
NUMERICAL ANALYSIS OF THE IMMERSED BOUNDARY1

METHOD FOR CELL-BASED SIMULATION∗2

FERGUS R. COOPER† , RUTH E. BAKER† , AND ALEXANDER G. FLETCHER‡3

Abstract. Mathematical modelling provides a useful framework within which to investigate4

the organization of biological tissues. With advances in experimental biology leading to increasingly5

detailed descriptions of cellular behaviour, models that consider cells as individual objects are be-6

coming a common tool to study how processes at the single-cell level affect collective dynamics and7

determine tissue size, shape and function. However, there often remains no comprehensive account8

of these models, their method of solution, computational implementation or analysis of parameter9

scaling, hindering our ability to utilise and accurately compare different models. Here we present10

an efficient, open-source implementation of the immersed boundary method (IBM), tailored to sim-11

ulate the dynamics of cell populations. This approach considers the dynamics of elastic membranes,12

representing cell boundaries, immersed in a viscous Newtonian fluid. The IBM enables complex and13

emergent cell shape dynamics, spatially heterogeneous cell properties and precise control of growth14

mechanisms. We solve the model numerically using an established algorithm, based on the fast15

Fourier transform, providing full details of all technical aspects of our implementation. The imple-16

mentation is undertaken within Chaste, an open-source C++ library that allows one to easily change17

constitutive assumptions. Our implementation scales linearly with time step, and subquadratically18

with mesh spacing and immersed boundary node spacing. We identify the relationship between the19

immersed boundary node spacing and fluid mesh spacing required to ensure fluid volume conserva-20

tion within immersed boundaries, and the scaling of cell membrane stiffness and cell-cell interaction21

strength required when refining the immersed boundary discretization. This study provides a recipe22

allowing consistent parametrisation of IBM models.23

Key words. Immersed boundary method, cell-based modelling, convergence, Chaste24

AMS subject classifications. 65M06, 76D05, 76M20, 76M22, 92C15, 92C17, 92C3725

1. Introduction. The collective dynamics of populations of cells play a key role26

in tissue development and self-renewal, as well as in disease. Mathematical modelling27

of these systems is challenging due to the wide range of behaviours displayed over28
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2 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

different time and length scales, necessitating increasingly sophisticated ‘multiscale’29

approaches [4]. Such models seek to gain insight into emergent behaviours where the30

coordinated action of cell-scale processes, such as the localisation of membrane-bound31

planar cell polarity proteins, can combine to effect striking tissue-level morphogenetic32

changes, such as convergent extension, in a variety of developing epithelial tissues [31].33

Molecular and live-imaging techniques allow tissues to be probed at ever finer34

scales, supporting the use of modelling frameworks within which hypotheses spanning35

from the subcellular to the tissue scales may be tested. A range of such models have36

recently been developed, from vertex models that approximate each cell geometrically37

by a polygon or polyhedron representing the cell’s membrane [8] to subcellular element38

models that allow for more arbitrary cell shapes [25, 26]. Yet a firm mathematical39

foundation for the analysis of such models, which is required for confidence in the40

conclusions drawn from them, remains lacking. To help address this, we present a41

detailed examination of the immersed boundary method (IBM), which forms the basis42

for one such class of model, and a computational implementation thereof, designed to43

study interacting populations of eukaryotic cells.44

The IBM is a numerical method for simulating the dynamics of one or more45

elastic membranes immersed in a viscous Newtonian fluid. It was first developed by46

Peskin to investigate flow patterns around heart valves [16]. The model is formed47

from two coupled components: elastic boundaries representing, for instance, heart48

valves or cell membranes, and a fluid extending over the entire spatial domain. The49

elastic boundaries exert a force on the fluid, which induces a flow that, in turn,50

causes the boundaries to move. In the context of interacting cell populations, each51

immersed boundary may be thought of as representing the membrane of an individual52

cell or, more generally, structures on smaller or larger scales such as intracellular53

detail [6] or multicellular regions of tissue [5]. Inter- and intra-cellular interaction54

terms, which represent phenomena such as cortical tension in the cell membrane and55

the action of adhesive transmembrane proteins, are specified as explicit forces acting56

between discrete locations on each immersed boundary. A schematic of parts of three57

neighbouring immersed boundaries is shown in Figure 1. The set of such interactions58
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 3
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Fig. 1. Schematic of immersed boundaries. Circular nodes represent an off-lattice dis-
cretization of the immersed boundary contours. The regular grid behind the boundaries represents
points on which a viscous Newtonian fluid, ubiquitous across the domain, is discretized. Adhesion
links, specified as explicit force terms, exist between nodes within each immersed boundary, as well
as between neighbouring boundaries. The terms h, Fint, and Fext are defined in the main text.

defines, at any given time, a resultant force acting on the membranes. This resultant59

force is applied to the fluid, which induces a flow. This flow carries the membranes60

along with it, thereby updating the positions of the boundaries. Thus, the role of the61

fluid is to provide a mechanism by which the boundary locations are updated; a more62

detailed discussion of this mechanism is presented in Section 2.63

The IBM has several features that make it well suited to modelling the collective64

dynamics of cell populations. First, and most importantly, the shape of cell boundaries65

can be represented with arbitrary precision. This enables investigation of processes at66

a subcellular scale, while allowing cell shapes to be an emergent property rather than a67

constraint of the model, in contrast to other approaches such as vertex models [20, 27]68

and spheroid models [10]. Second, volume is preserved within any given closed contour69

of the fluid, unless specifically altered by fluid sources or sinks. Thus, the IBM70

allows for the study of regulated processes that affect cell size, such as cell growth,71

shrinkage, division and death. Third, implementations of the IBM typically have a72

small number of parameters. As shown in Section 3, the fluid dynamics depend only73

on the Reynolds number, while cell mechanical interactions are usually modelled by74

means of simple forces, such as linear springs. This opens the possibility of calibration75

against biological data; Rejniak, for instance, has demonstrated this by successfully76

parametrising an IBM implementation with numerical values estimated from various77
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4 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

experimental studies [23]. Finally, unlike numerical schemes that employ structured78

or unstructured grids conforming to the immersed body, in the IBM the fluid is79

discretized using a regular Cartesian grid that may be generated with ease. This80

allows a relatively simple numerical scheme, discussed in Subsection 4.8, which has81

a fairly straightforward and efficient computational implementation, and enables the82

use of a fast and direct spectral method for computing the fluid flow.83

Several previous studies have detailed aspects of the IBM, including a thorough84

treatment of the underlying mathematics by Peskin [17]. Biological applications in-85

clude those by Rejniak et al., who use an IBM implementation to investigate the86

growth of solid tumours under differing geometric configurations, initial conditions,87

and tumour progression models [22, 23]. The same authors have investigated the88

mechanics of the bilayer of trophoblasts in the developing placenta [24]. Dillon and89

Othmer use an IBM to model spatial patterning of the vertebrate limb bud [5], and an90

IBM framework for tackling general morphogenetic problems is presented by Tanaka91

et al. [29]. Cell deformation is investigated by several authors; by Jadhav and col-92

leagues in the context of cell rolling [11] and by Bottino in the context of passive actin93

cytoskeletal networks [1]. A review by Mittal and Iaccarino gives excellent background94

on the method and cites many other examples of its use across various application95

areas [14].96

While, collectively, these papers provide an excellent overview of the IBM and sev-97

eral implementations thereof, there remains no comprehensive account of the model,98

method of solution, computational implementation or analysis of parameter scaling.99

The aim of this work is therefore to provide comprehensive details of an IBM im-100

plementation aimed specifically at describing the collective dynamics of multicellular101

tissues. We provide a free, open-source implementation of the IBM complete with102

example simulations: we build on the established Chaste library [13, 19] to ensure103

that the code is robust and well-tested; we present the code necessary to reproduce104

all figures in this paper; and we conduct a thorough numerical analysis detailing105

how parameters scale with respect to each other in order to build a recipe allowing106

consistent parametrisation of models. The remainder of this paper is structured as107
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 5

follows. Sections 2 to 4 give details of the IBM, its discretization, and a numerical108

solution using a fast Fourier transform algorithm. Section 5 outlines the C++ imple-109

mentation in Chaste. Section 6 details a numerical analysis demonstrating that the110

computational implementation converges, and elaborating on how parameters scale111

relative to each other. Section 7 concludes with a discussion of the choices made in112

our implementation, and future work in this area.113

2. Immersed boundary method formalism. Consider a viscous Newtonian114

fluid, with velocity u = u(x) = u(x, y), flowing in a two-dimensional, doubly periodic115

domain Ω = [0, L]× [0, L]. The fluid motion obeys the Navier-Stokes equations116

ρ
∂u

∂t
+ ρ (u · ∇) u +∇p− µ

(
∇2u +

1

3
∇s
)
− ρf = 0,(1a)117

∇ · u = s,(1b)118
119

where ρ and µ are the fluid density and viscosity, respectively, and are both assumed120

constant; p is the pressure field; f is the force per unit area acting on the fluid; and121

s is the fluid source field, representing the proportional volume change per unit time.122

The periodic boundary conditions enforce u(x, 0) = u(x, L) and u(0, y) = u(L, y), for123

0 ≤ x, y ≤ L.124

We next consider a set of N non-overlapping closed curves in the fluid, which125

we will refer to as immersed boundaries, and which we think of as representing cell126

membranes. We associate upper-case Roman indices with the immersed boundaries,127

and lower-case Roman indices with the fluid domain Ω. Let Γ1, . . . ,ΓN denote the col-128

lection of immersed boundaries, and let each immersed boundary Γk be parametrised129

by γk. Further, let130

(2) Γ =
N⋃
k=1

Γk131

denote the union of these immersed boundaries, parametrised by γ, which is composed132

of γ1, . . . , γN in the natural way. Let X = X(γk, t) denote the coordinates of the kth133

immersed boundary and let X = X(γ, t) be the combined coordinates of all immersed134
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6 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

boundaries.135

We denote the resultant force acting on the immersed boundaries by F = F(γ, t).136

The precise functional form of the resultant force F varies with application, and is137

formulated in Section 4. We relate the resultant force on the immersed boundaries to138

the body force acting on the fluid through the relation139

(3) f(x, t) =

∫
Γ

F(γ, t) δ(x−X(γ, t)) dγ =
N∑
k=1

∫
Γk

F(γk, t) δ(x−X(γk, t)) dγk,140

where δ(·) denotes the Dirac delta function. The force on the fluid at location x thus141

vanishes away from the immersed boundaries, and equals the resultant force F at142

location X on an immersed boundary precisely at x = X.143

The immersed boundaries are assumed to move due to the fluid flow without144

slipping, so that a point along Γ moves at precisely the local fluid velocity:145

(4)
∂X(γ, t)

∂t
= u (X(γ, t)) =

∫
Ω

u(x, t) δ(x−X(γ, t)) dx.146

Thus, the velocity of an arbitrary immersed boundary point X(γ) is equal to the147

velocity of the fluid at x = X.148

The source field, s, is considered to be a finite linear combination of individual149

point sources. The number, location, and strength of each source is formulated in150

Section 4, but for now we consider s as an arbitrary (but known) scalar field.151

3. Non-dimensionalization. We non-dimensionalize the model to reduce the152

number of parameters and allow us to estimate the relative importance of each term.153

For the Navier-Stokes equations, we introduce the standard choices for viscous dy-154

namics: a length scale, L; velocity scale, U ; time scale, L/U ; pressure scale, Uµ/L;155

source scale, U/L; and force scale, U2/L. Substituting the rescaled variables and156

operator157

x = L
∗
x, u = U

∗
u, t =

L

U

∗
t, p =

Uµ

L

∗
p, s =

U

L

∗
s, f =

U2

L

∗
f , ∇ =

1

L

∗
∇(5)158

159
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 7

into Equations (1a) and (1b) and dropping the stars yields160

∂u

∂t
+ (u · ∇) u +

1

Re

(
∇p−∇2u− 1

3
∇s
)
− f = 0,(6a)161

∇ · u = s,(6b)162
163

where Re = ρLU/µ, the Reynolds number, represents the ratio of inertial to viscous164

forces. At very low Reynolds number it is appropriate to take the limit Re → 0 in165

Equation (6a) and, assuming the body force, f , to be of order 1/Re, obtain the Stokes166

equations167

∇2u−∇p+
1

3
∇s+ f = 0,(7a)168

∇ · u = s.(7b)169
170

Note that we assume f ∼ O(1/Re) since otherwise no flow would be induced by the171

force on the immersed boundaries.172

Small scale systems typically exhibit low velocities, and thus Reynolds numbers173

for biological regimes can be very small. Small swimming organisms, for instance, may174

experience Reynolds numbers as low as Re ≈ 10−4 [21]. Tanaka et al. [28] estimate175

Reynolds numbers for the fluid-like properties of embryonic tissues as Re ≈ 10−13176

using assumptions of L = 10−3[m], U = 10−8[ms−1] and µ/ρ = 102[m2s−1]. Rejniak177

et al. [24] arrive at Re ≈ 10−9 by considering the length scale to be the size of a large178

cytotrophoblastic cell (20µm) and a characteristic velocity of 30µm in 24 hours.179

Equations (7a) and (7b) are computationally less expensive than the full Navier-180

Stokes to solve; for example, their linearity permits the use of efficient Green’s function181

methods [3]. This raises the question of the circumstances under which it is appro-182

priate to assume Stokes flow for the IBM fluid component, as described in [2, 12].183

Here, we choose to solve the full Navier-Stokes equations, the reasons for which are184

discussed in Section 7, while keeping in mind that there are particular simulations185

for which the reduced problem may be suitable and computationally less expensive186

to solve.187
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8 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

Having chosen to solve the non-dimensional Navier-Stokes equations (6a) and188

(6b), we non-dimensionalize Equations (3) and (4) using the rescaled parameters189

X = L
∗
X, F =

U2

L

∗
F, γ = L

∗
γ,(8)190

191

dropping the stars, as before.192

4. Discretization. We solve the coupled problem, consisting of Equations (3),193

(4), (6a), and (6b), numerically, as follows. The immersed boundaries are discretized194

into a finite union of points (small circles in Figure 1) that we call nodes. The fluid195

domain Ω is discretized onto a regular Cartesian grid (square lattice in Figure 1) that196

we refer to as the mesh. In our non-dimensional coordinates, Ω = [0, 1] × [0, 1] is197

discretized with N × N grid points with mesh spacing h. We must also discretize198

Equation (3) relating the force F on the immersed boundaries with the body force f199

acting on the fluid, and Equation (4) relating the fluid and node velocities.200

In the following, time is discretized in steps of ∆t, and we refer to an arbitrary201

function Φ(·, t) at the nth time step by Φ (·, n∆t) = Φn (·).202

4.1. Discrete Dirac delta function. In the discretized system, the fluid and203

immersed boundaries interact only via a discrete version of the Dirac delta function.204

To approximate the Dirac delta function on the discrete mesh, we require a function205

with finite support for which, when interpolating between the immersed boundary206

and fluid domains, the contributions at each fluid mesh point in the support sum207

to unity. Various such functions have been proposed, of which four examples from208

different IBM implementations are detailed by Mittal and Iaccarino [14].209

Here, we make the common choice of a trigonometric function, used in several210

other IBM implementations [5, 23, 24], given by211

(9) δh(x) =
1

h2
φ
(x
h

)
φ
(y
h

)
,212
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 9

where h is the mesh spacing, and the function φ is given by213

(10) φ(r) =


1

4

(
1 + cos

(πr
2

))
, |r| ≤ 2,

0, otherwise.

214

This choice of φ differs from, but takes extremely similar numerical values to, that215

derived and used by Peskin [17]. Given the numerical similarity, the choice of function216

is unlikely to make much practical difference, and we have found the version presented217

here to be less computationally expensive to compute (see Section 7).218

We also note that, due to the bounded support of both functions, δh(x) will only219

ever be non-zero at the 4 × 4 mesh points closest to any given node. The choice of220

support size is discussed by Peskin [17], and is made purely on computational grounds:221

one could choose a delta function approximation with wider support, but each node222

on an immersed boundary would then interact with many more mesh points, slowing223

down the computation.224

4.2. Discretization of immersed boundaries. We discretize each immersed225

boundary Γk by a set of Nk nodes whose positions are given by Γ1
k, . . . ,Γ

Nk

k . We226

suppose that these nodes are initially spaced equally along the original parameter227

range γk = (0, γmaxk ), so that the length element ∆γk associated with the kth immersed228

boundary is equal to the initial node spacing, γmaxk /Nk. Since we impose the condition229

that each immersed boundary forms a closed contour we have ΓNk+1
k = Γ1

k.230

4.3. Discrete force relations. We are now in a position to define the resultant231

force F acting on the immersed boundaries. The discretization treats F as the union of232

a finite set of point forces given by the resultant force on each node in each immersed233

boundary.234

We will consider the resultant force on each node as the combination of two types235

of force: ‘internal’ forces, which depend on the positions of other nodes in the same236

immersed boundary; and ‘external’ forces, which depend on the positions of nodes in237

different immersed boundaries. Here, we introduce specific choices for the force terms238

to represent both the mechanical properties of the actomyosin cortex of a cell and239
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10 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

the protein-protein interactions between neighbouring cells. We represent both these240

mechanical interactions by linear springs, following previous IBM implementations [5,241

22, 23, 24, 29], although different functional forms could, in principle, be chosen.242

Internal forces represent the contractile properties of a eukaryotic cell’s acto-243

myosin cortex, which we describe by connecting each node to its neighbours by a244

linear spring of stiffness κint and rest length lint. The internal force acting on node245

Γpk is thus given by246

(11) Fint (Γpk, t) = κint
∑

j=p±1 mod Nk

Γjk − Γpk
||Γjk − Γpk||

(
||Γjk − Γpk|| − lint

)
.247

External forces represent the adhesive properties of transmembrane proteins, such248

as integrins and cadherins, linking neighbouring cells. We assume that any node in249

an immersed boundary is connected to all nodes in different immersed boundaries250

that are situated within a distance dext by a linear spring with stiffness κext and rest251

length lext. The external force acting on the node Γpk is given by252

(12)

Fext (Γpk, t) = κext

N∑
q=1
q 6=k

Nq∑
j=1

H
(
dext − ||Γjq − Γpk||

) Γjq − Γpk

||Γjq − Γpk||
(
||Γjq − Γpk|| − lext

)
,253

where the outer sum runs over all other immersed boundaries, the inner sum runs over254

the Nq nodes in boundary q, and H(·) is the Heaviside step function. Our choice of255

linear spring interactions is motivated primarily by their ease of implementation and256

low computational overhead (see Section 7), although in our software implementation257

the user is free to define their own functional forms.258

The total force F on a node is given by the sum of the internal and external259

forces,260

(13) F (Γpk, t) = Fint (Γpk, t) + Fext (Γpk, t) .261

4.4. Discretization of the Navier-Stokes equations. Due to the periodicity262

of the spatial domain, we employ a fast Fourier transform algorithm to solve Equa-263
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 11

tions (6a) and (6b) numerically. We use the following numerical scheme, described264

first by Peskin and McQueen [18] and later, with the addition of fluid sources, by265

Dillon and Othmer [5], where the sums are taken over the two dimensions, d ∈ {1, 2}:266

un+1 − un

∆t
+
∑
d

undD
±
d un +

1

Re

(
D0pn+1 −

∑
d

D+
d D
−
d un+1 − 1

3
D0sn

)
− fn = 0,

(14)

267

D0 · un+1 = sn,(15)268
269

where the forward and backward divided difference operators, D+
d and D−d , the vec-270

tor of central divided difference operators, D0, and the upwind divided difference271

operator, D±dd, are defined by272

(
D+
d φ
)

(x) =
φ(x + hed)− φ(x)

h
,(16)273 (

D−d φ
)

(x) =
φ(x)− φ(x− hed)

h
,(17)274 (

D0
dφ
)

(x) =
φ(x + hed)− φ(x− hed)

2h
,(18)275

D0 =
(
D0
x, D

0
y

)
,(19)276

undD
±
dd =


undD

−
d , if und > 0,

undD
+
d , if und < 0,

(20)277

278

respectively. Here, ed denotes the unit vector in the dth dimension.279

4.5. Discretization of force relation. We discretize Equation (3), relating the280

force on the fluid to the force on the immersed boundaries, as follows. For each point281

x in the fluid mesh, we sum the force contributions from every immersed boundary282

node using the discrete delta function to assign the appropriate weight,283

(21) fn(x) =
N∑
k=1

Nk∑
j=1

Fn(Γjk) δh(x− Γjk) ∆γk

 ,284

where the outer sum runs over the N immersed boundaries, the inner sum runs over285

the Nk nodes in the kth immersed boundary, and ∆γk is the length element associated286
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12 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

with the kth immersed boundary.287

4.6. Discretization of position-updating relation. For simplicity, we dis-288

cretize Equation (4) using a forward Euler scheme. At the nth time step, a given289

immersed boundary node Γjk is displaced by ∆t un(Γjk). Since, in general, Γjk will290

not coincide with a fluid mesh point, the value un(Γjk) is an interpolation of the 4× 4291

fluid mesh points closest to Γjk. The discretized relation for updating node locations292

is therefore given by293

(22)
(
Γjk

)n+1

=
(
Γjk

)n
+ ∆t

∑
x∈N(Γj

k)

un+1(x) δh(x− Γjk) h2,294

where N
(
Γjk

)
represents the 4×4 fluid mesh points nearest Γjk (the only points with295

non-zero contributions, due to the implementation of δh).296

4.7. Discretization of fluid sources. The source term s allows individual297

regions enclosed by contours in the fluid domain to increase or decrease in volume. In298

the absence of s, due to the volume conservation property of the IBM, the quantity299

of fluid within any given closed contour remains fixed. In the context of simulating300

multicellular biological systems, the source term s allows the modulation of cell size.301

To allow the fluid volume within each immersed boundary to be modulated, we302

decompose s into a finite number of point sources and initially put a single source at303

the centroid of each immersed boundary. To ensure a constant total volume of fluid304

in the domain Ω, we additionally include a number of sinks (sources with a negative305

strength) located outside all immersed boundaries which balance the magnitude of306

the N sources associated with the boundaries.307

Suppose there are M combined sources and sinks, s1, . . . , sM , with M > N ,308

located at the positions s1, . . . , sM . Each source sk has specified strength Tk, where309 ∑M
k=1 Tk = 0, and the source field s(x) at an arbitrary fluid mesh point x then satisfies310

(23) s(x) =
M∑
k=1

Tkδh(x− sk).311
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NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 13

A convenient method to ensure that fluid sources always remain inside (or outside)312

immersed boundaries entails updating their locations in the same way as for the313

immersed boundary nodes,314

(24) (sk)
n+1

= (sk)
n

+ ∆t
∑

x∈N (sk)

un+1(x) δh(x− sk) h2,315

where N (sk) represents the 4× 4 fluid mesh points nearest sk.316

The regulation of source strengths depends on the application and on the bio-317

logical process underlying the cell size change, and may, for example, be linked to318

a description of cell cycle progression and growth. Some examples of biological pro-319

cesses and their feedback on source strengths are discussed in Subsection 5.2. Note320

also that the number of extra ‘balancing sources’ is not fixed, and this is discussed in321

Section 7.322

4.8. Numerical solution. We are now in a position to solve Equations (6a)323

and (6b) numerically. Equation (21) allows the direct computation of fn, but Equa-324

tion (22) requires un+1, which we must compute, given fn, from Equations (14) and325

(15).326

Rearranging Equation (14) to separate the terms evaluated at different time steps327

yields328

(25)

(
I − ∆t

Re

∑
d

D+
d D
−
d

)
un+1 +

∆t

Re
D0pn+1 = Rn,329

where330

(26) Rn =

(
I −∆t

∑
d

undD
±
dd

)
un +

∆t

3Re
D0sn + ∆tFn,331

and I is the 2× 2 identity matrix.332

We solve Equations (15) and (25) directly for un+1 by applying a discrete Fourier333

transform (DFT) to eliminate pn+1. For our domain Ω = [0, 1]×[0, 1] discretized using334
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14 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

an N ×N square mesh of spacing h, we define the DFT from the spatial coordinates335

(·)x,y to the spectral coordinates (̂·)k1,k2 by336

(27) (̂·)k1,k2 =
N−1∑
y=0

N−1∑
x=0

(·)x,y exp

(
−2πi

N
(xk1 + yk2)

)
.337

Under this transformation, Equations (15) and (25) become338

(
1 +

4∆t

h2Re

∑
d

sin2

(
πkd
N

))
(ûd)

n+1
k1,k2

+
i∆t

hRe
sin

(
2πkd
N

)
p̂n+1
k1,k2

=
(
R̂d

)n
k1,k2

,(28)339

i

h

∑
d

sin

(
2πkd
N

)
(ûd)

n+1
k1,k2

= (ŝ)
n
k1,k2

,(29)340

341

where i is the imaginary unit, sums are taken over dimension, d ∈ {1, 2}, and each342

equation is now of a single variable so holds for d = 1, 2.343

We substitute Equation (29) into Equation (28) to solve directly for p: multiply-344

ing Equation (28) by (i/h) sin(2πkd/N), summing it over the two dimensions, and345

rearranging for p̂ gives346

(30) p̂n+1
k1,k2

=

(
1 + 4∆t

h2Re

∑
d sin2

(
πkd
N

))
(ŝ)nk1,k2 −

i
h

∑
d sin

(
2πkd
N

) (
R̂d

)n
k1,k2

∆t
h2Re

∑
d sin2

(
2πkd
N

) ,347

where every term on the right-hand side depends only on information available at the348

current time step. We can therefore substitute Equation (30) back into Equation (28)349

to solve for ûn+1
k1,k2

, obtaining350

(31) (ûd)
n+1
k1,k2

=

(
R̂d

)n
k1,k2

− i∆t
hRe sin

(
2πkd
N

)
p̂n+1
k1,k2

1 + 4∆t
h2Re

∑
d sin2

(
πkd
N

) .351

Care must be taken at the mesh points (k1, k2) = (0, 0), (0, N/2), (N/2, 0) and352

(N/2, N/2), where the denominator of the right-hand side of Equation (30) vanishes.353

At these points, however, the sine term multiplying p̂n+1
k1,k2

in Equation (28) also van-354

ishes, and we may thus solve directly for (ûd)
n+1
k1,k2

. We, therefore, avoid this problem355

by setting p̂n+1
k1,k2

= 0 in Equation (31). Finally, having computed (ûd)
n+1
k1,k2

, we apply356
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the inverse DFT to obtain un+1,357

(32) (ud)
n+1
x,y =

1

N2

N−1∑
k2=0

N−1∑
k1=0

(ûd)
n+1
k1,k2

exp

(
2πi

N
(xk1 + yk2)

)
.358

5. Computational implementation. In this section, we describe the time-359

stepping algorithm for solving the IBM model, and how it fits into the computational360

modelling framework Chaste. We go on to highlight some of the computational chal-361

lenges addressed during the implementation of this method, and we present some362

benchmarking and profiling results. Finally, we detail how rule-based processes such363

as cell division, needed for simulating populations of cells, are implemented within364

this IBM implementation.365

5.1. Chaste. We have implemented our IBM model as part of the Chaste C++366

library [13, 19]. The IBM code is released as a feature branch of the latest development367

version of Chaste1, which is open source and available under the 3-clause BSD licence.368

Chaste is developed with a test-driven approach using the unit testing framework369

CxxTest2. Using this framework, unit tests verify the correctness of every individual370

method within the implementation, and simulations are themselves written as test371

suites. Details of how to obtain our IBM implementation, as well as code to recreate372

all simulations from this paper, can be found in Appendix A.373

As it is written in C++, Chaste is fast and able to utilise object orientation and374

class inheritance, enabling modularity and easy extensibility of the code base. This375

structure enables the IBM to integrate with Chaste as a new example of the pre-376

existing class of ‘off-lattice simulations’, within which much of the core functionality377

such as simulation set up, time stepping, and cell cycle models are already imple-378

mented and thoroughly tested. In addition, new specialised functionality is built upon379

existing abstract classes, meaning a consistent and familiar interface is presented to380

existing code users.381

1http://www.cs.ox.ac.uk/chaste/download.html
2http://cxxtest.com/
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16 F. R. COOPER, R. E. BAKER AND A. G. FLETCHER

Using the numerical method described in Section 4, we solve the IBM by iterating382

through the following fixed time-stepping algorithm:383

1. update the cell population to take account of cellular processes including384

cell death, division, growth, shrinkage, and procession through the cell cycle,385

discussed shortly;386

2. calculate the internal and external forces acting on each node, using Equa-387

tion (13);388

3. loop over each immersed boundary node and propagate the associated force389

to the fluid mesh domain, as described by Equation (21);390

4. loop ever each fluid source and propagate the associated strength to the fluid391

mesh domain, as described by Equation (23);392

5. solve the Navier-Stokes Equations (6a) and (6b) using the fast-Fourier trans-393

form algorithm detailed in Subsection 4.8 to generate new fluid velocities;394

6. use the new fluid velocities to update immersed boundary node and fluid395

source locations as described by Equations (22) and (24).396

An example of a simple simulation performed using this implementation within Chaste397

is visualised in Figure 2, where an elliptical immersed boundary relaxes over time398

towards a circular shape. The fluid flow is shown as a vector field of arrows.399

5.2. Implementation of cellular processes. Sections 2 to 4 detail our IBM400

model and a numerical solution thereof, and together these constitute a method of401

solving fluid-structure interactions. In addition to this, we need the facility to include402

various cellular processes that occur when modelling a multicellular tissue. Such403

processes include regulated cell growth, division and death, and can be thought of404

as a collection of rules by which the properties of the immersed boundaries or fluid405

sources are altered, but which do not directly alter the underlying fluid problem.406

An example of rule-based modification of immersed boundaries is cell division.407

Within Chaste, we make use of existing functionality for encoding cell cycle progres-408

sion. In this framework, a cell may at some time step be deemed ‘ready to divide’, at409

which time the following scheme is employed to replace the single immersed boundary410

(representing the cell about to divide) with two immersed boundaries (representing411
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Fig. 2. An example IBM simulation. An elliptical immersed boundary relaxing over time
under the action of internal forces (Subsection 4.3), and no fluid sources. In this simulation,
h = 1/32, ∆t = 0.05 and N = 128 nodes. Full details of all parameters can be found in the simulation
code, available as part of the test suite ‘TestNumericsPaperSimulations’ (see Appendix A). (a) State
of the simulation after one time step, where flow is acting to reduce the elliptical immersed boundary
in height and expand it in width. (b) State of the simulation after 100 time steps, where flow vanishes
at the boundary. (c) Dynamics of the aspect ratio of the ellipse, quantified by its elongation shape
factor (ESF; see Section 6 for details), over time.

the daughter cells). First, a division axis through the centroid of the immersed bound-412

ary is selected, by means of some rule chosen by the user. This rule may, for instance,413

select the shortest axis of the immersed boundary, or a random axis, depending on414

the biological assumptions particular to the scenario being modelled. Second, with415

the division axis fixed, the boundary is divided in two: nodes on each side of the416

axis define the shape of each daughter cell, with the daughter cells separated by a417

pre-determined fixed distance. We make the choice that each daughter cell is rep-418

resented by the same number of nodes as the parent cell, and a re-meshing process419
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instantaneously spaces these nodes evenly around the outline of each daughter cell.420

We remark that this scheme defines a rule-based implementation of cell division421

as a process occurring during a single time step. Depending on the time scale over422

which the tissue is modelled, one may wish to explicitly represent pinching during423

cytokinesis, as implemented by Rejniak and colleagues [22, 24]. This can be achieved424

within Chaste, using existing functionality that allows feedback between the cell cycle425

and arbitrary cell properties such as a ‘target’ surface area that cells seek to attain.426

In this manner, when a cell is selected to divide, processes such as an increase in size427

followed by the formation of a contractile furrow could be specified (for instance, via428

a feedback with fluid source strengths); however, we stress that our implementation is429

left flexible and extendible. The modular and hierarchical nature of Chaste allows the430

user to easily specify appropriate cell cycles, division rules and cell property modifiers431

for a given biological scenario.432

5.3. Computational efficiency and profiling. The two most computationally433

demanding steps in our IBM implementation are solving the Navier-Stokes equations,434

and calculating the forces acting on the immersed boundary nodes. The former is435

demanding due to the calculations necessary in the finite difference scheme, the five436

two-dimensional DFTs per time step, and the term-by-term calculation of the pressure437

field. The latter is costly due to the potentially large number of pairwise interactions438

between nodes on neighbouring immersed boundaries that must be kept track of.439

To reduce the time spent solving the Navier-Stokes equations, we ensure that all440

arrays storing values needed during the computation are instantiated during simula-441

tion set up, and remain in place throughout the simulation. For N × N fluid mesh442

points, this means permanently storing 12N2 double-precision numbers. The result443

of this is a drastic speed-up compared to dynamically allocating memory, with the444

drawback of a large memory footprint. In practical terms, this scheme puts an upper445

bound of N ≈ 4096 when running a single simulation on a desktop computer, which446

is not prohibitive.447

To optimise the second problem of efficiently calculating pairwise interactions448

between nearby immersed boundary nodes, we employ a spatial decomposition algo-449

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071423doi: bioRxiv preprint 

https://doi.org/10.1101/071423
http://creativecommons.org/licenses/by-nc-nd/4.0/


NUMERICAL ANALYSIS OF THE IBM FOR CELL-BASED SIMULATION 19

h = 1/512 h = 1/1024 h = 1/2048

Approximate memory footprint (MiB) 39 102 355
Time to advance 2000 time steps (s) 73.9 211 817
Time solving the fluid problem (%) 40.7 62.7 77.3

Table 1
Code profiling. The memory footprint, time to complete 2000 time steps, and the proportion

of time spent solving the Navier-Stokes problem is presented for each of three increasingly fine
simulation representations. Each simulation comprises a regular hexagonal lattice of 20 immersed
boundaries, allowed to relax for the fixed number of time steps. Each boundary has 300, 600,
and 1200 nodes in separate simulations with 512, 1024, and 2048 fluid mesh points, respectively.
Profiling was performed on a desktop machine with an Intel Xeon E5-1650 v3 CPU and 16GiB RAM,
using the GNU gprof profiler. For details of how to obtain the code for these profiling simulations,
see Appendix A.

(a) (b)

Fig. 3. Profiling simulation. (a) The initial configuration of the immersed boundaries. (b)
The configuration of the immersed boundaries after advancing 2000 time steps.

rithm [9]. The domain is broken into squares each the size of the interaction distance450

dext, and at each time step the nodes are placed into their corresponding square. For451

a given node, the only possible set of interactions are then between nodes in the same452

or neighbouring squares. Thus, we dramatically reduce the computation necessary453

when dext � 1.454

Table 1 shows various profiling statistics for a prototype simulation of 20 cells455

initially arranged in an hexagonal packing. The columns of Table 1 each represent456

a successive doubling of the resolution of both the fluid mesh and the immersed457

boundary nodes. Figure 3 shows the configuration of the immersed boundaries at458

the start and end of the simulation corresponding to the first column in Table 1. As459
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Fig. 4. (a) Node spacing ratio and volume change. A set of simulations of a single
circular immersed boundary, each run for the same fixed simulation time. Across the set of simula-
tions the node spacing ratio, ∆γk/h, is varied and the proportional volume change of the immersed
boundary is recorded. As the node spacing ratio increases beyond 2.0 there is a sharp increase in
the proportional volume change, as a result of fluid escaping between the distantly spaced nodes. (b)
Scaling intra-cellular spring properties with node spacing. Two simulations, each of an
ellipse relaxing towards a circle, are run with the ESF sampled at 21 time points. Circles represent
a simulation in which the immersed boundary is represented by N = 256 nodes, with intra-cellular
spring constant κint = κ̄. Crosses, coinciding with the circles, represent a simulation with a mod-
ified representation of N = 512 nodes and intra-cellular spring constant κint = 4κ̄. (c) Scaling
inter-cellular spring properties with node spacing. Two simulations, each of two neighbour-
ing ellipses relaxing, are run in which the ESF of one ellipse sampled at 21 time points. Circles
represent a simulation in which the immersed boundary is represented by N = 256 nodes, with inter-
cellular spring constant κext = κ̄. Crosses, coinciding with the circles, represent a simulation with
a modified representation of N = 512 nodes and inter-cellular spring constant κext = 0.5κ̄, and with
the intra-cellular spring properties scaled as in (b). For details on how to obtain the code for these
simulations, which contains full details of all parameter values used, see Appendix A.

can be seen, solution of the fluid problem scales less well than calculating the forces;460

however, neither component indiviudally dominates the simulation runtime.461

6. Numerical results. In this section, we run a number of simulations to462

demonstrate various properties of our IBM implementation. We first highlight an463

important relationship between the immersed boundary node spacing, ∆γk, and the464

fluid mesh spacing, h. We go on to explore how certain parameters in the IBM scale465
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with each other, and use this to work towards a recipe by which a model of a particular466

biological process may be simulated. Finally, we demonstrate that the implementa-467

tion converges in time step, in fluid mesh spacing, and in immersed boundary node468

spacing. We employ a summary statistic for an individual cell in a simulation, referred469

to as the elongation shape factor (ESF). For a polygon this is a dimensionless positive470

real number that defines a measure similar to aspect ratio. Formally, it is defined as471 √
i2/i1, where i1 < i2 are the eigenvalues of the matrix of second moments of area of472

the polygon around its principal axes [7]. The ESF for a circle is 1, and for an ellipse473

it is the ratio of major to minor axis length.474

6.1. Node spacing ratio and volume change. In the continuous IBM, im-475

mersed boundaries are carried at precisely the local fluid velocity (Equation (4))476

because they are impermeable to fluid, in the sense that any given fluid particle will477

remain either inside or outside a particular immersed boundary for all time. In the478

discretized IBM, however, there is a gap of average length ∆γk between any two ad-479

jacent nodes in boundary k. If this gap is much larger than the fluid mesh spacing,480

h, fluid flow between the nodes will have no impact on the propagation of node loca-481

tions, and thus fluid will be able to flow across the boundary. Therefore, to ensure482

conservation of fluid volume within each immersed boundary, in the absence of fluid483

sources or sinks, ∆γk must be small enough in relation to h, where the trade-off of484

making ∆γk too small is simply computational expense.485

To determine how small is small enough, Figure 4a shows the results of a set of486

simulations relating the change in volume of a circular immersed boundary to the node487

spacing ratio, ∆γk/h. In each simulation, a circular cell is simulated for a fixed number488

of time steps. The intracellular spring properties are set with ∆γk < lint to ensure the489

linear springs are under tension and will, in the absence of the volume conservation490

property of the IBM, contract to reduce the perimeter of the immersed boundary.491

For each simulation we measure the proportional area change of the cell (the absolute492

change in area of the polygon divided by the original area), for a particular initial493

value of the node spacing ratio. From Figure 4a, we see that a node spacing ratio494

much above 2.0 results in poor volume conservation. A node spacing ratio of around495
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1.0, though, ensures that the numerical scheme matches the continuum limit well,496

while not being so small as to cause unnecessary computational overheads.497

6.2. Scaling of individual cell properties. A single cell represented by an498

immersed boundary that is displaced out of equilibrium by, say, stretching, will relax499

back to a circle. If we were to run an identical simulation with half the time step, we500

would expect the dynamics to remain unchanged (up to numerical imprecision intro-501

duced as a result of the numerical scheme). Likewise, halving the fluid mesh spacing,502

h, would, provided we obey the criteria of Subsection 6.1, leave the simulation output503

unchanged. Changing the immersed boundary representation, however, by altering504

the number of nodes per boundary, Nk, requires a scaling of various parameters if we505

wish to recapitulate the same simulation.506

To investigate this interplay, we consider the case where the node spacing in a507

single immersed boundary is decreased by a factor of α, starting from a reference508

value. Our goal is to derive the scaling required to ensure that the fluid flow, which509

determines the dynamics, remains unchanged. Two effects come in to play. First, the510

node spacing, ∆γk, which appears explicitly in the discretized force relation Equa-511

tion (21), is reduced by a factor α, and therefore F must be increased by this factor in512

order to compensate. Second, since the boundary is represented by linear springs, we513

are now considering a system with α times the number of springs, each with length514

reduced by a factor α. Assuming the rest length, lint, scales proportionally with the515

length of the connection, the average energy of a spring in the reference configuration516

is given by517

(33) Eref =
1

2
κrefint (∆γk − lint)2

,518

whereas the average energy of a spring in the new configuration is given by519

(34) Enew =
1

2
κnewint

(
∆γk
α
− lint

α

)2

.520

To ensure the potential in the immersed boundary is identical in both the reference521
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and the new configurations, we must equate Eref with αEnew, giving κnewint = ακrefint .522

Combining the scaling by α from both considerations, we thus find that to increase523

the number of nodes in an immersed boundary by a factor α, we require an α2 increase524

in κint. Figure 4b verifies this scaling.525

We now consider the case of two interacting cells with identical mechanical prop-526

erties. If we alter the resolution of nodes around each immersed boundary, how must527

we change the cell-cell interaction force parameters kext and lext to recapitulate the528

same dynamics in a given simulation? Increasing the number of nodes by a factor529

α in each immersed boundary relative to a reference scenario will also increase the530

number of connections, determined via Equation (12), by a factor α. As the immersed531

boundaries are unchanged in size, lext should remain the same, and thus the potential532

contained within the boundary interactions will have increased in proportion to the533

number of connections. Thus, κnewext = κrefext /α is the necessary scaling to ensure the534

simulation dynamics remain unchanged. Figure 4c shows summary statistics from a535

simulation verifying this scaling.536

Putting these two results together, when increasing the density of nodes in a537

simulation by a factor α, we must scale κint by α2, and κext by 1/α. To encapsulate538

this within our computational framework, we introduce an ‘intrinsic length’ relative539

to which the scaling described here is applied. Due to this, the required scaling is not540

manually applied by the user; the simulation dynamics remain unchanged when the541

user alters the node spacing.542

6.3. Convergence analysis. Here, we demonstrate how the numerical imple-543

mentation converges with time step, fluid mesh spacing, and immersed boundary node544

spacing. We conduct this convergence analysis using a simple prototype simulation545

of an elliptical immersed boundary undergoing relaxation for a fixed simulation time.546

For each of the three parameters of interest, ∆t, h, and ∆γk, we perform a series547

of simulations where only the parameter of interest is varied, and collect a single548

summary statistic, the ESF, from which we can verify convergence.549

To analyse convergence with time step, we run the relaxation simulation nineteen550

times, starting with ∆t = 0.5 and each time reducing ∆t by a factor of
√

2. Figure 5a551
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Fig. 5. Convergence of computational implementation. (a) Convergence with time step.
19 simulations with different values of ∆t were run for a fixed duration of 10 time units, with
the following fixed parameters: initial ESF = 2.0, N = 128 nodes, lint = 50% of node spacing,
κint = 107, Re = 10−4, with 128 × 128 fluid mesh points, relative to an intrinsic spacing of 0.01.
(b) Linear fit between error and time step, with a gradient of 1.11. (c) Convergence with fluid mesh
spacing. 15 simulations with different fluid mesh spacings, h, were run, for a fixed duration of 10
time units, with the following fixed parameters: initial ESF = 2.0, N = 8192 nodes, lint = 50%
of initial node spacing, κint = 107, Re = 10−4, and ∆t = 0.01, relative to an intrinsic spacing of
0.01. (d) Linear fit between error and fluid mesh spacing, with a gradient of 1.37. (e) Convergence
with immersed boundary node spacing. 16 simulations with different numbers of immersed boundary
nodes, therefore modulating ∆γk, were run for a fixed duration of 10 time units, with the following
fixed parameters: initial ESF = 2.0, lint = 50% of initial node spacing, κint = 107, Re = 10−4,
∆t = 0.01, and 64 × 64 fluid mesh points, relative to an intrinsic spacing of 0.01. (f) Linear fit
between error and node spacing, with a gradient of 1.49. For details on how to obtain the code for
these simulations, see Appendix A.
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demonstrates convergence of the ESF with time step. We assume the ESF associated552

with the finest time step to be the best approximation to the continuum limit, and553

define the error in ESF for each simulation to be the absolute difference between the554

ESF and this best value. Omitting the penultimate value, the gradient of a log-log555

plot of this error against time step is 1.11, demonstrating the order of convergence is556

approximately linear.557

Similarly, to demonstrate convergence with fluid mesh spacing we run fifteen re-558

laxation simulations starting with h = 1/32 and each time reducing h by a factor559

of
√

2. We need to pick a fixed large number of immersed boundary nodes to elimi-560

nate the node spacing ratio issue discussed in Subsection 6.2, and so as not to vary561

∆γk. Figure 5c shows convergence of the ESF with h. Defining the error in a similar562

manner to above, we find the log-log gradient to be 1.37, demonstrating the order563

of convergence to be subquadratic. Finally, to demonstrate convergence with im-564

mersed boundary node spacing, we run sixteen relaxation simulations, starting with565

∆γk ≈ 0.014 and each time reducing ∆γk by a factor of 3
√

2. Figure 5 shows the ESF566

converging. The log-log gradient is 1.49, demonstrating the order of convergence to567

be subquadratic.568

In addition to convergence of the numerical implementation, we also require our569

implementation of cell division to converge with immersed boundary node spacing: for570

a given cell division, the shape of the resulting daughter cells should be independent of571

the choice of boundary parametrisation. We verify this convergence by performing cell572

division operations on a number of elliptical immersed boundaries, each represented573

by a different number of nodes, and using the ESF as a summary statistic of daughter574

cell shape. Figure 6 shows results with a log-log gradient of 1.96, demonstrating the575

order of convergence to be quadratic.576

7. Discussion. In this manuscript, we have presented a thorough description of577

the equations governing the IBM, and full details of a common discretisation approach578

and method of numerical solution. We have presented an efficient computational579

implementation, as part of a mature and thoroughly tested C++ library designed580

specifically for computational biology simulations. We have demonstrated numeri-581
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Fig. 6. Convergence of cell division implementation. (a) 17 simulation results showing
the ESF of an immersed boundary resuling from the application of the cell division algorithm (sub-
section 5.2), from elliptical immersed boundaries with varying values of ∆γk. (b) Linear fit between
error and ∆γk, with a gradient of 1.96. For details on how to obtain the code for these simulations,
see Appendix A.

cally various parameter scaling properties of the IBM, and have demonstrated the582

convergence properties of our implementation. In this section, we return to several583

choices made during the formulation of our IBM model.584

7.1. Stokes or Navier-Stokes. The first such choice was whether to solve the585

full Navier-Stokes equations, or whether to solve the Stokes equations in the low586

Reynolds Number limit. To address this question, we first emphasize that the ‘fluid’587

underlying the IBM need not have a direct physical correlate. It may be helpful588

to think of the fluid simply as a tool by which the positions of the boundaries are589

updated, and which has certain ‘nice’ properties (such as volume preservation inside590

closed contours), although some authors have nevertheless sought to draw parallels591

between this fluid and the cell cytoplasm and extracellular medium [23]. A concrete592

example, though, of the difference between the IBM fluid and the fluid-like properties593

of the underlying biological system is in the case of a stationary circular boundary:594

if there is a resultant elastic force, there will be a non-zero body force in the IBM595

fluid and therefore an induced flow. Since the fluid cannot be assumed to faithfully596

represent underlying biology, it is not obvious that modelling a biological situation597

with small Reynolds number necessarily means the Reynolds number in an associated598

immersed boundary problem need also be small. Rejniak et al., for instance, derive a599

‘biological’ Reynolds number of 10−9, but use the value 5.9 × 10−5 for their simula-600
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tions [24]; a value chosen so as to recapitulate the relevant dynamics. This discrepancy601

demonstrates that the IBM fluid cannot be expected to adequately mimic the fluid-like602

properties of the underlying biology, and thus that we must take care in assuming an603

appropriate Reynolds number in IBM simulations need necessarily be very small. Fur-604

ther investigation is required to ascertain the relationship between ‘fluid’ properties605

in vivo and in silico for the IBM. Cutting experiments, for instance, where tissue is606

observed to recoil after ablation, could be used to fit an appropriate Reynolds number607

for the IBM in order to match in vivo dynamics. While IBM implementations based608

on Stokes flow do exist [2, 12, 30], we have chosen to implement the full generality609

of the Navier-Stokes problem. This keeps open the possibility of modelling situations610

where inertial effects cannot necessarily be neglected, while acknowledging that there611

are scenarios in which the reduced problem may be appropriate, and computationally612

much less expensive to solve.613

7.2. Discrete delta function. We made a specific choice for the form of the614

discrete delta function. Peskin [17] derived the following form for φ, in contrast to615

that presented in Equation (10):616

(35) φ(r) =



1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1

2
− φ(2− |r|), 1 ≤|r| ≤ 2,

0, 2 ≤|r|,

617

While the functional form appears quite different, the numerical values taken by the618

different formulations of φ are very similar (differing by less than 0.008 at any point619

in the domain). Given this incredibly similarity, using one form rather than the other620

may be decided by computational efficiency. In practice, we find the trigonomet-621

ric function slightly quicker to compute during a simulation, which is likely due to622

difficult branch prediction of the ‘if’ statement necessary to compute φ using Equa-623

tion (35). The proportion of the total simulation time spent evaluating the discrete624

delta function is, however, small enough that in practical terms the choice of φ is625
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immaterial.626

7.3. Inter-cellular interaction terms. Third, we will briefly discuss the choice627

of functional form for the inter-cellular interaction terms. The sharp cut-off repre-628

sented by the interaction distance dext in Equation (12) may be unphysical, as it629

implies that when boundaries move apart, the opposing force linearly increases with630

distance until instantaneously becoming zero at distance dext. A different functional631

form may mirror the underlying behaviour more closely, and one such example is the632

Morse potential [15], which has a functional form633

(36) V (r) = κ(1− e−a(r−l))2,634

where κ and a denote the depth and width of the potential well, respectively, r is635

the distance between the interacting nodes, and l is the equilibrium distance of the636

bond. The force between two immersed boundary nodes would, as a result of such637

a potential, be exponentially repulsive at short distances, have an attractive peak at638

a medium distance, and tail off at long distance. A cut-off at a value of dext would639

still be needed for computational reasons, but this cut-off would be at a low value of640

the force rather than at the maximum value, as is the case with linear springs. To641

what extent the choice of functional form impacts immersed boundary simulations is642

an open question, and a topic for further study.643

7.4. Balancing sources. Finally, in Subsection 4.7 we gave no precise formula-644

tion for the number of fluid sources, M−N , in excess of those associated to immersed645

boundaries. The purpose of these additional sources is to balance the net fluid cre-646

ation due to processes such as cell growth, to ensure a constant fluid volume within647

the domain Ω. In our implementation we choose M ≈ 2N , and initially place these648

equidistant along the boundary y = 0. Rejniak and colleagues [24] use a similar ap-649

proach, but do not specify the number of such additional sources, while Dillon and650

Othmer [5] use exactly four, but do not specify their initial locations. The implica-651

tions of such choices have not been systematically investigated, and to what extent652
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these choices impact upon the results of simulations is a topic for further study.653

8. Conclusion. Through the availability of ever richer datasets from molecular654

and live-imaging studies, we are in a position to undertake data-driven computational655

modelling of morphogenetic processes. In tandem, the ready availability of comput-656

ing power allows not only for individually costly simulations to be run, but also for657

parameter estimation or sensitivity analysis studies requiring thousands of such sim-658

ulations. The time is ripe, therefore, to take advantage of both the accessibility of659

high-resolution data and the availability of enormous computational power. We have660

presented here an open-source, efficient, and modular implementation of the IBM,661

one such framework able to make use of both.662

A strength of such models is the ease with which cellular heterogeneity (for ex-663

ample, through patterning mechanisms) may be incorporated, and the consequences664

for tissue-scale behaviour be simulated and explored. The development of methods to665

efficiently explore the parameter space of such models, perform inference and model666

calibration against quantitative datasets, and analyse the tissue-level mechanical prop-667

erties of such models remain avenues for future work in this area.668

Appendix A. Obtaining the source code.669

The C++ implementation of the IBM within Chaste is available as a feature670

branch as part of the publically accessible Chaste Git repository. Details on accessing671

this repository can be found at https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/672

GitGuide, and the IBM branch is titled ‘fcooper/immersed boundary’.673

The code used for simulations in this paper is provided as a zipped folder (see674

Supplementary Material). This code takes the form of a ‘user project’ entitled ‘Ib-675

NumericsPaper’ which can be interfaced with Chaste using instructions at https:676

//chaste.cs.ox.ac.uk/trac/wiki/InstallGuides/CheckoutUserProject.677

Within this user project, numerical convergence simulations can be found in678

/apps/src, where ‘.cpp’ files define the simulations and ‘.py’ files run the simulations679

and perform the post-processing. Profiling simulations are defined in the test suite680

/test/TestProfiling.hpp. All other simulations are defined as individual tests, which681
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are defined and documented in the test suite /test/TestNumericsPaperSimulations.682

hpp.683
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