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Abstract 
 

Concepts organize the relationship among individual stimuli or events by highlighting 
shared features. Often, new goals require updating conceptual knowledge to reflect 
relationships based on different goal-relevant features. Here, our aim is to determine 
how hippocampal (HPC) object representations are organized and updated to reflect 
changing conceptual knowledge. Participants learned two classification tasks in which 
successful learning required attention to different stimulus features, thus providing a 
means to index how representations of individual stimuli are reorganized according to 
changing task goals. We used a computational learning model to capture how people 
attended to goal-relevant features and organized object representations based on those 
features during learning. Using representational similarity analyses of functional 
magnetic resonance imaging data, we demonstrate that neural representations in left 
anterior HPC correspond with model predictions of concept organization. Moreover, we 
show that during early learning, when concept updating is most consequential, HPC is 
functionally coupled with prefrontal regions. Based on these findings, we propose that 
when task goals change, object representations in HPC can be organized in new ways, 
resulting in updated concepts that highlight the features most critical to the new goal. 
 

Significance Statement 
 

A cosmopolitan couple looking for a home may focus on trendy features. But, with news 
of a baby on the way, they must quickly learn which features make for a child-friendly 
home to conceptually reorganize their set of potential homes. Here, we investigate how 
conceptual knowledge is updated in the brain when goals change and attention shifts to 
new information. By combining fMRI with computational modeling, we find that object 
representations in the human hippocampus are dynamically updated with concept-
relevant information during learning. We also demonstrate that when concept updating 
is most consequential, the hippocampus is functionally coupled with neocortex. Our 
findings suggest that the brain reorganizes when concepts change and provide support 
for a neurocomputational theory of concept formation.  
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Concepts are organizing principles that define how items or events are similar to one 
another. Goals are critical to shaping concepts, by emphasizing some shared features 
over others. When goals change, previously experienced events may be organized in 
new ways, resulting in an updated concept that highlights the features most critical to 
the new goal. For instance, consider purchasing a home. One must learn which features 
make for the most desirable home. A young couple seeking a cosmopolitan lifestyle 
may organize potential houses based on trendy features like exposed brick walls, a wet 
bar, and room for vintage record collections. However, with the news of a baby on the 
way, the couple’s goals are likely to shift. After pouring through parenting books and 
web forums to learn what makes for a child-friendly home, they may look at those 
previously seen potential homes in a different light. Instead, family-oriented features 
such as whether or not a home has a bathtub, is within walking distance to a park, and 
is in a well-respected school district may matter more resulting in a reorganization of 
which homes are a good buy. At the core of this example are the fundamental 
challenges we face in flexible goal-directed learning. When learning new concepts (e.g., 
child-friendly instead of a trendy house), attention changes focus to different information 
and items that were conceptually dissimilar (e.g., two houses with and without a wet 
bar) may become more similar (e.g., they both are close to a park) and vice versa (1). 
Understanding how conceptual knowledge is created and updated during learning is a 
central question for both cognitive psychology (1–3) and neuroscience (4–7); yet, few 
studies attempt to bridge these domains. Here, we test a neurocomputational account of 
concept formation by combining human functional magnetic resonance imaging (fMRI) 
with a computational model of learning.  
 
We evaluate the proposal that during new learning, concept-relevant features are 
preferentially encoded into object representations in the hippocampus (HPC). Recent 
findings suggest HPC plays an important role in forming representations that integrate 
across shared features of experiences (6, 8–10); yet there is little understanding about 
how HPC representations evolve when conceptual knowledge changes. Prominent 
computational theories posit that concept formation in HPC is influenced by selective 
attention mechanisms that favor goal-relevant features from our experiences (1, 11, 12). 
When new goals arise, conceptual coding in HPC is reorganized according to the 
newly-relevant features selected by attention. Two lines of empirical evidence support 
this theoretical view. First, HPC rapidly learns (13), an ability important for updating 
conceptual representations in the face of changing goals. Second, HPC has also been 
shown to activate representations that are goal relevant (14–19). A critical open 
question is how the same experiences come to be represented differently in neural 
terms as a function of changing conceptual knowledge. We test the hypothesis that 
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HPC coding, in concert with selective attention, builds and updates concepts, resulting 
in distinct representations for the same stimuli across different learning contexts. 
 
Participants were first exposed to images of insects, which had three varying features 
(Fig. 1a). During high-resolution functional magnetic resonance imaging (fMRI) scans, 
participants learned two categorization problems using the insect stimuli. For one 
categorization problem (referred to as type 1 (20, 21)), participants learned to group the 
insects based on a single feature. For instance, participants were asked to sort insects 
into those that prefer warm or cool environments. Via trial and error, participants learned 
that an insect’s preference could be determined by attending to the width of the legs, 
with thick-legged insects preferring warm environments and thin-legged insects 
preferring cool environments. The other categorization program (termed type 2) 
required participants attend to the other two features (e.g., antennae and pincers) to 
perform correctly. For this problem, participants might be asked to sort the insects 
according to the hemisphere in which they are typically found, Eastern or Western. The 
correct conceptual grouping takes the form of an XOR rule; Eastern hemisphere insects 
comprised the insects with thick antennae and scooped pincers or thin antennae and 
sharp pincers, whereas Western insects were those with thick antennae and sharp 
pincers or thin antennae and scooped pincers. The order in which participants 
experienced these tasks was counterbalanced; half of participants learned the type 1 
problem first, and the remaining participants learned type 2 first. Thus, the same stimuli 
were used in both learning tasks, but the conceptual mappings of the stimuli changed 
across tasks. To perform efficiently, participants had to learn to attend to different 
features of the insects and update their concepts when the task, and therefore the goal, 
changed (Fig. 1b).  
 
This manipulation thus allowed us to vary the relevancy of the stimulus dimensions over 
time. By holding the stimuli constant and varying which features should be attended to 
across tasks, the features that were once relevant become irrelevant and the items that 
were once conceptually similar may become very different. For example, two insects 
that were considered similar in the first task because they share thin legs may become 
conceptually dissimilar in the second task because they have different antennae or 
mouths. The change in feature relevancy therefore requires rapid updating of 
conceptual representations, both initially after the exposure phase and in the transition 
from one task to another. Using a computational learning model named SUSTAIN (1), 
we created formal predictions about how concepts were updated for each task. This 
learning model (Fig. 2a) is based on two central mechanisms: 1) attention weights to 
stimulus features and 2) conceptual knowledge stores, called clusters, that represent 
weighted combinations of feature values and an association to a class label. A 
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classification decision is made by first weighting stimulus feature values according to 
the attention weights, then comparing the attention-weighted stimulus inputs to the 
stored clusters. The most similar cluster is then used to drive a probabilistic decision. 
Importantly, this model predicts learning behavior through a feedback-driven process 
that tunes the attention weights to select features most informative for the current task. 
The clusters are also adaptively updated to code for the similarities among the stimuli 
that best represent the concepts needed for the current task. In other words, the model 
optimizes the organization of cluster representations over the course of learning based 
on changing task goals and the stimulus features that are most task relevant.  
 
A theory relating SUSTAIN’s operation to the brain (11, 22, 23) hypothesizes that HPC 
forms and alters cluster representations. This notion is similar to computational models 
of episodic memory that link HPC computations to forming conjunctions of experiences 
(12, 24). Prefrontal cortex (PFC) is proposed to tune selective attention to features (25–
27), as well as direct encoding and retrieval of HPC cluster representations (9, 28–31). 
In particular, PFC monitors the similarity between the current stimulus information and 
existing conceptual knowledge and biases HPC functions in reorganizing clusters to 
reflect goal-relevant features. In other words, what is attended to by PFC affects what is 
activated in HPC, and how HPC representations are updated impacts how PFC-based 
attention is tuned. Here, we used the computational model to index each participant’s 
attentional strategies and organization of object representations across the two learning 
tasks. We then used these model-based predictions to test how neural representations 
in HPC for the same experiences dynamically evolve in the face of changing concepts. 
 
An important aspect of our approach is that model-based predictions about dynamic 
changes in object representations were tailored to each participant’s learning behavior. 
Using a model-based representational similarity analysis (RSA) approach, for each 
participant, we compared the similarity structure of the model-predicted cluster 
representations (i.e., conceptual knowledge) to the neural activation patterns elicited by 
the insect stimuli (see Fig. 3). We hypothesized that the organization of HPC object 
representations during learning would track how the model dynamically updated its 
attention-weighted object representations across the learning tasks. The theorized 
neural mechanism for such dynamic HPC updating relies on communication between 
HPC and brain regions important for evaluating sensory and internal mnemonic 
information (11). Thus, we also predicted a functional coupling between HPC and PFC, 
subregions of which have been implicated in the formation of generalized knowledge 
(31, 32) and cognitive control (33). 
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Results 
 
Dynamic updating changes attentional strategies and object similarity 
Participants successfully learned both classification problems across learning trial 
repetitions (Fig. 1c; βrep=0.431, SE=0.046, z=9.398, p<1✕10-16) with performance on 
type 1 reaching asymptote sooner than type 2 (βtask=0.928, SE=0.363, z=2.556, 
p=0.011). Type 2 learning was relatively slower for participants that learned type 1 first 
(βtask*order=-1.218, SE=0.551, z=-2.209, p=0.027). No other group level effects on 
performance reached significance. The learning model was fit separately to each 
participant’s learning curves and the attention weight parameters (λ) were extracted at 
the end of learning for both tasks (Fig. 2b). According to model predictions, participants 
allocated attention to the features that were most diagnostic for the given learning task. 
For the type 1 task, attention was allocated more to the diagnostic dimension λ1 than 
the other two dimensions (Zs>4.40, ps<8✕10-6). For the type 2 task, attention was 
allocated more to the two diagnostic dimensions λ2 and λ3 (Zs>5.80, ps<6✕10-9). This 
behavioral pattern replicates previous findings (1, 20, 21) and allows us to quantitatively 
index attention’s influence on HPC conceptual coding. 
 
We also examined the object representations as predicted by the learning model after 
the concepts had been acquired. For each participant, we extracted the model-based 
cluster representations for the same stimuli in both learning tasks, operationalized as a 
vector of values representing the degree that each model cluster was activated by the 
stimuli. We then calculated the pairwise correlations between these cluster 
representations (Fig. 2c). Across the two tasks, the similarity structure differed strikingly, 
reflecting the change in relevancy for the stimulus features; for instance, some stimuli 
that were less similar in the type 1 problem were more similar in the type 2 problem 
(e.g., stimuli 1 and 5). This difference in similarity structure across the tasks was 
confirmed with a randomization test of the matrices’ exchangeability (Z=3.42, 
p=0.0024). Moreover, not all stimuli within a category show the same level of similarity 
(e.g., in type 2, stimuli 1 and 4 are predicted to be very dissimilar despite belonging to 
the same category). Thus, any neural representations that are found to be consistent 
with this structure cannot be due simply to the association between stimuli and a 
category response. Collectively, these behavioral and modeling findings suggest 
participants learned the tasks by attending to diagnostic information and updating object 
representations to reflect the distinct attentional strategies required by each task. The 
similarity structure reflecting model-based object representations were used to test how 
conceptual coding in HPC dynamically reflected changing task concepts. 
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Hippocampal representations change dynamically with model predictions 
To evaluate the dynamic nature of HPC-based representations across learning tasks, 
we measured model-brain consistency with model-based RSA (34). This approach (Fig. 
3) allowed us to index the degree that the similarity structure of neural activation 
patterns matched model-based predictions of conceptual organization. Specifically, we 
calculated neural similarity between HPC activation patterns for each stimulus pair after 
the concepts were established in both tasks (i.e., the second half of each task when 
participants had reached asymptotic performance). The resulting neural similarity 
matrices, one for each of the two learning tasks, were concatenated and compared to 
the SUSTAIN similarity matrices with Spearman correlation and a randomization testing 
procedure. Using searchlight methods (35), this entire process was repeated for all 
spheres of neural activity (3 voxel radius) within HPC.  
 
The group-level analysis of the model-based RSA (Fig. 4a) revealed a cluster in left 
anterior HPC (voxelwise threshold p<0.005, small volume cluster correction p<0.05; 
cluster peak Z=3.21; cluster peak location: x=-25, y=-15, z=-17; 161 cluster extent) that 
exhibited significant consistency with the conceptual representations as predicted by the 
learning model. To visualize the conceptual organization within this HPC region, we 
derived attention weight estimates from neural similarity measures and projected these 
weights into stimulus feature space (Fig. 4b). These spaces reflect the influence of 
attentional tuning with changing task demands; whereas neural representations 
demonstrated more attention allocated to the first feature dimension (λn

1) in the type 1 
task, attention was tuned to the other two feature dimensions (λn

2 and λn
3) in the type 2 

task. This HPC region did not vary in response magnitude across tasks (Z=0.092, 
p=0.927); all task related modulation was at the level of latent representation. An 
additional control analysis demonstrated that HPC representational coding was not 
simply category-based, but rather that attention-weighting inherent to the model was 
critical to isolate updating mechanisms within HPC (see Supporting Information).  
 
Hippocampal-prefrontal functional connectivity greater during updating 
We next evaluated the hypothesis that dynamic updating of HPC representations is 
facilitated by interactions with PFC (11). We predicted that such interactions would be 
critical early in learning, when the need for dynamic updating of the conceptual space is 
most prevalent and the learning model establishes goal-relevant clusters. Specifically, 
we performed a whole-brain functional connectivity analysis to test whether neural 
activity in left anterior HPC (Fig. 4a) was coupled with PFC more so during early relative 
to late learning. Group-level analyses of functional connectivity revealed that both PFC 
and occipital regions showed enhanced coupling with the HPC seed region in the early 
learning phase relative to later in learning (Fig. 4c; Table S2). Specifically, activation 
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time courses in bilateral medial prefrontal (mPFC), right frontopolar (FPC), and right 
dorsolateral prefrontal (dlPFC) cortex were coupled with early learning-related HPC 
BOLD activity. 
 

Discussion 
 
Using a model-based fMRI approach, we show that HPC object representations are 
updated as new concepts are acquired; the same object is represented differently when 
concepts shift to emphasize new object features. When task demands change, HPC 
representations are updated to reflect new concepts and when such dynamic updating 
is occurring, HPC is distinctly coupled with PFC. Furthermore, our approach goes 
beyond current model-based fMRI methods that examine only the relationship between 
brain response and individual model parameters. Specifically, we assessed the 
organization of neural representations and how they change as function of experience 
through the lens of a computational model and an a priori theory linking model to brain 
regions. By doing so, our approach links formal psychological theory to the neural 
dynamics of learning (11).  
 
The current findings provide unique support for the hypothesized role of the HPC in 
building conceptual knowledge (6, 12, 24). Notably, the HPC region showing attention-
weighted object representations was predominantly localized to the dentate gyrus/CA2,3 
region. The intrinsic properties of this region (36, 37) makes it ideal for integrating goal-
relevant features into concept representations (6). Although animal (38) and human (39) 
work has shown support for HPC involvement in the binding of coarse event elements 
such as items in context (40, 41), the current findings implicate HPC coding at the level 
of individual stimuli and how they are conceptually organized. Recent work has shed 
light on the organization of over-learned conceptual representations of visual objects (7, 
34, 42); here we show that such conceptual organization can evolve as a function of 
changing goals. Specifically, by leveraging quantitative model predictions of how 
attention selects stimulus features impacts the similarity relations among object 
representations during learning, we demonstrated that HPC coding was sensitive to the 
stimulus features that were informative to the task at hand.  
 
Two recent human fMRI studies (16, 17) have demonstrated that HPC representations, 
as evidenced in voxel activation patterns, are distinct for different task states. In these 
studies, searching through room images for a particular style of wall art evoked distinct 
HPC patterns relative to searching the same room images for a particular room layout. 
Although these findings offer compelling evidence that attention enhances encoding of 
distinct HPC representations, the current study extends beyond this work to 
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characterize how that modulation occurs and to show that attention influences the 
neural representation of learned concepts. We demonstrated that goal-diagnostic 
information is preferentially encoded into HPC representations, with concept 
organization evolving as goals change. These results, possible only by linking model 
predictions to neural representations, provide a substantial contribution towards 
understanding the computational mechanisms that underlie HPC knowledge formation 
and updating. 
 
Our findings also add to a growing body of literature suggesting that HPC supports 
cognitive tasks beyond the domain of episodic memory (43). The finding that anterior 
HPC forms concept-specific representations speaks to the debate on HPC’s role in 
representing complex visual objects (44) and classification learning (4, 45). Although 
findings from seminal rodent and patient studies suggest perirhinal cortex rather than 
HPC is critical for processing objects composed of multiple features (46–48), the current 
findings are consistent with the account that HPC is important for organizing complex 
object representations according to changing contexts (39, 41, 49). Indeed, the current 
study extends prior fMRI work implicating HPC processes in classification learning (23, 
50–52) to demonstrate the influence of goal-relevant selective attention in HPC-based 
conceptual representations. These results add support for the theoretical proposal from 
the episodic memory literature that the HPC adaptively builds knowledge 
representations across episodes (11, 12). It is noteworthy that our findings were 
localized to the anterior portion of the HPC. Recent rodent (38) and human (8, 53) 
evidence suggests episodic memories are encoded according to a gradient of 
generalization along the HPC anterior-posterior axis. Posterior HPC has been shown to 
exhibit distinct representations for individual episodes, whereas anterior HPC codes for 
integrated representations that generalize across related episodes (8, 23, 38, 53). The 
current study builds on these observations to show that anterior HPC representations 
are not limited to spatial contexts (19, 38, 54, 55) or overlap between related episodes 
(8), but can also integrate attention-weighted object information across extended 
learning experiences.  
 
Our connectivity findings speculatively support the view that PFC interacts with HPC 
when concepts are updated to reflect changes in the learning context. In particular, left 
anterior HPC showed greater functional connectivity during the early phase of learning 
with regions of mPFC, a finding predicted by SUSTAIN’s neural framework (11). These 
results are also consistent with episodic memory findings that PFC biases encoding and 
retrieval of mnemonic information in HPC (9, 28, 29) and a recent proposal (30) that 
memories for individual experiences are updated through HPC-mPFC interactions to 
create generalized knowledge that supports complex behaviors like inference (8, 31). 
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We also found that early-learning HPC activation was coupled with regions implicated in 
a neural hierarchy of cognitive control along the rostral-caudal axis of lateral PFC (27, 
33, 56, 57). Speculatively, such coupling may reflect processes that map stimulus 
features to goal-specific response and context representations. Finally, that HPC 
showed coupling with occipital cortex is consistent with previous reports that neural 
representations in high-level visual areas change as a function of experience (34, 58). 
Collectively, these findings speculatively offer a potential learning network that should 
be a target of future studies. 
 
There are relevant parallels between the current study and the extensive literature on 
task switching (26, 59). This literature seeks to characterize the mechanisms underlying 
cognitive control in switching between tasks with distinct attentional (60, 61) and 
response (27, 62) strategies. Here, we tested how individuals engage similar 
mechanisms of selective attention and control, but within a learning context. By focusing 
on how participants learned to selectively attend to the most relevant features across 
changing tasks, we provide a formal account of how attention guides the formation and 
updating of neural representations of concepts. 
 
In conclusion, the model-based fMRI approach of the current work provides a 
compelling demonstration that HPC-based object representations are dynamically 
updated through attention biases. This approach is a unique contribution to the 
expanding field of computational model-based fMRI methods (63–65). In particular, the 
model-based RSA method we propose is a fundamental departure from the typical 
model-based fMRI approach (22, 66, 67) that focuses on localizing time-varying model 
parameters to activation timeseries of brain regions. Instead, we leverage the structure 
of the conceptual representations predicted by a learning model to reveal how neural 
representations of goal-specific concepts are dynamically updated during learning. 
Furthermore, by marrying computational modeling and neural measures through the 
shared currency of similarity structure, we leverage RSA in manner that was an original 
proposed goal of the approach (68), but has seem only limited empirical support (34, 
42). With this multifaceted approach, the current study demonstrates that, when goals 
change, object representations in HPC can be organized in new ways, resulting in 
updated concepts that highlight the features most critical to the new goal. 
 
 

Experimental Procedures 
Subjects and procedures 
Twenty-three volunteers participated in the study; all subjects were right handed, had 
normal or corrected-to-normal vision, and were compensated $75 for participating. After 
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consent in accordance with the University of Texas Institutional Review Board, 
participants performed all tasks in a 3T Siemens Skyra MRI scanner. They were 
instructed to learn to classify insect stimuli according to different rules that were based 
on the combination of the insects’ three features. They were instructed to learn by using 
the feedback displayed on each trial. The rules that defined the classification problems 
were not included in any of the instructions; rather, participants had to learn these rules 
through trial and error. Participants first performed a familiarization task that was 
included to familiarize participants with the insect stimuli and task procedures to 
eliminate any neural activation due to stimulus and task novelty during the learning 
tasks. Participants then performed the type 1 and type 2 classification tasks. For the 
type 1 task, class associations were defined by a rule depending on the value of one 
dimension. For the type 2 task, class associations were defined by an XOR logical rule 
that depended on the value of the two dimensions that were not relevant in the type 1 
task. The order of the type 1 and 2 tasks was counterbalanced across participants. The 
classification tasks consisted of learning trials presented in an event-related design. On 
each trial, an insect image was presented for 3.5s and participants made a response as 
to the insect’s class. The stimulus presentation period was followed by a 0.5-4.5s 
fixation, a 2s feedback screen consisting of the insect image, text of whether the 
response was correct or incorrect, and the correct class, and then a 4-8s fixation. Each 
of the eight insect images was presented in four learning trials during each fMRI run and 
participants completed four fMRI runs for each classification task. Whole brain fMRI 
data was acquired with 1.7mm isotropic voxels and a TR of 2 seconds. Full procedures 
and MRI data acquisition and processing details are described in Supplemental 
Information Methods.  
 
Model-based representational similarity analysis 
We fit SUSTAIN, a computational learning model, to each participant’s learning 
performance. Stimuli were presented to SUSTAIN in the same order as what the 
participants experienced and model parameters were optimized to predict each 
participant’s learning performance in the familiarization task and two learning tasks. The 
optimized parameters were used to extract measures of dimensional attention weights 
and latent representations (model cluster activation vectors) of the stimuli during the 
second half of learning in the two tasks. The pairwise similarities of the cluster activation 
vectors were then calculated with Pearson correlation to generate similarity matrices. 
Values from the upper triangle of the task-specific similarity matrices were concatenated 
and these served as the model-based prediction of attention-biased representations. 
Neural similarity matrices for the stimuli were calculated by first estimating activation 
patterns for each stimulus using an event-specific univariate general linear model (GLM) 
approach (69). The neural similarity between stimulus-specific activation patterns from 
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the second half of learning was assessed with a searchlight method such that the 
Pearson correlation was calculated for all pairwise stimulus-specific activation patterns 
from a searchlight sphere with a radius of 3 voxels. Values from the upper triangle of the 
task-specific neural similarity matrices were concatenated to serve as the neural 
similarity between the stimuli across tasks. The correspondence between the resulting 
neural similarity matrix and model-based similarity matrix was then assessed with 
Spearman correlation and a reshuffling randomization test. This searchlight method was 
applied to all searchlight spheres within HPC. For more details, see Supplemental 
Information Methods, Computational modeling analysis and Model-based RSA. 
 
Functional connectivity analysis 
Left anterior HPC functional connectivity with the rest of the brain was assessed using 
voxelwise regression. Mean activation time courses from the left anterior HPC region 
identified in the model-based RSA were extracted for each participant and entered into 
a GLM with the time course as a regressor. The resulting parameter estimates from the 
first two runs (early learning) were contrasted with the last two runs (late learning). The 
resulting contrast images were normalized to MNI space and submitted to group 
analysis. For more details, see Supplemental Information Methods, Functional 
connectivity analysis. 
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Figure 1 
 

 
 
Figure 1: Experiment schematic and behavioral performance. a) Participants learned to classify eight 
insect images according to two different rules through feedback-based learning. On every trial, an insect 
image was presented (3.5s) and participants made classification responses according to the current task. 
After a delay (0.5-4.5s), feedback consisting of the insect image, the accuracy of the response, and the 
correct classification was shown (2s). The next trial began after a variable delay (4-8s). For both tasks, 
participants responded to all eight stimuli over sixteen repetitions. b) The stimuli consisted of insects with 
three binary features (thick/thin legs, thick/thin antennae, and pincer/shovel mouths). The stimulus set 
consisted of eight images representing all combinations of the three binary features. The two 
classification tasks required attention to different features: the type 1 problem was based on one feature 
(e.g., the antennae), the type 2 problem was an XOR classification based on a combination of two 
features (e.g., the mouth and legs). The feature-to-task mappings and order of the learning tasks were 
counterbalanced across participants. c) The average probability of a correct response across the 16 
learning repetitions is plotted for both tasks. Error bars represent 95% confidence intervals (CI) around 
the inflection point of the bounded logistic learning curves. The shaded ribbons represent 95% CI of the 
mean.  
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Figure 2 
 

 
 
Figure 2: Schematic of learning model and model predictions. a) The learning model consists of three 
main components (see Supporting Information for model formalism). First, the sensory input of the three 
stimulus features is attenuated by receptive field filters tuned according to attention weights (λi). The 
attention component acts to alter the perceptual representation of the stimulus towards task-diagnostic 
information. Second, stored knowledge represented by clusters of weighted features compete to be 
activated by the attention-biased input. The cluster most similar to the attention-biased input wins and 
activates the class unit. Third, the activated class unit serves as input to a decision component that 
generates a response. Trial-to-trial, the model learns through feedback by updating the attention weights 
and the weights connecting clusters to the class unit, and whether an existing cluster is updated or a new 
cluster is recruited. b) The model was fit to participants learning performance (Fig. 1c) and the final 
attention weights (λi) for each dimension were extracted for both tasks. The relative attention weights for 
each task are depicted in the radar plots (dotted lines show participant weights, bold lines show group 
means). c) Matrices depict the average model predictions for the pairwise similarities between the stimuli 
for the two tasks. Task-specific similarity predictions for each participant were generated by extracting 
cluster activations for each stimulus at the end of learning. Pearson correlations were then calculated for 
each stimulus pair, and averaged across participants. The similarity matrices characterize the task-
specific conceptual representations underlying classification decisions. Stimuli in the same class for a 
given task are marked by black or white text along the axes of the matrices. 
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Figure 3 
 

 
 
Figure 3: Schematic of model-based representational similarity analysis (RSA). Model predictions and 
neural measures of stimulus similarity were extracted from the second half of both tasks. For each 
participant, the learning model was fit to behavior. These optimized model fits were used to generate the 
representational similarity spaces (Fig. 2c). A searchlight method was used to generate corresponding 
neural similarity matrices within the hippocampus (highlighted in green) by correlating voxel activation 
patterns within each searchlight sphere (3 voxel radius) for stimulus pairs from fMRI data recorded during 
the latter half of the task. The correspondence between model and neural similarity matrices across both 
tasks was assessed with Spearman correlation.  
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Figure 4 
 

 
 

Figure 4. Model-based RSA and learning-related connectivity results. a) Neural representations in left 
anterior HPC were consistent with model predictions of attention-weighted conceptual coding (cluster 
peak x=-25, y=-15, z=17, 161 voxel cluster extent; voxelwise thresholded at p<0.005 and small volume 
corrected at p<0.05 for HPC). b) Stimulus-specific neural representations from the HPC region in panel a 
were used to estimate attention weights to the three feature dimensions. These neurally-derived attention 
weights were then projected into feature space to demonstrate the attentional tuning across tasks. Each 
point represents a stimulus and is colored according to the class membership for the task. The attention-
weighted spaces are a visual depiction of the model-based RSA results (i.e., they are not an independent 
analysis) and show how attention is tuned across tasks to reconfigure stimulus space into task-relevant 
conceptual space. The type 1 space suggests attention was allocated more to the diagnostic first 
dimension (λn

1); the type 2 space reflects a change in attentional tuning, in which attention was allocated 
more to the other dimensions (λn

2 and λn
3) that were relevant for the task. c) Regions in PFC and occipital 

cortex showed significantly greater functional coupling with the HPC region identified by model-based 
RSA during early versus late learning (voxelwise thresholded at p<0.005, whole brain cluster extent 
corrected at p<0.05). 
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