	(though	less	pronounced)	425	

difference	in	sequence	length	and	quality	as	for	mammals,	but	also	the	fact	that	the	426	

environmental	sequences	are	likely	to	represent	many	unknown	units	that	are	lacking	from	the	427	

taxonomy.	If	bringing	the	prior	information	that,	instead	of	any	globally	known	fungi,	the	species	428	

within	the	environmental	sample	are	likely	to	represent	species	that	are	known	to	occur	in	429	

Finland,	the	proportion	of	reliable	identifications	increases	dramatically	from	3%	to	14%	(Fig.	3C).	430	

The	reason	why	for	the	insect	data	(Fig.	3D)	the	taxonomic	placements	are	essentially	equally	431	

reliable	for	the	reference	and	environmental	sequences	is	that	for	this	case	study	both	kinds	of	432	

sequences	were	acquired	by	identical	methods,	i.e.	Sanger	sequencing	of	DNA	sampled	from	433	

individual	specimens.	Thus,	the	only	differences	between	the	two	were	whether	the	specimens	434	

were	identified	morphologically	or	not,	and	whether	the	specimens	represent	a	random	sample	of	435	

the	community	(environmental	sequences)	or	whether	they	were	targeted	to	represent	the	entire	436	

community	(reference	sequence	data).	The	most	curious	case	is	that	of	bacteria,	where	reliable	437	

genus	level	taxonomic	placements	were	more	frequent	for	environmental	sequences	than	for	438	

reference	sequences	(Fig.	3B).	The	likely	reason	here	is	that	in	this	case	the	environmental	439	

sequences	originated	from	the	food	production	pipeline,	the	bacterial	communities	of	which	440	

represent	one	of	the	most	well	studied	groups,	and	thus	are	better	covered	in	the	reference	441	

sequence	database	than	bacteria	in	general.	442	

Let	us	then	turn	into	the	main	question	that	motivates	DNA	(meta)barcoding	studies:	what	are	the	443	

species	behind	the	environmental	samples?	The	answer	to	this	question	is	given	in	Fig.	4,	where	444	
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the	pie	charts	show	the	proportions	of	sequences	that	belong	to	known	and	unknown	taxonomical	445	

unit	at	each	hierarchical	level.	In	this	figure,	the	areas	of	the	sectors	show	the	expected	number	of	446	

sequences	that	belong	to	each	taxonomic	unit,	whereas	the	colors	illustrate	the	proportions	of	447	

reliable	identifications,	and	they	thus	echo	the	information	shown	by	the	grey	dashed	lines	in	Fig.	448	

3.	While	our	main	interest	here	is	not	on	the	detailed	results	relating	to	the	four	case	studies,	let	449	

us	note	that	the	overall	patterns	in	Fig.	4	are	consistent	with	expectations.	Concerning	fungi,	the	450	

majority	of	the	species	Agaricomycetes,	and	the	reliably	identified	species	(e.g.	Antrodia	serialis;	451	

see	the	insert	in	Fig.	4)	typically	represent	well	known	wood	decomposers.	Concerning	mammals,	452	

both	Artiodactyla,	Chiroptera,	Rodentia	and	Carnivora	were	detected,	as	well	as	some	primates.	453	

While	there	are	very	few	reliable	or	even	plausible	species-level	taxonomical	placements,	among	454	

possibly	identified	species	are	e.g.	the	endangered	mammals	Muntiacus	vuquangensis	(Giant	455	

Muntjac;	43%	identification	probability)	and	Rusa	unicolor	(sambar;	27%	identification	456	

probability).	Concerning	bacteria,	a	large	proportion	of	the	sequences	were	assigned	as	457	

Lactobacillales,	specifically	to	Streptococcaceae,	Lactobacillaceae,	and	Leuconostocaceae	(Figure	458	

4).	Further,	the	high	proportion	of	Brochotrhrix	observed	by	Hultman	(2015)	was	supported	by	the	459	

PROTAX	results.	Concerning	insects,	the	majority	of	the	species	belonged	to	Diptera	and	the	460	

minority	to	Hymenoptera.	Among	the	total	of	104	distinct	species	that	were	reliably	identified,	the	461	

most	common	one	was	Drymeia	segnis,	which	has	been	observed	to	be	common	in	the	study	area	462	

also	based	on	morphological	identifications	(Rasmussen	et	al.	2013).	463	

In	Supporting	Information,	we	provide	the	same	information	as	shown	in	Fig.	4	as	interactive	464	

HTML	files,	which	allow	the	pie	charts	to	be	displayed	using	a	standard	web	browser	without	any	465	

additional	plugins.	This	allows	one	to	examine	the	taxonomic	placements	and	their	reliabilities	in	466	

much	greater	detail	by	e.g.	using	search	tools	and	zooming	to	taxonomic	clades	of	specific	467	

interest.		468	

Discussion	469	

In	this	work,	we	have	evaluated	the	potential	of	DNA	barcoding	for	obtaining	reliable	taxonomic	470	

placements	at	different	taxonomic	levels,	and	in	particular	illustrated	how	the	PROTAX	method	471	

can	be	used	as	a	general	tool	for	quantifying	uncertainty	in	such	taxonomic	placements.	PROTAX	472	

accounts	for	many	kinds	of	uncertainties,	including	the	possibilities	of	unknown	taxonomic	473	

branches,	incomplete	coverage	of	reference	sequence	databases,	and	mislabelling	of	reference	474	

sequences.	This	makes	its	quantification	of	taxonomic	placement	uncertainty	robust,	as	illustrated	475	
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by	Fig.	2	and	the	simulations	by	Somervuo	et	al.	(2016).	However,	it	is	important	to	understand	476	

that	the	classification	accuracy	does	not	necessarily	increase	when	taking	all	uncertainties	into	477	

account;	it	can	rather	be	the	opposite.	To	put	it	bluntly,	it	may	be	more	tempting	e.g.	to	claim	that	478	

the	study	detected	the	endangered	mammal	Giant	Muntjac	from	a	leech	blood	meal,	rather	than	479	

to	specify	that	this	was	the	case	with	43%	probability,	as	the	latter	statement	makes	it	explicit	that	480	

the	species	behind	the	sequence	may	actually	have	been	some	other	one.	However,	making	481	

uncertainty	explicit	is	necessary	for	scientific	reliability.	482	

There	are	many	choices	to	be	done	when	applying	DNA	(meta)barcoding	to	an	empirical	case	483	

study.	As	illustrated	by	our	results,	these	choices	can	have	a	major	influence	on	the	reliability	of	484	

the	resulting	taxonomic	placements.	The	first	set	of	choices	relates	to	the	taxonomy	and	reference	485	

databases	used,	which	choices	are	in	practice	mostly	guided	by	on	what	databases	are	available	486	

rather	than	what	might	be	optimal	to	use.	Importantly,	as	PROTAX	accounts	for	missing	branches	487	

in	the	taxonomy,	the	incompleteness	of	the	taxonomy	database	should	not	lead	to	spurious	false	488	

positives,	rather	to	decreased	probabilities	of	taxonomic	placement.	This	is	because	in	the	training	489	

phase	PROTAX	generates	situations	in	which	some	branches	of	the	taxonomy	are	missing,	making	490	

it	learn	which	kinds	of	values	of	the	predictors	(e.g.	low	values	of	sequence	similarity)	are	491	

indicative	of	missing	branches.	Similarly,	mislabeled	reference	sequences	or	inconsistencies	492	

between	the	taxonomy	and	the	reference	databases	are	expected	to	decrease	the	probabilities	of	493	

taxonomic	placement,	but	not	to	bias	them.	As	one	example,	we	used	the	RDP	database	for	494	

bacteria.	Since	the	reference	taxonomy	was	constructed	based	on	the	reference	sequences,	100%	495	

of	the	taxa	in	the	validation	data	were	covered	(Table	1).	Somewhat	surprisingly,	the	bacterial	496	

reference	database	appeared	to	represent	also	the	vast	majority	of	the	environmental	sequences,	497	

with	only	very	few	missing	branch	identified	(Fig.	4).	This	however	does	not	mean	that	the	used	498	

taxonomy	would	cover	all	the	bacteria	in	the	world,	and	novel	phyla	have	indeed	been	discovered	499	

in	several	recent	metagenomic	studies	(e.g.	Brown	et	al.	2015).	The	other	commonly	used	500	

bacterial	and	archaeal	databases	are	SILVA	(Quast	et	al.	2013)	and	Greengenes	(DeSantis	et	al.	501	

2007).	Compared	to	RDP,	these	two	databases	contain	more	representatives	of	the	Candidate	502	

divisions	that	have	been	recently	found	in	various	soil	environments	(Brown	et	al.	2015;	Hug	et	al.	503	

2016).	Therefore,	depending	on	the	environment	under	analysis,	the	use	of	different	reference	504	

databases	should	be	considered.	505	
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The	second	set	of	choices	to	be	made	relates	to	the	DNA	barcode	applied,	as	well	as	the	506	

sequencing	technology.	As	has	been	long	pointed	out,	an	optimal	barcoding	gene	should	involve	507	

much	variation	among	species	but	only	little	within	a	species	(Meyer	and	Paulay	2005).	Further,	508	

the	environmental	sequences	should	obviously	have	as	long	read	length	and	as	high	quality	as	509	

possible.	For	example,	if	in	the	mammalian	case	study	full	length	mt	16S	rRNA	sequences	had	510	

been	available	instead	of	the	very	short	100	bp	fragments	used	here,	the	proportion	of	reliable	511	

taxonomic	placement	would	have	been	likely	to	increase	from	the	present	0%	to	ca.	46%,	where	512	

the	latter	was	the	proportion	of	reference	sequences	that	we	could	classify	reliably.	But	even	if	513	

one	would	have	full	length	sequences	and	complete	taxonomic	and	reference	sequence	514	

information,	some	uncertainty	will	inevitably	remain.	For	example,	in	the	insect	study	the	515	

mosquito	species	Aedes	impiger	and	Aedes	nigripes	could	not	be	disentangled	since	their	COI	516	

sequences	are	identical,	and	thus	PROTAX	assigned	for	some	of	the	specimens	a	probability	close	517	

to	50%	for	both	of	these	species.	To	resolve	such	cases,	a	deeper	genomic	approach	(Bourke	et	al.	518	

2013)	than	the	single	gene	DNA	barcoding	approach	should	be	used.	519	

The	third	set	of	choices	relates	to	the	way	in	which	the	training	data	in	PROTAX	are	generated,	520	

technically	the	prior	assumed	for	the	empirical	data.	This	is	probably	the	most	critical	and	at	the	521	

same	time	most	difficult	choice	to	be	done	by	the	user,	as	making	a	justified	choice	requires	522	

biological	knowledge	and	intuition.	For	example,	one	may	assume	either	that	each	sequence	in	523	

the	environmental	sample	represents	any	of	the	species	present	in	the	taxonomy	with	equal	524	

probability	(as	we	have	done	here),	or	utilize	a	hierarchical	prior	that	assumes	that	each	branch	525	

under	a	given	node	is	equally	likely	(as	we	did	in	Somervuo	et	al	2016).	One	may	further	give	526	

additional	weight	for	species	that	are	known	to	occur	in	the	geographic	region	where	the	samples	527	

originated,	as	we	did	for	the	fungal	case	study.	If	such	information	is	available,	the	prior	can	also	528	

be	adjusted	e.g.	based	on	the	expected	abundances	of	the	species,	or	on	the	match	between	the	529	

substrates	sampled	and	the	habitat	requirements	of	the	species.	In	addition	to	the	known	species,	530	

the	prior	involves	an	assumption	about	the	frequency	of	missing	branches	at	different	parts	of	the	531	

taxonomic	tree.	As	it	may	be	difficult	to	make	informative	choices	about	all	of	the	above	532	

mentioned	aspects,	we	recommend	the	user	the	test	the	sensitivity	of	the	results	against	different	533	

choices	of	the	prior,	as	should	be	done	with	Bayesian	analyses	in	general.	534	

Finally,	the	fourth	set	of	choices	relates	to	the	predictors	used	for	the	multinomial	regression	535	

underlying	the	PROTAX	model.	In	this	paper,	we	have	used	simply	similarity-based	predictors,	536	
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even	if	our	previous	work	suggests	that	similarity-based	predictors	and	phylogeny-based	537	

predictors	involve	complementary	information	and	thus	their	combination	optimizes	performance	538	

(Somervuo	et	al.	2016).	The	reason	behind	the	choice	made	for	the	present	work	was	mainly	539	

computational,	as	some	of	our	databases	were	extensive,	making	LAST-based	similarity	the	most	540	

practical	choice.	For	fungi,	the	use	of	phylogeny-based	predictors	is	challenging	also	for	the	reason	541	

that	the	construction	of	multiple	sequence	alignments	is	difficult	with	the	ITS	region	only.	542	

Phylogeny-based	methods	are	easier/more	suitable	with	conserved	barcodes	such	as	CO1	and	543	

mt16S	which	allow	sequences	to	be	globally	aligned	even	at	high	taxonomic	levels.	In	more	refined	544	

studies	focusing	on	any	specific	case	study,	the	set	of	predictors	should	be	optimized	to	maximize	545	

the	reliability	of	taxonomic	placements.	While	there	is	no	objective	way	to	select	the	best	prior,	546	

the	choice	of	the	predictors	can	be	optimized	more	or	less	objectively	by	examining	which	547	

predictors	maximize	unbiased	probabilities	of	taxonomic	placement	for	independent	validation	548	

sequences.	The	reason	why	for	some	choices	of	the	predictors	the	classification	probabilities	can	549	

be	biased	(as	was	to	a	limited	extent	a	case	for	some	of	our	case	studies,	Fig.	2)	is	that	while	the	550	

PROTAX	model	is	parameterized	by	training	data,	the	model	may	be	structurally	misspecified.	For	551	

example,	we	have	assumed	that	the	model	parameters	are	constant	across	the	taxonomic	tree.	552	

Thus,	when	classifying	an	environmental	sequence	e.g.	to	the	species	level	under	a	known	genus,	553	

the	parameters	(and	thus	the	influences	of	the	predictors,	such	as	sequence	similarity)	are	554	

assumed	to	be	independent	of	the	genus.	This	assumption	is	not	likely	to	hold	for	large	and	555	

heterogeneous	taxonomic	groups,	such	as	all	mammals	or	all	fungi.	An	indication	of	this	in	our	556	

results	was	that,	at	the	species	level,	the	parameter	estimates	obtained	for	mislabeling	probability	557	

were	much	inflated,	being	ca.	80%	for	mammals	and	ca.	60%	for	fungi.	This	does	not	suggest	that	558	

there	is	such	a	vast	amount	of	mislabeling,	but	that	PROTAX	used	the	mislabeling	parameter	to	559	

correct	for	model	misspecification.	Thus,	an	important	challenge	for	future	work	is	to	further	560	

develop	the	statistical	model	underlining	PROTAX,	either	by	building	a	hierarchical	structure	that	561	

allows	for	heterogeneity	in	the	parameterization,	or	by	finding	predictors	that	are	able	to	correct	562	

for	such	heterogeneity.	563	

To	conclude,	molecular	species	identification	by	DNA	barcoding	and	metabarcoding	is	an	exciting	564	

and	rapidly	evolving	research	field,	which	has	major	potential	to	change	our	understanding	of	the	565	

structure	and	functioning	of	ecological	communities.	To	make	the	use	of	these	methods	practical	566	

and	reliable,	a	key	challenge	is	the	completion	and	pruning	of	taxonomic	and	reference	sequence	567	
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databases,	as	well	as	making	these	two	sources	of	information	compatible.	Similarly	important	is	568	

the	application	and	further	development	of	statistical	methods	that	allow	one	to	make	the	most	569	

out	of	such	data	by	providing	accurate	taxonomic	placements	and	reliable	assessments	of	the	570	

uncertainties	inherent	in	such	placements.	Such	methods	are	critical	for	providing	a	firm	basis	for	571	

deriving	species-	and	community-level	inferences	from	DNA	(meta)barcoding	data,	especially	for	572	

environmental	DNA	that	by	definition	do	not	have	physical	specimens	that	could	be	verified	573	

independently.	Incorrect	assignments	can	result	in	accumulated	interpretation	error,	which	can	574	

result	in	wasted	resources	and	social	conflict	in	multiple	social	arenas,	from	conservation	to	food	575	

safety.		It	is	important	to	get	the	name	right	–	or	to	be	aware	that	it	may	be	wrong.		576	
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Figures	703	

	704	

Figure	1.	The	distribution	of	pairwise	LAST-similarities	between	reference	sequences	within	each	705	

taxonomical	levels	of	species	(S),	genus	(G),	family	(F)	and	order	(O).	The	distribution	of	similarities	706	

in	a	given	taxonomical	level	originates	from	1000	randomly	selected	sequence	pairs.	At	the	707	

species	level,	each	sequence	pair	represents	two	different	individuals	of	the	same	species.	At	the	708	

genus,	family,	and	order	levels,	each	sequence	pair	represents,	respectively,	two	different	species,	709	

genera,	or	families	that	belong	to	the	same	genus,	family,	or	order.	710	
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	711	

Figure	2.	An	assessment	of	bias	and	accuracy	of	the	PROTAX	algorithm	for	classifying	well-712	

identified	sequence	data	to	different	taxonomic	levels.	We	used	PROTAX	to	classify	well-identified	713	

reference	sequences,	with	the	focal	sequence	removed	from	the	reference	database	to	avoid	714	

circularity.	The	classification	probabilities	shown	here	are	level-specific	conditional	probabilities,	715	

thus	measuring	e.g.	the	accuracy	of	species-level	classifications	conditional	on	knowing	the	true	716	

genus.	While	PROTAX	yields	a	vector	of	identification	probabilities	for	all	possible	outcomes,	we	717	

considered	here	only	the	outcome	with	the	largest	identification	probability,	which	we	compared	718	

to	the	true	identity	of	the	species.	For	each	taxonomic	rank	(indexed	as	S=species,	G=genus,	719	

F=family,	O=order,	C=class,	D=domain),	panels	show	the	cumulative	number	of	correct	720	

identifications	on	the	y-axis	versus	the	cumulative	sum	of	the	identification	probabilities	on	the	x-721	

axis	(both	normalized	by	the	number	of	sequences).	A	curve	matching	with	the	identity	line	(y=x)	722	

indicates	unbiased	identification	probabilities,	both	for	small	and	large	probabilities,	as	the	723	

identifications	have	been	sorted	in	the	order	of	increasing	largest	identification	probability.	The	724	

position	of	the	dot	gives	the	mean	identification	probability	among	the	samples.	725	
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	726	

Figure	3.	Confidence	of	taxonomic	placement	at	different	taxonomical	levels.	The	value	on	the	y-727	

axis	is	the	proportion	of	plausible	(solid	line)	and	reliable	(dashed	line)	taxonomic	placements.	728	

Results	for	validation	data	sampled	from	reference	sequence	database	are	shown	in	black	and	729	

results	for	environmental	query	data	are	shown	in	gray.	For	fungi,	gray	crosses	denote	results	730	

from	environmental	data	where	species	probabilities	were	weighted	according	to	prior	knowledge	731	

on	which	species	exist	in	Finland.	For	mammals,	black	crosses	denote	results	using	full-length	mt	732	

16S	rRNA	sequences	as	validation	data.	Taxonomic	labels	at	x-axis	from	left	to	right:	D=domain,	733	

P=phylum,	C=class,	O=order,	F=family,	G=genus,	S=species.		734	
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	735	

Figure	4.	Taxonomy	pie	charts	of	PROTAX	output	showing	the	composition	of	the	environmental	736	

data	sets.	The	width	of	each	sector	is	proportional	to	the	expected	number	of	sequences	that	was	737	

placed	to	that	taxonomic	units.	The	colors	code	both	the	reliability	of	the	identifications,	and	738	

whether	the	identifications	relate	to	taxonomic	units	that	are	part	of	the	taxonomy	or	to	unknown	739	

units	(see	color	label).	The	enlarged	insert	illustrates	species-level	resolution	for	the	fungal	data.	740	

The	charts	are	snapshots	from	interactive	web	pages	(provided	in	the	Supporting	Information)	741	

generated	by	Krona	software	from	the	PROTAX	output.		742	
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	743	

Tables	744	

Table	1.	Case	studies	used	to	evaluate	the	performance	of	PROTAX	in	probabilistic	taxonomic	placement	of	environmental	sequence	data.	745	

Species	
group	

Marker	 Taxonomy	 Reference	
database	

Environmental	
data	

Number	of	
species	
(genera	for	
bacteria)	in	
taxonomy	

Number	of	
taxonomic	
levels	used	

Spatial	
extent	of	
taxonomy	

Reference	
sequences	

Proportion	
of	species	
with	
reference	
sequences	

Median/Mean/Max	
number	of	sequences	
per	species	(for	those	
which	have	>0	
sequences)	

Fungi	 ITS2	 Index	
Fungorum	

UNITE	and	
Ovaskainen	
et	al.	(2013)	

Wood-inhabiting	
fungi	sequenced	
from	saw-dust	
samples	from	100	
spruce	logs	in	
Finland		

130795	 6	 Global	 75104	 15%	 2/2.8/5	

Bacteria	
and	
Archaea	

16S	SSU	
rRNA	
gene	

Ribosomal	
database	
project	

RDP	Release	
11.4,	
trainset	15	

Food	processing	
plant	factory	
microbiome,	101	
samples	

2175	 6	 Global	 11127	 100%	 2/5.1/504	

Insects	 CO1	 Greenland	
entomofauna,	
excluding	
Psocodea	

Wirta	et	al.	
(2016)	

Insect	tissue	from	
~7000	specimens	
from	North-East	
Greenland	

844	 4	 Greenland	 1853	 26%	 4/7.1/368	

Mammals	 16S	
mtDNA	

NCBI	 GenBank	 iDNA	of	mammals	
from	the	residual	
blood	meals	of	
~20,000	leeches	
from	Vietnam	and	
Laos	

6675	 4	 Global	 2627	 20%	 1/2.0/10	

	746	

	747	
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