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Abstract

Super-resolved localization microscopy (SLM) has the potential to serve as an accurate, single-

cell technique for counting the abundance of intracellular molecules. However, the stochastic

blinking of single fluorophores can introduce large uncertainties into the final count. Here we

provide a theoretical foundation for applying SLM to the problem of molecular counting based on

the distribution of blinking events from a single fluorophore. We also show that by redundantly

tagging single-molecules with multiple, blinking fluorophores, the accuracy of the technique can be

enhanced by harnessing the central limit theorem. The coefficient of variation (CV) then, for the

number of molecules M estimated from a given number of blinks B, scales like ∼ 1/
√
Nl, where Nl

is the mean number of labels on a target. As an example, we apply our theory to the challenging

problem of quantifying the cell-to-cell variability of plasmid copy number in bacteria.
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I. INTRODUCTION11

Cell biology is becoming increasingly quantitative with advances in light microscopy strongly12

driving this trend. Beyond imaging structure, significant effort has gone into developing13

microscopy based approaches to determining the abundance of proteins and nucleic acids14

in cells [1, 2]. Molecular counting experiments can yield additional insight into cellular15

structure and define the stoichiometry of interacting protein complexes. Moreover, since16

microscopy provides information at the single-cell level, it may be used to study stochastic17

variation within a population due to varying levels of mRNA and protein copy number, which18

is inaccessible to bulk techniques [3]. This variability is thought to be a crucial component of19

many biological processes such as cellular differentiation and evolutionary adaptation [4, 5].20

A fluorescence based approach to molecular counting would be particularly powerful in21

single-cell ‘omics’ applications where a low level, such as trace amounts of protein, DNA, or22

RNA, must be detected [6, 7]. A reduction or even elimination of the amplification stage23

prior to sequencing of DNA or RNA could greatly increase the accuracy and reliability of24

single-cell genomic analyses. And since fluorescence microscopy is less susceptible to errors25

arising from protein size or abundance than techniques like mass spectroscopy [8], it could26

hold a significant advantage for single-cell proteomics.27

Most conventional microscopy techniques either rely upon observing the step-wise photo-28

bleaching of fluorescent labels or on calibrating the fluorescence intensity to a standard29

[1, 2, 9]. Although these two methods have provided valuable insight into a range of cellular30

phenomena, both have their limitations. Step-wise photobleaching can only be used to31

identify small numbers of molecules (roughly < 10). And intensity measurements, although32

able to quantify the number of more abundant molecules, are hindered by stochastic variation33

in photon emission and collection efficiency, and are limited by the dynamic range of the34

detection camera. Likewise, both techniques have difficulties when observing diffraction35

limited fine structures due to overlapping signal from neighbouring features.36

Super-resolved localization microscopy (SLM), which include techniques such as PALM37

[10] and dSTORM [11], could provide an alternative approach that would not suffer from38

these limitations. SLM can produce images of structural detail an order-of-magnitude finer39

than diffraction limited techniques. The method relies on precisely localizing the spatial40

position of single, fluorescent labels attached to an assembly of target molecules. This41
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typically requires the use of photo-convertible or photo-activatable fluorophores that can be42

induced to blink in such a way that only a random subset of the labels are visible during43

each frame [12, 13]. For a sufficiently sparse image, each diffraction limited spot should be44

sufficiently well separated, and the subset of fluorophores may be localized with a precision45

that scales like ∼ 1/
√
P , where P is the mean number of photons collected from a single46

blink of a fluorophore. Tens of thousands of frames are typically acquired, the spatial47

coordinates of the fluorophores within each frame extracted, and the resulting data from the48

stack rendered into a final image.49

Since SLM measures discrete blinks from single fluorescent labels, it essentially provides50

a digital approach to molecular counting, compared to conventional techniques that measure51

the overall amplitude of a signal, and are akin to an analog method [14–16]. By focusing on52

interpreting the number of detected blinks, the usefulness of SLM moves well beyond what53

can be achieved with imaging alone. For instance, intracellular elements like multimerized54

membrane bound proteins, which are still unresolvable by SLM imaging, could be detected.55

Likewise, this approach relaxes the spatial accuracy requirements of imaging, opening the56

way for faster detection, at lower signal, and on smaller detector pixel arrays. However, there57

are several challenges to obtaining accurate counts with SLM, most notably, accounting for58

multiple blinks from a single fluorophore and the inefficiency with which the fluorophores59

photo-activate or photo-convert [17, 18]. Both issues lead to an inaccuracy in estimating60

the total number of molecules [15, 16, 19], and there has been much effort to mitigate these61

difficulties [14–16, 20–25].62

Starting from the statistics of the observed number of blinks of a single fluorophore,63

our approach is to apply Bayesian analysis to estimate the number of molecules from the64

total number of blinks detected in an SLM measurement (a related, but distinct approach,65

is presented in [26]). We are able to derive an analytic expression both for the estimated66

number of molecules and the error in that estimate. In addition, although the stochastic67

blinking of the fluorophores can introduce uncertainty when translating between the number68

of localizations and the number of molecules, we show that labeling single-molecules with69

multiple labels can reduce this uncertainty. As an example, we apply our theory to design70

an experiment that measures the cell-to-cell variability of plasmid copy number in bacteria71

(a task that has proven to be surprisingly difficult [27]).72
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II. METHODS73

A. Counting single molecules from blinking fluorophores74

Let’s begin by calculating the conditional probability distribution p(B|N) for observing B75

blinks (or localizations) from a set of N fluorophores during a measurement time TM . We76

assume the only information available is the total number of blinks B, and ignore any spatial77

information contained within the data that might enable us to differentiate one fluorophore78

from another. In the simple case of a single emitter, the probability p(B|N) is often well79

approximated by a geometric distribution:80

p(B|N = 1) = (1− e−1/λ)e−B/λ, (1)

where λ is the characteristic number of blinks of a particular fluorophore within the interval81

TM . This distribution arises when the blinking is a Poisson process between an ‘on’ and an82

‘off’ state that after sufficient time is truncated by photobleaching. From this relationship83

we generalize to the case of N fluorophores to obtain a negative binomial distribution84

p(B|N) =

(
B +N − 1

N − 1

)(
1− e−1/λ

)N
e−B/λ, (2)

where the prefactor accounts for the number of ways that N fluorophores, each blinking some85

Bi times, can yield
∑N
i Bi = B blinks. The mean and variance of Eq. 2 (see Appendix A)86

are:87

µB =
N

(e1/λ − 1)
, (3)

and88

σ2
B =

µ2
B

N
e1/λ, (4)

respectively.89

Up until this point, we have been considering the conditional probability distribution90

p(B|N), which, to reiterate, is the probability of observing B blinks when there are N91

fluorophores. However, we wish to know the probability of there being N fluorophores when92

we observe B blinks, or p(N |B). In the language of Bayesian statistics, we need to connect93

the likelihood p(B|N) to the posterior distribution p(N |B), which can be achieved by Bayes’94

theorem:95

p(N |B) =
p(B|N)p(N)

p(B)
. (5)
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If we have no prior knowledge of the distribution of fluorophores in our sample we may set96

the prior p(N) as a constant [28]. The posterior and the likelihood are then proportional97

p(N |B) ∝ p(B|N).98

We define a log likelihood function L(N,B) = − ln p(B|N) ∝ − ln p(N |B) and apply a99

Laplace approximation to the posterior distribution. That is, for a sharply peaked, sym-100

metric distribution, the maximum with respect to N (i.e., ∂L(N,B)/∂N |µN = 0) should101

roughly correspond to the mean number of fluorophores:102

µN = B(e1/λ − 1). (6)

Likewise, we can obtain the variance in the estimated number of fluorophores, which provides103

the accuracy of the estimate, by rewriting the posterior distribution and Taylor expanding104

as follows:105

p(N |B) = e−L(N,B) ∝ e
− 1

2
∂2L
∂N2

∣∣∣
µN

(N−µN )2

. (7)

In the exponent of Eq. 7, we identify the estimator of the Fisher information matrix [29]106

σ−2
N = ∂2L(N,B)/∂N2|µN to yield the variance107

σ2
N =

µ2
N

B

e1/λ

e1/λ − 1
. (8)

For fluorophores that blink multiple times during the measurement (i.e., the limit λ � 1),108

Eq. 6 simply reduces to the intuitive expression µN = B/λ, which states that the most109

likely number of fluorophores is equal to the measured number of blinks divided by the110

mean number of blinks per fluorophore. In this limit, Eqs. 6 and 8 approach the Poisson111

limit with variance σ2
N = µN , and the coefficient of variation (CV), which quantifies the112

variability of the estimate relative to the mean (η ≡ σN/µN), is simply η = 1/
√
µN .113

B. Accounting for multiple labels on a target114

There are a myriad of labeling techniques in cell biology and the correspondence between115

the number of fluorophores and the number of target molecules is typically not one to116

one. For instance, immunolabeled molecules will contain several dyes on each antibody117

and covalently labeled proteins will often be tagged at multiple residues. The probability of118

having N fluorophore labels in total when there are M target molecules, each with h possible119
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sites where a fluorophore may bind (or hybridize), is given by the binomial distribution120

p(N |M) =

(
hM

N

)
θN(1− θ)hM−N , (9)

where θ denotes the fractional occupancy. Note that hM is the maximum number of labels121

possible, if we ignore all non-specific labeling, and that the fractional occupancy θ is always122

less than one.123

C. Distribution of blinks within a population124

We can now combine Eqs. 2 and 9 as follows:125

p(B|M) =
∑
N

p(B|N)p(N |M), (10)

to derive the conditional probability distribution for observing B blinks from a popula-126

tion of M fluorescently labeled molecules. Although the full sum is quite cumbersome, if127

straightforward to evaluate numerically, the moments of Eq. 10 are analytically tractable.128

For instance, the first and second moments may be found by multiplying both sides of Eq. 10129

by
∑
B B or

∑
B B

2, respectively, and evaluating the summations. The first moment is the130

mean number of blinks131

µ̃B =
Mθh

e1/λ − 1
, (11)

which can be combined with the second moment to obtain the variance132

σ̃2
B =

µ̃2
B

Mθh

(
e1/λ + 1− θ

)
. (12)

However, we wish to estimate the mean and variance in the estimate of the number of133

molecules after having measured B blinks. Although a more formal derivation is provided134

in Appendix B, the estimate for the mean can simply be obtained by substituting µ̃B → B135

and M → µ̃M into Eq. 11:136

µ̃M =
B(e1/λ − 1)

θh
. (13)

In the limit λ � 1, Eq. 13 again yields an intuitive result for the expected number of137

molecules µ̃M = B/(λθh).138

The variance, on the other hand, is more challenging to evaluate, but it can be estimated,139

similar to how one estimates the propagation of errors in a measurement (see Appendix C).140
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FIG. 1. The simulated probability distribution p(M |B) for (M = 25, λ = 2, h = 96) at frac-

tional occupancies (Nl/h = 0.05, 0.25, 0.45, 0.65, 0.85) showing a sharper distribution (i.e., less

uncertainty) at increasing values.

If we assume the distribution p(M |B) is peaked about the mean µ̃M , then the Fisher infor-141

mation matrix is:142

σ̃2
M =

(
∂µ̃M
∂B

)2

σ̃2
B, (14)

to yield our final result for the estimate of the variance143

σ̃2
M =

µ̃2
M

B

(e1/λ + 1− θ)
e1/λ − 1

. (15)

In the limit λ � 1, this yields the simpler expression σ2
M = µ̃2

M(2 − θ)λ/B, and the CV is144

simply145

η̃2 =
1

µ̃M

(2− θ)
θh

, (16)

which can, when h > (2 − θ)/θ, reach the sub-Poissonian limit scaling like one over the146

square root of the mean number of labels per molecule η̃ ∝ 1/
√
Nl, where Nl ≡ θh. This147

scaling, of course, is simply a result of the central limit theorem.148149
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III. RESULTS150

A. Cell-to-cell variability of plasmid copy number151

To illustrate the utility of our approach, we consider the problem of counting plasmids in152

single bacterial cells. Plasmids are circular, extra-chromosomal segments of DNA that often153

confer a selective advantage, such as a resistance to antibiotics, to their host. Plasmids154

are also a relatively simple way to introduce genes into a cell making them an invaluable155

tool throughout molecular and synthetic biology. An important feature of a plasmid is its156

copy number. If a plasmid is harbouring a gene one wishes to express at a controlled level,157

variations in plasmid number will likely lead to varying levels of expression. Although bulk158

techniques such as qPCR can place bounds on the average plasmid copy number, it has159

proven extremely difficult to quantify the copy number distribution within a population160

[27].161

Localization microscopy could provide a way to measure the cell-to-cell variability in162

copy number. Super resolved localization microscopy images of a high-copy number ColE1163

plasmid were recently obtained in fixed Esherichia coli bacteria [30]. Atto-532 labeled DNA164

probes were annealed via DNA fluorescence in situ hybridization (FISH) to an array of LacO165

sites (256 sites) introduced in the target plasmids, then imaged by dSTORM. Furthermore,166

both the mean number of blinks λ and the fractional occupancy θ could be obtained from167

in vitro measurements (from photoactivation of sparse samples of the dye and from photo-168

bleaching experiments on the hybridization of the probes to an array of the target sequence,169

respectively).170

Here we consider targeting a 96 site array (a 96-TetO array, for instance, is commonly171172

available [31]) to lessen the effects of the insert on the replication dynamics of the plas-173

mid [32]. Figure 1 shows the probability distribution p(M |B) for this hypothetical system.174

We’ve chosen M = 25 for illustrative purposes, but the qualitative results remain similar175

for different plasmid number (i.e., for increasing fractional occupancies, Nl/h = θ, the dis-176

tribution becomes increasingly peaked around the expected value). Figure 2 shows that as177

more blinks are observed, due to an increased fractional occupancy, for the same number178

of plasmids (M = 10, 25, 100), the error in the estimate of M rapidly decreases. As more179

probes associate with the plasmids, the coefficient of variation decreases like ∼ 1/
√
Nl, and180
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FIG. 2. Uncertainty in the number of molecules vs. fractional occupancy for M = 10 (circles) , 25

(diamonds), and 100 (squares), λ = 2 and h = 96. Solid lines are a theoretical estimate from Eq.

15. The insert shows the increase in the expected number of observed blinks, for these parameters,

with increasing fractional occupancy.

can be made to drop well below the Poisson limit 1/
√
M (see Fig. 3). This is illustrated181

for a range of plasmid number (again, M = 10, 25, 100). For M = 25, for instance, and182

a reasonable fractional occupancy as might be achieved by DNA FISH, say 20%, the error183

in a single-cell count would be only ±1-2 plasmids. Unfortunately, the efficiency at which184

the probes hybridize in DNA FISH experiments is always hampered by the competing com-185

plementary DNA. Perhaps by employing peptide nucleic acid (PNA) probes [33], devoid of186

the negative charge along their backbone, the fractional occupancy could be enhanced to187

further reduce the uncertainty.188

B. Realistic In silico single-molecule counting189

In practice, a range of considerations must be accounted for before the theory we’ve devel-190

oped above can be applied; the most important consideration being to generate an accurate191

table of single-molecule localizations. To avoid tackling all the complications of SLM count-192

ing concurrently, we first develop a practical approach to molecular counting on simulated193

realizations of an SLM counting experiment. For instance, our theory assumes that all the194
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FIG. 3. Coefficient of variation (η̃l) vs. fractional occupancy (Nl/h) for different plasmid (molecule)

number: M = 10 (circles), 25 (diamonds), 100 (squares) (λ = 2 and h = 96). The solid lines are

the theoretical estimate from Eq. 16. At, roughly, M = 10 the theory begins to deviate from the

simulated results.

fluorophores blink according to a geometric distribution characterized by a single parameter195

λ, but if the sample is not homogeneously illuminated, or if the local chemical environment196

varies across a sample or with time, this criteria might not hold. Our in silico data allows197

us to impose temporal and spatial uniformity in the blink statistics. Likewise, in silico we198

know exactly how many fluorophores we are attempting to count and don’t have to calibrate199

for a sub-population that refuses to photoswitch (a complication our theory does not incor-200

porate). All these issues can be avoided, for the moment, by analyzing simulated images.201

The images are then processed to generate a localization table, just as one would process202

actual SLM data, and from the resulting localization table we show how to extract molecular203

counts according to the theory. In what follows, we essentially model dSTORM data with204

an organic dye, and many of the parameters are taken from our experimental setup (e.g.,205

pixel size, frame rate, etc.).206

We model the switching photophysics of each fluorophore as a Poisson process truncated207208

by a geometric distribution [23]. The Poisson process is an effective model of photo-switching209

between an ‘on’ and an ‘off’ state by the fluorophore, which is only able to switch a limited210

number of times, drawn from a geometric distribution, before photobleaching. We choose an211

‘on’ time ton = 100 ms and a duty cycle ton/toff = 10−3, which specifies the Poisson dynam-212

ics. As to the bleaching dynamics, we set the characteristic number of blinks λ = 2, which213
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FIG. 4. Plot of λ vs. Threshold. The dashed line is a linear fit to the data points from 15-25×103

counts. The solid blue line is the simulated value λ = 2, which well agrees with the extrapolation

of the measurements at zero threshold. The insert shows a typical histogram of the number of

blinks from a single fluorophore (for this example, the threshold was 21×103 counts). The red line

is the geometric fit from which we extract λ.

is a reasonable value [30]. ‘On’ states are rendered with a Gaussian point spread function214

(PSF) of width σPSF = 127 nm and Poissonian, shot noise intensity fluctutations (mean215

1750 photons/frame). Individual blinks are then pixelated by the finite size of the camera216

pixels (1 pixel = 117 nm) and white noise is added to the images to account for background217

(mean = 48, std = 10, photons). Finally, the dynamics, evaluated at 1 ms time-steps, are218

discretized into 50 ms frames to provide a stack of in silico data for processing.219

Despite knowing the exact value of λ (since it’s a parameter in the simulation), we first220

attempt to measure λ as one might in an actual experiment. We start with a grid of 1156221

fluorophores each spaced 7 pixels apart, and the simulation is run for a total simulated time222

of 12.5 minutes, which yields 15,000 images in the stack. The images are then analyzed with223

RapidStorm (a popular, open-source package for localization microscopy [34]) using fixed-224
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FIG. 5. Total Number of Blinks (Molecules) vs. Threshold for three realizations of the in silico

experiment. In each figure, the blue circles (red squares) are the measured number of blinks

(molecules) at each value of the threshold. The solid blue (red) line are the actual number of

blinks (molecules). Dashed lines are linear extrapolations of the data fit to a threshold range of

15-25×103 counts.

width Gaussian fits to the PSF. Once we have built an initial table of localizations, we then225

identify blinks that last for multiple frames as a single blink of a fluorophore by associating226

all temporally, consecutive localizations within a radius of 100 nm [35]. Since the initial grid227

of fluorophores is well separated, we can now build a histogram of the number of blinks from228

a single fluorophore and fit to obtain λ. An example of the resulting distributions is shown229

in the inset to Fig. 4.230

Note, the total number of localizations is sensitive to the choice of threshold, which231232

in RapidStorm is the integrated number of camera counts (here, 47 counts/photon) within233

the fitted PSF. For too low a threshold, it becomes difficult to differentiate a blink of the234

fluorophore from background noise. In fact, setting too low a threshold will generate a235

localization table with many spurious, random localizations. Our solution is to evaluate λ236

at increasing thresholds and extrapolate to the zero threshold value. That is, at different237

thresholds, we build a histogram of the number of blinks from a single fluorophore, fit to a238

geometric distribution to obtain λ, then plot λ vs. threshold. For a range of intermediate239

thresholds, λ steadily decreases as the threshold is increased. As shown in Fig. 4, linearly240
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extrapolating the data to zero threshold gives excellent agreement with the value we explic-241

itly coded into the simulation (1.98 compared to 2).242

With this calibration in hand, we next turn our attention to the actual in silico molecular243

counting experiment. We build a grid of 1225 vertices, each 8 pixels apart, and scatter about244

each vertex (within a radius of 2 pixels) up to h = 4 fluorophores (the actual number chosen245

from a binomial distribution with fractional occupancy θ = 0.75). The procedure is simi-246

lar to our calibration experiment: we simulate the system for 15,000 frames with the same247

parameters as before, analyze the stack in RapidStorm, bunch together blinks that last for248

multiple frames, and repeat at increasing threshold. To obtain the total number of blinks B,249

we determine the total number of blinks at each threshold, and again linearly extrapolate250

to zero threshold (see Fig. 5). This result can be used in Eq. 13 and Eq. 15 to obtain the251

mean number of molecules µ̃M and the variance σ̃2
M of our estimate. Alternatively, we could252

directly plot Eq. 13 and again extrapolate to zero threshold (see Fig. 5).253

From 25 realizations of this experiment, our measurements yielded µ̃M = 45±9 molecules254

with the actual number of molecules fixed at 49. The error on our estimate is slightly larger255

than our theoretical estimate from Eq. 15 (σ̃M = 5.6 ± 0.6), but this is largely due to the256

inherent error in extrapolating the data to zero threshold. Regardless, our estimate on the257

molecular count is still within 20%, which is not bad considering the stochastic nature of258

the system we’ve considered. Note, as the background noise is increased, it will become259

increasingly difficult to reliably extract the localizations and may make the approach we’ve260

just presented impractical. Likewise, the density of labels we consider in this section is still261

relatively sparse. In dense samples (or in samples where one might want to rapidly acquire262

the data by reducing the ‘off’ time), it may be hard to guarantee that the blinks don’t over-263

lap within a frame, skewing our estimates of the total number of blinks. Improved software264

for localizing single-molecules, in noisy and/or dense samples, may help limit these artifacts265

[36, 37].266

IV. DISCUSSION267

Our approach relies upon an accurate measure of two parameters: the mean number of blinks268

from a single fluorophore (λ) during the measurement time, and the fractional occupancy269

(θ). Although it is by no means certain, as a starting point, lets assume that in vitro270
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measures of these parameters are accurate. The parameter λ can be obtained from imaging271

single blinking fluorophores sparsely attached to a coverslip. Of course, inherent in this272

measurement is the assumption that the blink statistics are both spatially uniform and273

temporally invariant across the sample (or, at least, the region of interest). It should be274

kept in mind that this is not always the case: flat-field illumination is a challenge, densely275

packed labels may interact through charge/energy transfer, there may be pH and other local276

environmental variations, and so on.277

Obtaining the fractional occupancy is another challenge [38]. One method is to count278

photobleaching steps of single labeled probes bound to a target. In our plasmid example,279

the actual 96-TetO repeat target is much too large for such an approach, but it’s reasonable280

to assume that a smaller (say, 10-15 repeat target) would extrapolate. Although this would281

provide the full distribution of the occupancy, a simpler strategy is to measure the resulting282

ratio of plasmid DNA to fluorophore labels (by absorption spectroscopy and fluorometry,283

respectively). The fractional occupancy can then be backed out of the underlying binomial284

distribution. Of course, a binomial distribution is only an approximation to the occupancy285

statistics, and assumes that it’s equally likely for a labeled probe to associate with any one286

of the complementary binding sites along the plasmid. If the probes were to interact (e.g.,287

electrostatic or steric interactions), for example, the underlying distribution may be more288

complicated than our simple model assumes.289

Moreover, as mentioned, many fluorophores do not efficiently photo-activate or -convert.290

One might be be able to account for this aspect of the photophysics by quantifying the291

fractional occupancy using DNA origami [39]. For instance, in our plasmid example, an292

array of TetO sequences that could be spatially resolved by localization microscopy (e.g.,293

patterned on a grid) would serve as a template. Inefficient photo-activation or -switching will294

simply lead to a reduced, measure of the fractional occupancy. Given a sufficient number of295

hybridization sites h, this should account for any underestimation in the molecular number296

due to inefficient photoswitching. In fact,an added advantage of labeling the actual plasmids297

with multiple labels is that the redundancy increases the odds that a signal will be received298

from each molecule. Finally, the reliability of in vitro measurements of the theoretical299

parameters could be tested. The fractional occupation could alternatively be measured in300

vivo by working with a low copy plasmid that could be spatially resolved via conventional301

microscopy, then performing a photobleach experiment to determine the number of probes302
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hybridized to a single plasmid.303

We have also shown that, by increasing the number of labels on a target, one can take304

advantage of the central-limit theorem to improve on the accuracy of a molecular count,305

to achieve a
√
Nl improvement in the uncertainty of the estimated count (where Nl is the306

mean number of labels per molecule). This approach is well adapted for counting plasmids307

because standard techniques for detecting specific DNA sequences, such as DNA FISH,308

require labeling with many fluorophore conjugated probes. However, the example is rather309

specialized, and it’s often not feasible to attach multiple fluorophores to a single-molecule,310

such as when directly expressing fluorescently tagged proteins. On the other hand, standard311

immunolabeling techniques regularly target proteins with multiply labeled, fluorescently312

conjugated antibodies in order to achieve good signal intensity. Redundant labeling would313

reduce the uncertainty in quantifying the number of molecular components within diffraction314

limited clusters or aggregates via this commonly employed imaging technique.315

Appendix A: Negative binomial distribution316

Identifying Eq. 2 as a negative binomial distribution, the mean and variance can easily be317

derived from the moment generating function:318

Γ(t) =
(pet)N

[1− (1− p)et]N , (A1)

where t is a dummy variable and, for consistency with Eq. 2, p = 1−e−1/λ. The kth moment319

is solved for by evaluating ∂kΓ(t)/∂tk
∣∣∣
t→0

. From the first two moments, we once again obtain320

Eqs. 3 and 4 for the mean and variance, respectively.321

Appendix B: Derivation of the mean number of plasmids322

To derive equation 13, we begin by expressing p(M |B) analogous to Eq. 10 as323

p(M |B) =
∑
N

p(M |N)p(N |B). (B1)

To calculate the mean, we can multiply both sides by
∑
M M such that324

µ̃M =
∑
N

(∑
M

Mp(M |N)

)
p(N |B) (B2)
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We approximate the term in brackets with an estimate of the expectation value of p(M |N),325

which is N/(θh). This leaves326

µ̃M =
1

θh

∑
N

Np(N |B), (B3)

where the remaining sum is identified as µN . Substituting the expression we derived in Eq. 6327

yields Eq. 13.328

Appendix C: Accuracy of the estimate329

If we Taylor expand the log likelihood function L(M,B) = − ln p(M |B), assuming the330

distribution to be peaked about µ̃B, we can relate the log likelihood function to the variance331

in the measured number of blinks [28]:332

σ̃−2
B = ∂2L(M,B)/∂B2

∣∣∣
µ̃B
. (C1)

However, we are interested in calculating the variance in the number of molecules σ̃2
M , so let’s333

assume that the probability distribution p(M |B) is also peaked about µ̃M , and approximate334

its functional dependence as a Gaussian centred at µ̃M with variance σ̃2
M (i.e., Laplace335

approximation). In this case, the log likelihood function may be expressed as follows:336

L(M,B) = −(M − µ̃M)2

2σ̃2
M

− 1

2
ln σ̃2

M . (C2)

Since µ̃M and σ̃2
M are both functions of B, we can evaluate the second derivative of Eq. C2337

to obtain:338

∂2L(p,B)

∂B2

∣∣∣∣∣
µ̃B

≈
(
∂µ̃M(B)

∂B

)2
∣∣∣∣∣∣
µ̃B

/ σ̃2
M(B)

∣∣∣
µ̃B
. (C3)

Combining this result with Eq. C1 and solving for σ̃2
M yields Eq. 14.339
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