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Abstract

Representational models specify how activity patterns in populations of neurons (or,
more generally, in multivariate brain-activity measurements) relate to sensory stimuli,
motor responses, or cognitive processes. In an experimental context, representational
models can be defined as hypotheses about the distribution of activity profiles across
experimental conditions. Currently, three different methods are being used to test such
hypotheses: encoding analysis, pattern component modeling (PCM), and
representational similarity analysis (RSA). Here we develop a common mathematical
framework for understanding the relationship of these three methods, which share one
core commonality: all three evaluate the second moment of the distribution of activity
profiles, which determines the representational geometry, and thus how well any feature
can be decoded from population activity with any readout mechanism capable of a
linear transform. Using simulated data for three different experimental designs, we
compare the power of the methods to adjudicate between competing representational
models. PCM implements a likelihood-ratio test and therefore provides the most
powerful test if its assumptions hold. However, the other two approaches – when
conducted appropriately – can perform similarly. In encoding analysis, the linear model
needs to be appropriately regularized, which effectively imposes a prior on the activity
profiles. With such a prior, an encoding model specifies a well-defined distribution of
activity profiles. In RSA, the unequal variances and statistical dependencies of the
dissimilarity estimates need to be taken into account to reach near-optimal power in
inference. The three methods render different aspects of the information explicit (e.g.
single-response tuning in encoding analysis and population-response representational
dissimilarity in RSA) and have specific advantages in terms of computational demands,
ease of use, and extensibility. The three methods are properly construed as
complementary components of a single data-analytical toolkit for understanding neural
representations on the basis of multivariate brain-activity data.

Author Summary

Modern neuroscience can measure activity of many neurons or the local blood
oxygenation of many brain locations simultaneously. As the number of simultaneous
measurements grows, we can better investigate how the brain represents and transforms
information, to enable perception, cognition, and behavior. Recent studies go beyond
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showing that a brain region is involved in some function. They use representational
models that specify how different perceptions, cognitions, and actions are encoded in
brain-activity patterns. In this paper, we provide a general mathematical framework for
such representational models, which clarifies the relationships between three different
methods that are currently used in the neuroscience community. All three methods
evaluate the same core feature of the data, but each has distinct advantages and
disadvantages. Pattern component modelling (PCM) implements the most powerful test
between models, and is analytically tractable and expandable. Representational
similarity analysis (RSA) provides a highly useful summary statistic (the dissimilarity)
and enables model comparison with weaker distributional assumptions. Finally,
encoding models characterize individual responses and enable the study of their layout
across cortex. We argue that these methods should be considered components of a
larger toolkit for testing hypotheses about the way the brain represents information.

Introduction 1

The measurement of brain activity is rapidly advancing in terms of spatial and temporal 2

resolution, and in terms of the number of responses that can be measured 3

simultaneously [1]. Modern electrode arrays and calcium imaging enable the recording 4

of hundreds of neurons in parallel. Electrophysiological signals that reflect summaries of 5

the population activity can be recorded using both invasive (e.g. the local field 6

potential, LFP) and non-invasive techniques (e.g. scalp electrophysiological 7

measurements) at increasingly high spatial resolution. Modern functional magnetic 8

resonance imaging (fMRI) enables us to measure hemodynamic activity in hundreds of 9

thousands of voxels across the entire human brain at sub-millimeter resolution. 10

In order to translate advances in brain-activity measurement into advances in 11

computational theory [2], researchers increasingly seek to test representational models 12

that capture both what information is represented in a population of neurons, and how 13

it is represented. Knowing the content and format of representations provides strong 14

constraints for computational models of brain information processing. We refer to 15

hypotheses about the content and format of brain representations as representational 16

models, and address here the important methodological question of how to best test 17

such models. 18

Referring to an activity pattern as a “representation” constitutes a functional 19

interpretation [3], which requires not only that the represented variable (such as a 20

perceptual property, some cognitive content, or an action parameter) is encoded in the 21

pattern of activity in a format that can be read out by downstream neurons, but also 22

that the information is actually used by other brain regions and, thus, serves a 23

functional purpose [4]. The representational interpretation therefore ultimately needs to 24

be supported by evidence for a cause-and-effect relationship between the activity and 25

downstream neural and behavioral responses. Testing causal effects of activity patterns 26

is beyond the scope of the present paper. However, we note that a good 27

brain-computational model must, as a necessary condition, be able to explain the 28

information present in brain regions involved in task performance and the format in 29

which this information it is encoded . 30

For a population code to constitute an explicit representation, another area must be 31

able to read out the represented variable directly using a neurobiologically plausible 32

readout mechanism, such as linear or radial-basis-function decoding [2, 5, 6]. Note that 33

this definition of explicit does not restrict us to highly localized codes, such as the 34

“grandmother neuron” [7], but encompasses widely distributed codes. 35

An example of an implicit representation is the representation of object category in 36

the retina. The retina clearly contains information about object category, and an aspect 37
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of its function is to convey this information. However, it does not explicitly represent 38

object category. Multiple stages of nonlinear tranformation along the ventral visual 39

stream are required to render the category of an object explicit. Inferior temporal 40

cortex contains a representation of object category [8, 9], along with representations of 41

much additional information [10]. 42

Many researchers have used linear decoding methods to reveal explicit information in 43

neural representations [11–13]. Representational models, as considered here, go one step 44

further: they fully characterize the representational geometry, defining all explicitly 45

represented features in a region, how strongly each of them is represented (signal to 46

noise ratio), and how the activity patterns associated with different features relate to 47

each other. Representational models therefore fully specify the explicit representational 48

content. 49

To define representational models formally, we need to consider two complementary 50

perspectives on activity data, as illustrated in Fig. 1. The activity of many neurons, or 51

more generally measurement channels (neurons, electrodes, or fMRI voxels), can be 52

measured across a range of experimental conditions (stimuli, movements, or tasks). 53

Thus, each channel will have an activity profile, which can be plotted as a point in the 54

space spanned by the experimental conditions (Fig. 1b). A representational model 55

specifies a probability distribution of activity profiles in the space spanned by the 56

experimental conditions. It treats the true activity profiles as a random variable and 57

predicts, for each possible activity profile, the probability of observing a measurement 58

channel exhibiting that profile. It does not predict the activity profile for each 59

individual channel actually measured. The motivation for this approach derives from 60

the idea that the computational function of a region does not depend on specific 61

neurons having specific response properties, but on the fact that certain features can be 62

read out from the population by downstream neurons. The probability distribution over 63

activity profiles determines which features can be linearly read out from the code and 64

the signal-to-noise ratio of the readout. By basing further analyses on the probability 65

distribution of the activity profiles, we are disregarding three aspects of the code: (1) 66

which neuron fulfills which function, (2) where neurons are located within a cortical 67

area, and (3) the degree to which the information about a given represented feature is 68

concentrated in a few neurons (as in single-cell selectivity for a represented feature) or 69

spread out over the population. Ignoring these aspects may be viewed as an advantage 70

or a disadvantage, depending on the level of description that a researcher is interested 71

in. We argue that treating activity profiles as random vectors is a simplification that is 72

useful for drawing computational insights from population activity measurements. 73

In this paper, we show that the multivariate second moment of the activity profiles 74

fully defines the representational geometry and with it all the information that can 75

linearly or nonlinearly decoded. In particular, the second moment determines the 76

signal-to-noise ratio with which any feature can be linearly decoded. We discuss three 77

established methods for adjudicating between representational models: encoding 78

analysis, pattern-component modeling (PCM) and representational similarity analysis 79

(RSA, see Table 1). We show that these three techniques all exclusively rely on 80

information contained in the second moment. This core commonality enables us to 81

consider these methods in the same formal framework. 82

In encoding analysis [14, 15], representational models are defined in terms of the 83

underlying features (Fig. 2A). Each activity profile can be characterized by a linear 84

combination of such features. Examples include Gabor filters [16] (for a low-level visual 85

representation), abstract semantic dimensions [17] (for a cognitive representation), and 86

force, direction or hand position [18–20] (for a movement representation). The 87

importance of each feature in each channel is measured by a feature weight. Feature 88

weights are considered first-level parameters in our framework, as they describe the 89
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Fig 1. Two complementary perspectives on population activity. (A) The
multivariate activity data can be viewed as a set of activity profiles (columns) or as a set
of activity patterns (rows). An activity profile is a vector of responses of a single channel
across experimental conditions. An activity pattern is a vector of responses across all
channels for a single condition. Activity data can be visualized by plotting activity
profiles as points in a space defined by the experimental conditions (B,D), or by plotting
the activity patterns as points in a space defined by the measurement channels (C,E).
(B) If the activities are uncorrelated between conditions, then (C) the corresponding
activity patterns of all three conditions are equidistant to each other, and can be equally
well distinguished. (D) If the activities are positively correlated for two conditions that
elicit similar regional-mean activation (conditions 2 and 3 here), then (E) the activity
patterns for these conditions are closer to each other and can be less well distinguished.

individual activity profiles, as opposed to second-level parameters that describe the 90

distribution of the activity profiles (Table 1). The large number of parameters (number 91

of features in the model times number of channels in the measurements) engenders a 92

danger of overfitting. Encoding models are therefore commonly evaluated using 93

cross-validation: The feature weights are estimated on a training set, and the model is 94

evaluated in terms of its performance at predicting left-out data [14]. The test data may 95

consist in a sample of experimental conditions not used in training, so as to test the 96
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Table 1. Comparison of encoding analysis with regularization, pattern component modelling (PCM), and representational
dissimilarity analysis (RSA).

Encoding analysis PCM RSA
Model definition Model-feature matrix M, regular-

ization / prior
Predicted second-moments ma-
trix (G)

Representational dissimilarity
matrix (RDM)

First-level parame-
ters (characterizing
individual activity
profiles)

One weight per feature and mea-
surement channel

None; integrated out in the likeli-
hood

None; integrated out when calcu-
lating dissimilarities

Second-level param-
eters (characteriz-
ing the distribution
of activity profiles)

Regularization / Ridge coefficient
(determined by noise / signal ra-
tio)

Scale parameter s, Noise variance Scaling between predicted and ob-
served distances (s)

Prediction target Responses to test conditions Distribution of measurement
channels in activity-profile space

Dissimilarities among activity
patterns

Training data re-
quired

always not for fixed models, only if ad-
ditional second-level parameters
are to be fitted

not for fixed models, only if ad-
ditional second-level parameters
are to be fitted

Explicit likeli-
hood for fitting
additional model
parameters

No – need to do nested within
crossvalidation

Yes Yes

Fitting algo-
rithms for model
parameters

- EM
Gradient descent
Newton-Raphson

Linear and non-negative regres-
sion
IRLS
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Fig 2. Three approaches to testing representational models.
(A) In encoding analysis, the distribution of activity profiles is described by the underlying
features (red vectors). The direction of a feature vector determines the associated activity
profile, and the length the strength of the feature encoding in the representation. (B)
PCM models the distribution of the activity profiles as a multivariate Gaussian. This
model is parametrized by the second moment of the activity profiles, which determines
at what signal-to-noise ratio any feature is linearly decodable from the population. (C)
RSA uses the representational distances (or, more generally, dissimilarities) between
activity patterns as a summary statistic to describe decodability and hence the second
moment of the underlying distribution.

model’s generalization performance [15,16]. While many studies use simple linear 97

regression to estimate the weights [15,21], it is increasingly common to use a 98

regularization penalty (for example the L2 norm of the vector of weights) [16,17]. We 99
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will show that regularization is not merely a technical trick used in fitting a given model. 100

Instead, the regularization (and its implicit distributional assumptions) are an essential 101

part of the representational hypothesis that is tested. Without it, encoding models do 102

not specify a probability distribution with a finite second moment and thus do not 103

define the linear decodability of different features. 104

Pattern component modeling [22] is based on an explicit generative model of the 105

process that produced the data and can be considered a Bayesian approach. The true 106

activity profiles are assumed to have a multivariate Gaussian distribution in the space 107

spanned by the experimental conditions (Fig. 2B). This formulation enables us to 108

evaluate the marginal likelihood of the observed activity profiles under the probability 109

distribution specified by the model. Thus, we do not fit any first-level parameters 110

(feature weights) and hence reduce the risk of overfitting. This enables us to compare 111

models with different numbers of features without having to correct for model 112

complexity. If the assumptions of the generative model hold, PCM implements the 113

likelihood-ratio test between models [23], which by the Neyman-Pearson lemma [24], is 114

the most powerful test of its size. In theory, therefore, PCM should yield more accurate 115

inferences than any of its competitors, that is it should be able to more sensitively 116

adjudicate among competing models. 117

Finally, representational similarity analysis (RSA [9,25,26]) approaches the problem 118

from a complementary perspective. Rather than considering the activity profiles of the 119

measurement channels as points in the space spanned by the conditions (Fig. 1B,D), it 120

considers the activity patterns associated with the experimental conditions as points in 121

the space spanned by the measurement channels (Fig. 1C,E). RSA then uses the 122

representational distances (Fig. 2C) between the conditions as a summary statistic. We 123

will see that these distances again exclusively depend on the second moment of the 124

distribution of activity profiles. Having obtained a matrix of dissimilarities between 125

activity patterns (the representational dissimilarity matrix, RDM), RSA then tests 126

models by comparing the observed distances to the distances predicted by each 127

representational model. This can be done by calculating rank-based correlations [27] or 128

Pearson correlations [28]. Here we show that for near-optimal inferences it is important 129

to take the co-dependence structure of the distance estimates into account, for example 130

by using a multivariate normal approximation to the joint distribution of the 131

cross-validated Mahalanobis distances [29,30]. 132

In the remainder of the paper, we first introduce the second moment of the activity 133

profiles and explain why it is the sufficient statistic of the representational geometry 134

and thus of linear and nonlinear decodability. We then define the three methods in 135

detail, and show how they related to the second moment. Finally, using simulated data 136

and models taken from our fMRI work, we assess the statistical efficiency, i.e. how well 137

these methods adjudicate between two or more competing representational models given 138

limited data. We also compare the methods in terms of their computational efficiency. 139

Materials and Methods 140

Basic definitions 141

All symbols used in the following derivations are summarized in Table 2. First, we 142

define U to be the matrix of noiseless activity profiles with K (number of experimental 143

conditions) rows and P (number of measurement channels) columns. Each row of this 144

matrix is an activity pattern, the response of the whole population to a single condition. 145

Each column of this matrix is an activity profile (Fig. 1A). 146

Because we are interested in the distribution of activity profiles, but not in the 147

activity profiles per se, we consider the columns of U to be a random variable. This is 148
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Table 2. Notation used. For non-scalars, the second column indicates the vector / matrix size.

K Number of conditions
M Number of independent partitions (imaging runs)
P Number of measurement channels (voxels, electrodes, neurons)
N Overall number of measurements (Nm ×M)
Q Number of features in model
U K × P Matrix of true activation patterns
ui,. 1× P Activation pattern for condition i; ith row of U
u.,j K × 1 Activation profile for measurement channel j; jth column of U

Û(m) K × P Matrix of estimated activity patterns, based on data from partition m

Ũ(∼m) K × P Model prediction for activity patterns, based on data independent of m
M K ×Q Matrix of model features for all condition
W Q× P Matrix of voxel weights for each feature
Y N × P Matrix of brain measurements, concatenated activity estimates or time series data
Z N ×K Design matrix, indicating how measurements relate to activity patterns
X N ×R Design matrix containing n regressors of no-interest
G K ×K Second moment of U
di,k Distance between condition i and k
J Number of distances, normally K(K − 1)/2
D K ×K Representational dissimilarity matrix of all pairwise distances
d J × 1 Vector of all pairwise distances

d̃ J × 1 Vector of predicted distances
C J ×K Contrast matrix, defining the J pairwise differences between conditions
ΣP P × P Variance-covariance matrix between the P voxels

ΣK K ×K Variance-covariance matrix of the columns of Û(m)

V N ×N Variance-covariance matrix of Y
S J × J Variance-covariance matrix of all pair-wise distances
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an essential step underlying our common framework, which is justified by the fact that, 149

for the purpose of reading out information, the different measurement channels are 150

exchangeable (see introduction). We assume that the activity profiles are repeatedly 151

measured, with the data consisting of M independent partitions, each containing at 152

least one activity measurement for each condition and measurement channel. In the 153

context of fMRI, a partition will consist of a separate phase of data acquisition, e.g. a 154

scanner run. The activity estimates Û(m) of partition m are the true patterns U plus 155

noise E(m). The noise captures both neural trial-by-trial variability of the activity 156

pattern in a single condition, as well as measurement noise. 157

Û(m)= U+E(m) (1)

For the purposes of this paper, we assume that the noise is Gaussian, and 158

independent and identically distributed (i.i.d.) across conditions and partitions 159

(homoscedasticity). Possible dependence within each partition, however, can be easily 160

accounted for [29,31]. 161

Dependence between measurement channels 162

The discussion below further assumes that the noise is also i.i.d. across different 163

measurement channels (isotropicity). However, noise in fMRI, MEG, and even invasive 164

electrophysiology exhibits strong correlations between neighboring locations in the brain. 165

To account for these dependencies, we employ multivariate noise normalization (i.e. 166

spatial prewhitening), which has been shown to increase the reliability of inference [32]. 167

Across all measurement channels, we estimate the P×P variance-covariance matrix 168

across trials, ΣP and then regularize the estimate by shrinking it towards a diagonal 169

matrix [33]. In the context of fMRI, we can use the residual time series from the fitting 170

of the time-series model to estimate noise covariance [32,34]. We then post-multiply our 171

activity estimates by Σ̂
−1/2
P , rendering the model errors in the channels approximately 172

uncorrelated. If multivariate noise normalization is not performed or is incomplete, 173

inference will be suboptimal in all three methods (for details see [29]). 174

Second moment matrix and linear decodeability 175

In this section, we show that the second moment of the activity profiles fully 176

characterizes the linear decodability of any feature in the space spanned by the 177

experimental conditions. A feature is any property of the experimental conditions, 178

represented as a vector with one entry per condition. The fact that the second moment 179

determines what can be decoded provides a motivation, from the perspective of brain 180

computation, for using the second moment matrix as a summary statistic. 181

The second moment defines the decodable information, because it determines the 182

representational geometry, i.e. the representational distance matrix. Higher statistical 183

moments may be useful to define the distribution of activity profiles in greater detail (a 184

point we will return to in the Discussion). For example, they capture to what extent 185

particular information is concentrated in single neurons or small sets of neurons – a 186

property that is important to computation if readout neurons cannot integrate 187

information from the entire population that constitutes the code. However, assuming 188

that readout neurons have access to the entire code and can weight activities them in 189

any arbitrary way, the second moment is a sufficient statistic of the decodable 190

information. 191

The nth moment of a scalar random variable u is E (un), where E() denotes the 192

expected value. Here we use a multivariate extension of the concept, with the second 193
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moment of the random vector u defined as the matrix E
(
uuT

)
, the expected outer 194

product of the activity profiles, where the expectation is across the measurement 195

channels. The second-moment matrix of the activity profiles is given by 196

G ≡
P∑
j=1

u.,ju
T
.,j/P = UUT /P. (2)

Thus, each cell of this matrix contains the scaled inner product of two activity 197

patterns. 198

Before calculating G, some investigators subtract the mean activity across 199

measurement channels for each condition from the data. In this case, Eq. 2 becomes the 200

variance-covariance matrix of the activity profiles –the second moment around the mean 201

activity profile. Here we do not remove the mean, but use the second moment around 202

zero. From the perspective of a neuron that reads out the activity pattern of an area, 203

any difference between activity patterns across conditions can be used to encode 204

information. Some features (for example, stimulus intensity) may be encoded in the 205

mean activity over all measurement channels. Other properties (for example, stimulus 206

identity) may be encoded in relative activity differences, with some measurement 207

channels responding more to one condition, and others to a different condition. The 208

second moment around zero captures both of these potentially meaningful differences. 209

Any feature of the conditions that we might want to decode can be defined by a 210

K × 1 vector f with one entry per condition, which describes how the feature varies 211

across conditions. To obtain a linear read-out estimate f̂i for the feature fi for a given 212

condition i, we weight each channel’s observed activity using the P × 1 read-out vector 213

v: 214

f̂i = ûi,.v. (3)

We would like the estimate f̂ to have very different values for two trials that differ 215

on the feature value, while showing small differences for trials that have the same 216

feature value. We are therefore looking for the readout weight vector v that maximizes 217

the ratio between feature variance and error variance, and thus the signal-to-noise ratio 218

(S), of the readout: 219

S =
vTUT ffTUv

vTET ffTEv
(4)

The solution to this equation is commonly known as Fisher’s linear discriminant [35], 220

which, under the assumption of homoscedastic Gaussian noise, is the best achievable 221

linear decoder. If the noise is isotropic (or the data is adequately pre-whitened), then 222

ET ffTE = Ib, where b is a constant. The denominator then depends only on the norm 223

of the read-out vector v, not on its direction, and can be ignored when v is constrained 224

to have a norm of 1. The best readout vector v is then given by the first eigenvector of 225

the matrix UT ffTU, and the quality of the best readout is determined by the 226

corresponding eigenvalue. 227

Non-zero eigenvalues (eig) of a square matrix are invariant to cyclic permutations of 228

the product order: 229

eig
(
UT ffTU

)
= eig

(
fTUU

T
f
)
= P eig

(
fTGf

)
(5)
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Therefore, the quality of the best linear decoder for any feature (as defined by f) is 230

fully characterized by the second moment matrix G of the pre-whitened activity 231

patterns. 232

Representational analysis in the context of fMRI 233

The methods in this paper were first developed in the context of fMRI data analysis, 234

and our examples will come from this domain. A simple way to apply the analyses to 235

fMRI data is to use as activity estimates (Û(m)) the regression coefficients, or 236

“beta”-weights, from a first-level time series analysis [36,37]. The time-series model 237

accounts for the hemodynamic lag and the temporal autocorrelation of the noise. The 238

activity estimates usually express the difference in activity during a condition relative to 239

rest. Activity estimates commonly co-vary together across fMRI imaging runs, because 240

all activity estimates within a partition are measured relative to the same resting 241

baseline. This positive correlation can be reduced by subtracting, within each partition, 242

the mean activity pattern (across conditions) from each activity pattern. This makes 243

the mean of each measurement channel (across condition) zero and thus centers the 244

ensemble of points in activity-pattern space that is centered on the origin. 245

Rather than using the concatenated activity estimates from different partitions, 246

encoding analysis and PCM can also be applied directly to time series data. As a 247

universal notation that encompasses both situations, we can use a standard linear mixed 248

model [38]: 249

Y= ZU + XB + ε, (6)

where Y is an N × P matrix of all activity measurements, Z the N ×K design 250

matrix, which relates the activity measurements to the K experimental conditions, and 251

X is a second design matrix for nuisance variables. U is the K×P matrix of activity 252

patterns (the random effects), B are the regression coefficients for these nuisance 253

variables (the fixed effects), and E is the matrix of measurement errors. If the data Y 254

are the concatenated activity estimates, the nuisance variables typically only model the 255

mean pattern for each run. If Y consists of time-series data, the nuisance variables 256

typically capture additional effects such as time-series drifts and residual 257

head-motion-related artifacts. 258

Representational analysis in the context of neurophysiological 259

recordings 260

All three methods can also be applied to recordings of single cell activity or 261

neurophysiological potentials [9, 25]. The activity estimates can then be firing rates 262

estimated over a temporal window for each trial, or the power in different frequency 263

bands over time. Because the trial-by-trial variability of firing rates will usually increase 264

with the mean firing rate, it is advisable to use the square root of firing rates to make 265

the data conform better to the assumption that the variance of the noise is independent 266

of the signal [39]. 267

Here we focus on models that treat the activity patterns U as static snapshots. To 268

exploit the temporal detail provided by electrophysiological recordings, the analyses can 269

be either performed using a sliding window over the time course of the trial [40–42], or 270

by “stacking” the time series and conditions, resulting in a activity matrix with TK 271

rows [43]. 272
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Encoding analysis 273

An encoding model characterizes the structure of the representation in terms of a set of 274

features [14–17]. We will show in the following that encoding models are 275

representational models as definied by the second moment of the activity profiles. For 276

this to be the case, however, the use of regularized regression is a crticial factor. We will 277

therefore first present the encoding apporach in general, and then show why 278

regularisation is important to test for distributions with a definied second moment. 279

In general. the value of each feature for each experimental condition is coded in the 280

model matrix M (K conditions by Q features). The feature weight matrix W (Q 281

features by P channels) then determines how the different model features contribute to 282

the activity profiles of different measurement channels to produce the predicted activity 283

patterns U: 284

U = MW. (7)

Geometrically, we can think of the features as the basis vectors of the subspace, in 285

which the activity profiles reside (Fig. 2A). 286

Encoding analysis without regularization 287

To adjudicate among encoding models of different numbers of features – and hence 288

different numbers of free first-level parameters - most researchers use independent test 289

sets [15–17]. A training data set is used to estimate the feature weights for each channel, 290

and the resulting prediction is then evaluated on a held-out test data set. This can be 291

implemented in a statistically efficient manner by using cross-validation, which is 292

usually performed by holding out a single partition (e.g. fMRI imaging run) as a test 293

set, and using the remaining M -1 partitions as the training set. Each partition is held 294

out as the test set once and prediction performance is averaged across the M folds of 295

cross-validation. Encoding models can also make predictions about conditions that are 296

not in the training set (Discussion). However, we focus our simulations on cases, in 297

which training and test sets include the same experimental conditions. 298

The weights can be chosen to minimize the sum of squared errors on the training 299

data, i.e. using linear regression: 300

Ŵ =
(
MTM

)−1
MT Û(∼m) , (8)

where we define Û(∼m) to be the average activity estimates from all partitions 301

except m. The prediction for the left-out test data of run m is 302

Ũ(∼m) = MŴ. (9)

The accuracy of the prediction can be assessed by relating the residual 303

sums-of-squares (SSR) of the prediction to the total sums-of-squares (SST) of the 304

observed activities, summed over all partitions, conditions, and voxels 305

R2
cv = 1− SSR

SST
= 1−

∑
m,i,j

[
Û

(m)
i,j −Ũ

(∼m)
i,j

]2
∑
m,i,j Û

(m)2
i,j

. (10)

Alternatively, we can evaluate the prediction by correlating the predicted and 306

observed activity patterns across all conditions and channels. Assuming that the mean 307
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of each channel across all conditions is zero (given mean pattern subtraction), the 308

correlation is given by 309

r =

∑
m,i,j Û

(m)
i,j Ũ

(∼m)
i,j√∑

m,i,j Û
(m)2
i,j

∑
m,i,j Ũ

(∼m)2
i,j

(11)

The correlation introduces an arbitrary scaling factor between prediction and 310

observations and, in contrast to Eq. 10, allows the model to over- or under-predict the 311

data by a scalar factor without penalty. Encoding analysis can also be applied directly 312

to the time-series data without an intervening model (Eq. 6). 313

To understand how encoding analysis adjudicates between models, consider the 314

graphical representation of the estimation process (Fig. 3). In this example, the training 315

data the activity profile of a single measurement channel, which can be visualized as a 316

point in activity-profile space (black cross). Regression analysis can be understood as 317

the orthogonal projection of the measured activity profile onto the linear subspace 318

spanned by the features of the model. The two models depicted in Fig. 3A and Fig. 3B 319

have different features (blue arrows) that define different subspaces (planes with blue 320

outlines). Therefore, the training data is projected onto two different planes and the 321

prediction for the test data differs between the two models. The model with a subspace 322

that better describes the cloud of activation profiles will make better predictions overall 323

across the measurement channels, show lower cross-validation error, and will hence be 324

more likely selected as the winning model. 325

Importantly, encoding analysis without regularization compares the subspaces of the 326

competing models, but not their probability distributions. For example, the model 327

depicted in Fig. 3C predicts a different distribution than the one in Fig. 3A. The 328

features of these two models, however, span the same subspace. Therefore, without 329

regularization, the predictions of these two models are identical (black dots) and the 330

models indistinguishable. 331

Encoding analysis with regularization 332

When using regularized regression, encoding analysis evaluates models according to their 333

predicted distribution of activity profiles. From a Bayesian perspective, regularization 334

can be motivated by assuming a prior probability distribution on the weight vectors w.,i 335

the columns of W. Specifically, L2-norm (Tikhonov) regularization is equivalent to 336

assuming a multivariate Gaussian prior with zero mean and variance-covariance matrix 337

Ω. Under this assumption, the predicted second moment of the activity profiles is 338

G = MWWTMT /P = MΩMT . (12)

Thus, the model features together with the prior distributional assumption on the 339

feature weights define a probability distribution over activity profiles. For example, a 340

representational model of motor cortical activity could be defined by assuming that the 341

features are individual units with cosine-tuning for different movement directions [18], 342

and that (as a prior) the preferred directions of the units are uniformly distributed. 343

In practice, we allow a scalar factor, s, between the predicted and measured second 344

moment. This accounts for the fact that different subjects or regions will have different 345

signal levels and that hence the distribution of activity profiles have different widths. 346

Under the assumption that the feature weights come from a multivariate Gaussian 347

distribution with variance Ωs, the best linear unbiased predictor (BLUP, [44]), i.e. the 348

predictor that minimizes the squared error on the held-out data is: 349
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Fig 3. Adjudicating between encoding models with and without
regularization.
The axes of the three-dimensional space are formed by the response to three experimental
conditions. The activity profile of each unit defines a point in this space. Models
are defined by their features (blue arrows) and (when using regularization) a prior
distribution of the weights for these features. The features and the prior, together, define
a distribution of activity profiles (ellipsoids indicate an iso-probability-density contours
of the Gaussian distributions). To predict the activity profile of a single measurement
channel, the model is fitted to the training data set (cross). Simple regression finds
the shortest projection (black dot) onto the subspace defined by the features, whereas
regression with regularization (red dot) biases the prediction towards the predicted
distribution. Two models (A, B) with features that span different model subspaces
are distinguishable using regression without regularization. (C) This model spans the
same subspace as model A. Unregularized regression results in the same projection as
for model A, whereas regression with regularization leads to a different projection. (D)
A saturated model with as many features as conditions. Unregularized regression can
perfectly fit any data point (cross and black dot coincide). With regularization, the
prediction is biased towards the predicted distribution (iso-probability-density ellipsoid).

Ŵ =
(
MTM + Ω−1s−1σ2

ε

)−1
MT Û∼m (13)

where σ2
ε is the noise variance on the observations. The strength of regularization is 350

determined by the ratio of this noise variance and the variance of the signal Ωs, 351

consistent with Bayesian inference of the weights on the basis of the prior and the data. 352

After assuming a prior on the model weights, the two models depicted in Fig. 3A 353

and 3C predict different distributions of the activation profiles. When estimating the 354

weights (Eq. 13), the activity profiles are projected onto the space spanned by M, but 355

this time biased (red dot) towards the denser part of the model-predicted distribution of 356

activity profiles. As a result, the two models make different predictions. An accurate 357

prior will help the model generalize to the held-out data; an inaccurate prior will hurt 358
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generalization performance. The model with the distribution that is closest to the true 359

distribution of activity profiles will yield the best cross-validation performance (as 360

measured by R2 or r). When using regularized regression (Eq. 13), models can also 361

have as many features as conditions (Fig. 3D), or even more features than conditions. 362

When using unregularized regression, such saturated models are indistinguishable from 363

each other. They become distinct only after adding weight-distributional priors. 364

Because regularization is equivalent to imposing a prior on the feature weights, it is 365

not just a technical trick for estimation. Instead the prior is an integral part of the 366

hypothesis being evaluated as it co-determines (together with the features) the 367

probability distribution over activity profiles that the model predicts. Therefore, we will 368

refer to encoding models evaluated using regularized regression analysis in the following 369

as “encoding models with a prior”. 370

One important consequence of Eq. 12 is that the same representational model can 371

be defined using different feature sets. Because a representational model is defined by 372

its second moment, two feature sets M1 and M2, combined with corresponding second 373

moment matrices of the weights, Ω1 and Ω2, define the same representational model, if 374

G = M1Ω1M
T
1 = M2Ω2M

T
2 . (14)

Thus, an important caveat when using encoding models is that one does not 375

compare different feature sets per se – but rather different distributions (when using 376

regularization) or different subspaces of activity profiles (when not using regularization). 377

The winning model in either case can be equivalently re-expressed using a different 378

feature set. Interpretation, therefore, must consider the model-predicted distributions or 379

subspaces of activity profiles, not the particular feature basis set chosen (as the latter is 380

not unique for any given representational model). 381

Technically, this also means that regression with a Gaussian prior can be 382

implemented using ridge regression [45]. The equivalence is established by scaling and 383

rotating the model matrix M in such a way that Ω becomes the identity matrix. Any 384

representational model can be brought into this diagonal form by setting the columns of 385

M to the eigenvectors of G, each one multiplied by the square root of the corresponding 386

eigenvalue: 387

M =
[
v1

√
λ1 . . . v2

√
λ2

]
G = MMT . (15)

The strength of the regularization is determined by a scalar ridge coefficient defined 388

by s−1σ2
ε . For an encoding model with regularization, the ridge coefficient still needs to 389

be determined for each cross-validation fold. This can be done again by nested 390

cross-validation [16], generalized cross-validation [46], or restricted maximum-likelihood 391

estimation (Eq. 18). To save time, it is also possible to use a constant regularization 392

coefficient. For our simulations, we estimated the optimal s−1σ2
ε by maximizing Eq. 18 393

for the training set (across all voxels). Generalized cross-validation [46] yielded very 394

similar results. 395

Pattern component modeling 396

An alternative to cross-validation is to evaluate the likelihood of the measured activity 397

profiles under the representational model. This approach is taken in pattern-component 398

modeling [22]. We start with a generative model of the activity profiles (Eq. 6). We 399

consider the activity profiles (columns of U) to come from a multivariate Gaussian 400

distribution with zero mean and second-moment matrix G. To account for other 401
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nuisance effects (mean activity for each partition, low-frequency drift, etc), the model 402

also has some fixed-effects regressors (B). We are not interested in fitting U per se, but 403

simply want to evaluate the likelihood of the data under different models, marginalized 404

over all possible values of U. The marginal distribution for each channel (columns of 405

matrix Y) takes the form of a multivariate normal: 406

y.,j ∼ N (Xb.,j ,V (θ))

V (θ)= ZGsZT+Iσ2
ε

θ =
{
s, σ2

ε

}
. (16)

The predicted covariance matrix of the activity measurements for each person is the 407

function of the model (as encoded in the second-moment matrix G) and two 408

second-level parameters (θ): one that determines the strength of the signal (s) and one 409

that determines the variance of the noise (σ2
ε ). In determining the likelihood, we remove 410

the fixed effects using the residual forming matrix 411

R = I−X
(
XTV−1X

)−1
XTV−1 (17)

We need to then account for the removal of these fixed effects by evaluating the 412

restricted likelihood l(Y|G, θ) [47]: 413

l (Y|G, θ) = −NP
2

log (2π)− P

2
log |V|

−1

2
trace

(
YTRTV−1RY

)
− P

2
log
∣∣XTV−1X

∣∣ . (18)

To evaluate the fit of a model, the scaling and noise parameters need to be 414

determined. For fMRI data, these two parameters can vary widely between different 415

brain regions and individuals, and are not meaningful in themselves. We therefore 416

replace θ with point estimates that maximize Eq. 18 – i.e., the approach uses Empirical 417

Bayes, or Type-II maximum likelihood for model comparison [45]. Because every model 418

has the same two free second-level parameters, even models that are based on different 419

numbers of features can be compared directly. An efficient implementation of this 420

algorithm can be found in the open-source Matlab package for PCM [48]. 421

Representational similarity analysis 422

Relationship between representational dissimilarities and second-moment 423

matrices 424

In RSA, representational models are conceptualized in terms of the dissimilarities 425

between the activity patterns elicited across channels by the experimental conditions 426

(Fig. 3C). One important dissimilarity measure is the Euclidean distance, which is 427

closely related to the second-moment matrix G. The squared Euclidean distance 428

between the true activity patterns for condition i and k (normalized by the number of 429

measurement channels) is 430

di,k = (ui,. − uk,.) (ui,. − uk,.)
T
/P = Gi,i − 2Gi,k + Gk,k . (19)

The Euclidean distance matrix is therefore a function the second moment of the 431

activity profiles. The generalization of the Euclidean distances to non-isotropic noise is 432
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the Mahalanobis distance (see below). Correlation distances, another class of popular 433

dissimilarity measures, can also be computed from the second-moment matrix. The 434

cosine angle distance is defined as 435

di,k = 1− uku
T
i√

uiuTi ukuTk

= 1− Gk,i√
Gi,iGk,k

. (20)

Here we focus on Euclidean and Mahalanobis distances, as they are independent of 436

the resting baseline and generally easier to interpret [32]. 437

In the following, we either represent these distances as a K×K representational 438

dissimilarity matrix (RDM) D, or a K(K-1)/2 vector d that contains all unique 439

pairwise dissimilarities (the lower triangular entries of D). The vector of all pairwise 440

dissimilarities can be obtained from G by defining a contrast matrix C, with each row 441

encoding one of the pairwise contrasts, with a 1 and a −1 for the contrasted conditions 442

and zeros elsewhere: 443

d = diag
(
CGCT

)
(21)

The distances contain the same information as the second moment matrix – however, 444

we are losing the distance of each pattern to the baseline, which was encoded on the 445

diagonal of G. Thus, in order to go from a distance matrix to a second-moment matrix, 446

we need to re-set the origin of the coordinate system. An obvious choice is to define the 447

mean activity pattern across all conditions to be the baseline. This is equivalent making 448

the sum of all rows and columns of G zero, which can be achieved by defining the 449

centering matrix H = IK − 1K/K, with 1K being a square matrix of ones. Under these 450

conditions, G can be computed from D as 451

G = −1

2
HDH . (22)

This yields the G that would be obtained if the patterns in U were centered about 452

the origin, as can be achieved by subtracting the mean pattern from each pattern. 453

Multivariate noise normalization and cross-validation: the crossnobis 454

estimator 455

A particularly useful dissimilarity measure is the cross-validated, squared Mahalanobis 456

distance estimator (or crossnobis estimator for short). This estimator has superior 457

characteristics in terms of reliability and interpretability as compared to other 458

dissimilarity measures [32]. 459

The crossnobis estimator uses multivariate noise normalization (see section Spatial 460

dependence) to make the errors of different measurement channels approximately 461

independent of each other. Euclidean distances (Eq. 19) computed on these 462

pre-whitened activity estimates are equivalent to the Mahalanobis distance defined by 463

the error-covariance matrix between channels (for details see [29,32]). 464

The crossnobis estimator is cross-validated to yield an unbiased estimate of the 465

Mahalanobis distance (assuming that the error covariance is correctly estimated). 466

Conventional distances, which are non-negative by definition, are positively biased when 467

estimated on noisy data: When one replaces the true activity patterns in Eq. 19 with 468

their noisy estimates, the expected value of the Euclidean distance will be always higher 469

than the true distances, because the noise terms are squared and summed. We can 470
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obtain an unbiased estimate of the true distance by computing the difference vectors 471

between the two activity patterns from two independent data partitions and taking the 472

inner product of the difference vectors. Thus, if we have M independent partitions, the 473

crossnobis estimator can be computed using a leave-one-out cross-validation scheme: 474

di,k = 1/M
M∑
m=1

(
û
(m)
i,. − û

(m)
k,.

)(
û
(∼m)
i,. − û

(∼m)
k,.

)T
/P (23)

where û
(m)
i,. is the prewhitened pattern for condition i measured on partition m, and 475

û
(∼m)
i,. is same activity pattern determined from the data of all other partitions. The 476

expected value of this estimator matches the true Mahalanobis distance [29, 32], except 477

for a multiplicative bias caused by inaccuracies of the error covariance. In particular, if 478

the patterns of two conditions only differ by noise, then the expected value of this 479

measure will be zero. We will see below that the interpretable zero point can be 480

advantageous for adjudicating among representational models. 481

Model comparison 482

In RSA, different representational models are evaluated by comparing the predicted to 483

the observed dissimilarities. The overall magnitude of the Mahalanobis distances can 484

vary considerably between subjects. The inter-subject variation is caused by differences 485

in physiological responsiveness, physiological noise, and head movements – in short, by 486

all the factors contributing to signal strength or the noise distribution, by which the 487

Mahalanobis distance is scaled. Therefore, it is advisable to introduce a subject-specific 488

scaling factor between observed and predicted distances, relying on the ratios between 489

distances to distinguish models. 490

The unknown scaling of the observed dissimilarities is usually accounted for by 491

calculating the correlation between the predicted and observed representational 492

dissimilarity vectors (not to be confused with the use of correlation distance as an 493

activity-pattern dissimilarity measure, Eq. 20). 494

The most cautious approach is to assume that we can only predict the rank ordering 495

of distances [25]. It is then only appropriate to use Spearman correlation, or (in the case 496

any of the models predict equal ranks for different pairs of conditions) Kendall’s τa [27]. 497

Evaluating models based on their ordinal dissimilarity predictions is conservative in 498

terms of assumptions. However, the lesser reliance on assumptions comes at the cost of 499

reduced sensitivity to certain differences between models. For more quantitative models, 500

it may be appropriate to assume that distance predictions can be made on an interval 501

scale. The assumption of a linear relationship between the predicted and measured 502

distances motivates the use of Pearson correlation [28]. It may be justifiable in certain 503

cases and can increase our sensitivity to differences between representational models. 504

Both rank-based and linear correlation coefficients not only allow an arbitrary 505

scaling factor between observed and predicted distances, but also an arbitrary additive 506

constant due the intercept of regression. However, the crossnobis estimator has an 507

interpretable zero point: If a model predicts a zero distance for two conditions, then a 508

brain region explained by the model should not be sensitive to the difference between 509

the two conditions. This is a very meaningful prediction, which we can exploit to 510

discriminate among models. Pearson and rank-based correlation coefficients discard this 511

information. This suggest the use of a normalized inner product, a quantity analogous 512

to a correlation coefficient, but in which the predictions and the data are not centered 513

about their mean: 514

rn = dT d̃/
√

d̃T d̃dTd (24)
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This amounts to a linear regression model between the predicted and observed 515

distances, where the regression line is constrained to pass through the origin [49]: 516

d = d̃s. (25)

Here s is a scaling factor that is estimated from the data by minimizing the 517

sum-of-squared errors between predicted and observed values. 518

Eq. 24 would provide optimal inference, if all distances estimates were independent 519

and of equal variance. However, for the crossnobis estimator (and for most other 520

dissimilarity measures), the assumptions of independence and equal variance are both 521

violated. Estimated squared distances with larger true values are estimated with higher 522

variability. Furthermore, the estimated distance between conditions A and B is not 523

independent from the estimated distances between A and C [29]. To account for these 524

factors, we need to know the predicted probability distribution of representational 525

dissimilarity matrix estimates given a model. While the exact distribution of the vector 526

of K(K-1)/2 crossnobis estimates is difficult to obtain, we have shown that their 527

distribution is well approximated by a multivariate normal distribution [29]: 528

d ∼ N
(
d̃s,S

(
d̃s
))

. (26)

The mean of the distribution is the true distance matrix, scaled by a parameter 529

relating to the signal strength in this subject (s). In [29], we showed that that the 530

variance-covariance matrix of d is given by 531

S (G, s,ΣK ,ΣP ) =

4
[
sCGCT

]
◦
[
CΣKCT

]
M

+2

[
CΣKCT

]
◦
[
CΣKCT

]
M (M − 1)

 trace (ΣPΣP )

P 2
. (27)

Where G is the predicted second-moment matrix of the patterns, C the contrast 532

matrix that transforms the second-moment matrix into distances, and ◦ refers to the 533

element-by-element multiplication of two matrices. ΣK is the condition-by-condition 534

covariance matrix of the estimates of the activation profiles across partitions, which can 535

be estimated from the variability of the activity patterns around their mean (Ū): 536

Σ̂K=
1

M − 1

∑
m

(
Û(m) − Ū

)(
Û(m) − Ū

)T
/P (28)

ΣP is the voxel-by-voxel correlation matrix of the activation estimates. If 537

multivariate noise-normalization [32] was completely successful, then this would be the 538

identity matrix. However, given the shrinkage of the noise-covariance matrix used for 539

noise-normalization, some residual correlations will remain; for accurate predictions of 540

the variance, these must be estimated and accounted for [29]. 541

Based on this approximation we can now express the log-likelihood of the measured 542

distances d under the model predictions d̃. 543

l
(
d|d̃s

)
= −D

2
log (2π)− 1

2
log
∣∣∣S(d̃s

)∣∣∣− 1

2

(
d− d̃s

)T
S
(
d̃s
)−1 (

d− d̃s
)

(29)

To evaluate the likelihood, we first need to estimate the scaling coefficient between 544

predicted and observed distances by choosing s to maximize the likelihood. This can be 545
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done efficiently using iteratively-reweighted least squares (IRLS): Given a starting 546

estimate of S, we can obtain the generalized least squares estimate of s, 547

s =
(
d̃TS−1d̃

)−1

d̃TS−1d, (30)

re-estimate S according to Eq. 27, and iterate until convergence. 548

Simulated example data sets 549

We use simulated data sets here to evaluate and compare the three analysis techniques 550

in a situation where the ground-truth is known. The three simulated example data sets 551

are inspired by real fMRI studies. The first two examples are motivated by a paper 552

investigating the representational structure of finger movements in primary motor and 553

sensory cortex [28]. The structure of the empirically measured distances between 554

movements of the five fingers was highly reliable across different individuals. The main 555

question was whether this invariant structure is best explained by the correlations of 556

finger movements in every-day life – i.e. the natural statistics of movement [50], or by 557

the patterns of muscle activity required for these movements. Rather than hypothesizing 558

that certain features form the basis set generating the activity profiles distribution, we 559

could directly predict the second-moment matrices, and hence the RDMs, from the 560

correlations between naturally occurring movements, or the correlations of muscle 561

activity patterns. The predicted RDM for individuated movements of the five fingers 562

(Exp. 1) is shown in Fig. 4A, B. The second example comes from experiment 3 in the 563

same paper, this time looking at 31 different finger movements, which span the whole 564

space of possible “piano-chord” combinations (Fig. 4C, D). 565

The third example uses an experiment investigating the response of the human 566

inferior temporal cortex to 96 images, including animate and inanimate objects [9]. The 567

model predictions are derived from a convolutional deep neural network model – with 568

each of the 7 layers providing a separate representational model. The bitmap images 569

were presented to the deep neural network and the internal activity patterns used as 570

representational models. 571

All data sets where simulated with 8 runs, 160 voxels, and independent noise on the 572

observations. The noise variance was set to σ2 = 1. We first normalized the model 573

predictions, such that the norm of the predicted squared Euclidean distances was 1. We 574

then derived the second moment matrix (G) for each model using Eq. 22 and created 575

true activity patterns that were normally distributed with second moment 576

UUT /P = Gs. The observation for each run were then generated by adding normally 577

distributed random noise with unit variance to the data (Eq. 1). The signal-strength 578

parameter s was varied systematically starting from 0 (pure noise data). 579

We generated 3,000 data sets for each experiment, parameter setting, and model. 580

Each data set was generated by one model (ground truth) and was analyzed so as to 581

infer the data-generating model, using each of the inference methods. To evaluate how 582

well the methods adjudicated between the models, we compared the fit of the true 583

model (i.e. the model that generated that particular data set) with each alternative 584

model by counting the number of instances, in which the method decided in favor of the 585

correct model. Thus, even though there were 7 alternative models in Experiment 3, 586

chance performance for the pairwise comparisons was always 50%. The percentage of 587

correct decisions over all possible model pairs and simulation was used as a measure of 588

model-selection accuracy. 589
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Muscle model
Experiment 1

Natural statistics

Muscle model
Experiment 2

Natural statistics

1st convolution layer
Experiment 3

1st fully connected layer

Predicted distance
0 high

Fig 4. Representational dissimilarity matrices (RDMs) for the models used
in simulation.
Each entry of an RDM shows the dissimilarity between the patterns associated with two
experimental conditions. RDMs are symmetric about a diagonal of zeros. Note that
while zero is meaningfully defined (no difference between conditions), the scaling of the
distances is arbitrary. For Experiment 1, the distance between the activity patterns
for the five fingers are predicted from the structure of (A) muscle activity and (B) the
natural statists of movement. In Experiment 2 (C, D) the same models predict the
representational dissimilarities between finger movements for 31 piano-like chords. For
Experiment 3 (E, F), model predictions come from the activity of the seven layers of a
deep convolutional neural network in response to 96 visual stimuli. The 1st convolutional
layer and the 1st fully connected layer are shown as examples.

Results 590

Our simulations illustrate the three main points of this paper: (1) Encoding approaches 591

only provide a powerful test of representational models when using regularization that 592

defines a prior distribution on the feature weights. (2) For the best possible inference 593

using RSA, it is important to take the unequal variances and covariances between he 594

distance estimates into account. (3) While PCM performs optimal model selection if the 595

model assumptions are met, the other two approaches provide close approximations to 596

the theoretical maximum. We will now discuss these results in turn. 597

Encoding analysis without regularization 598

When evaluating encoding models without using regularization, one compares the 599

subspaces spanned by the respective model features. To make different models 600

distinguishable, one typically needs to reduce the dimensionality of the model matrix 601

M, for example by using only the eigenvectors with the n highest eigenvalues of the 602

predicted second-moment matrix. The decision to use a given number regressors is 603

somewhat arbitrary: For example, Leo et al. [21] used 5 “synergies” (i.e. principal 604

components of the kinematic data of 20 movements), as these explained 90% of the 605

variance of the behavioral data. 606

Here we explore systematically how the number of principal components influences 607
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model selection. For each experiment, we simulated data sets with a fixed 608

signal-to-noise ratio (Exp. 1 and Exp. 3: s = 0.3, Exp 2: s = 0.1; σ2
ε = 1), and 609

compared model selection accuracies using a number of principal components ranging 610

between one and the maximum number. We used both cross-validated performance 611

measures, R2
cv (Eq. 10) and r (the correlation between predicted and observed values; 612

Eq. 11) to perform model selection. 613
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Fig 5. Dependence of encoding model analysis on regularization and the
number of included model features.
(A-C) Percent correct model selections using either R2

cv (solid line) or correlation (dashed
line) for encoding models without a prior (blue lines) and with a prior (red line). (D-F)
Correlation between predicted and observed patterns. (G-I) Predictive R2

cv for the
encoding models with prior. All R2

cv values for models without prior are negative, and
therefore not visible.

Fig. 5A-C shows the percentage of correct model selections for Experiments 1-3. 614

Results for encoding analysis without regularization are shown in blue. The 615

dimensionality that differentiated best between competing models was 2, 3, and 5 616

features, respectively. As more features were included, the number of correct model 617

selections declined. When the number of features was the same as the number of 618

conditions minus 1 (due to the mean subtraction), i.e. the models became saturated, 619

model selection accuracy fell to chance. This is expected, as two saturated models span 620

exactly the same subspace and hence make identical predictions (Fig. 3D). 621

Using correlations as selection criterion led to more accurate decisions than using 622

R2
cv. Correlations (Fig. 5D-F, blue lines) were generally positive and peaked at a 623

number of features that was slightly higher than the optimal dimensionality for model 624

selection. R2
cv values for encoding without a prior were all negative (and are therefore 625

not visible), because the approach does not account for the noise in the data and hence 626

leads to predictions that are too extreme – i.e. the approach over-predicts the scale of 627

the data. Correlations are insensitive to this problem as they allow for arbitrary scaling 628
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between predicted and observed values. 629

Encoding approaches with regularization 630

From a Bayesian perspective, employing regularization (Eq. 13) is equivalent to adding 631

a prior to the feature weights. Note that this changes the representational hypotheses 632

tested. For example, the models for Experiment 3, based on the neural network 633

representations, now predicted not only that some weighted combination of the neural 634

network features can account for the data, but more specifically that the distribution of 635

activity profiles should match the distribution of activity profiles of the original neural 636

network simulation. In the model matrix, we scaled each principal component of G with 637

the square root of the eigenvalue (Eq. 15), such that we could employ ridge regression 638

to obtain the best linear unbiased predictor for the held-out data patterns. 639

For encoding models with a prior, model selection performance increased with 640

increasing number of features (red lines, Fig. 5A-C). Thus, dimensionality reduction of 641

the model is not necessary here. Furthermore, model selection was always more 642

powerful with than without a prior when correlation was used for model selection. This 643

reflects the fact that the prior provides additional information about the models to be 644

compared. It enables us to compare well-defined distributions of activity profiles instead 645

of just subspaces. 646

For Experiments 2 and 3, the R2
cv criterion performed substantially worse than the 647

correlation between predicted and observed activity patterns. The difference between 648

the two criteria arises from the fact that correlations allow for an arbitrary scaling 649

between predicted and observed activity patterns, whereas R2
cv penalizes deviation in 650

scale. The scaling of the prediction in turn strongly depends on the choice of the scalar 651

regularization coefficient. This fact is illustrated in Fig. 6, where we simulated data 652

from Exp. 2 with a fixed noise and signal strength, and varied the regularization 653

coefficient systematically. While R2
cv is highly sensitive to the choice of the 654

regularization coefficient, the correlation criterion is not. Because the regularization 655

coefficient is determined separately for each cross-validation fold and model, deviations 656

from the optimal ridge will decrease model selection accuracy for the cross-validated 657

R2
cv criterion, but not for the correlation criterion. 658
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regularization coefficient.

In sum, using regularization improves model selection performance, even if the 659
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encoding model has fewer features than conditions or measurements. Rather than just 660

comparing subspaces, the implicit prior on the weights means that a more specific 661

hypothesis is being tested. From this perspective, it is unsurprising that we can 662

adjudicate between these hypotheses with greater accuracy. Furthermore, the use of 663

correlation instead of the predictive R2
cv makes model selection more robust against 664

variations in the regularization coefficient. 665

Representational similarity analysis 666

When evaluating models with RSA, there is no need to restrict the model to a specific 667

number of features – the second-moment matrix from all features can determine the 668

predicted distances. As an empirical dissimilarity measure, we used the crossnobis 669

estimator [32] and compared the predicted to the measured RDM. To select the winning 670

model, we used rank-based correlation of dissimilarities [27], Pearson correlation, 671

correlation with a fixed intercept (Eq. 24), and the likelihood of the observed distances 672

under the normal approximation (Eq. 26) using the full variance-covariance matrix of 673

the estimated dissimilarities. 674
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Fig 7. RSA model selection accuracies for different criteria of RDM fit.
Data sets for all three experiments were generated with varying signal strength (horizontal
axis). The percentage of correct decisions using different criteria is shown (dotted
line). Models were selected based on the Spearman rank correlation (purple), Pearson
correlation (green), fixed intercept correlation (blue) or likelihood under the multinormal
approximation (red). For comparison, the model selection accuracy for PCM is shown
in the dotted line.

For Experiment 1 (Fig. 7), rank-based correlation performed substantially worse 675

than the other criteria. The lower performance of rank correlation may have been 676

exacerbated here by the fact that the two models predict relatively similar dissimilarity 677

ranks. However, we expect lower performance for rank correlation in general, because 678

this approach does not use all the information in the measured RDMs. It forgoes the 679

assumption of a linear relationship between predicted and measured dissimilarities and 680

therefore does not exploit the information in the continuous magnitudes of the 681

dissimilarities. Likelihood-based RSA yielded the best decisions; slightly better than 682

Pearson correlation and fixed-intercept correlation. 683

The advantage of the likelihood-based approach was clearer for Exp. 2 and 3. Here, 684

it led to about 10 percentage points greater accuracy of the decisions than the next-best 685

RSA approach. This advantage is likely due to the fact that Pearson correlations and 686

especially fixed-intercept correlations (Eq. 24) are sensitive to the observed value for the 687

largest predicted dissimilarities, as these data points have a large leverage on the 688

estimated regression line. Indeed, some of the models for Exp. 2 and 3 contain a few 689

especially large dissimilarities, which will influence the model fit strongly. The 690
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likelihood-based approach incorporates the knowledge that large dissimilarities are 691

measured with substantially larger variability [29], and hence discounts their influence. 692

Notably, rank-based correlation performed relatively well on these models as compared 693

to Pearson correlation, likely because rank correlation is robust to outliers and less 694

dominated by the large predicted distances. 695

In sum, these simulations show that it is advantageous to take the covariance 696

structure of the measured dissimilarities into account whenever the additional 697

assumptions this requires are justified. 698

Pattern component modeling 699

In the same simulations, we also applied the direct likelihood-ratio test, as implemented 700

by PCM. As all the assumptions of the generative model behind PCM are met in the 701

simulation, we would expect, by the Neyman-Pearson lemma [24], that this method 702

should provide us with highest achievable model selection accuracy. Model selection 703

performance (dotted line in Fig. 7) was indeed systematically higher than for the best 704

RSA-based method. For direct comparison of the so far best methods – PCM, 705

likelihood-based RSA, and encoding analysis with regularization (using correlations as a 706

model selection criterion) – we simulated the three Experiments at a single signal 707

strength (Fig. 8). 708
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RSA, PCM, and encoding analysis with regularization.
(A-C) Model-selection accuracy was inferentially compared between the three techniques
on the basis of N=3,000 simulations, using a likelihood-ratio test of counts of correct
model decisions [51]. The signal-strength parameter for the simulation was set to s =
0.3 for Exp. 1, s = 0.15 for Exp. 2, and s = 0.5 for Exp. 3. All resulting significant
differences (two-tailed, p<0.01, uncorrected) are indicated by a horizontal line above the
bars. (D-F) Execution times for the evaluation of a single data set under a single model.
For encoding, the time is split into the time required to estimate regression coefficients
(dark blue) and the time to determine the regularization constant (light blue).
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In this simulation, PCM resulted in 1.48, 3.01 and 2.86 percentage points (for Exp. 709

1-3, respectively) better model selection accuracy than likelihood-based RSA, and 1.98, 710

1.17 and 0.85 percentage points higher model selection accuracies than an encoding 711

analysis using correlations. PCM never performed worse than another method and 712

performed significantly better than the other two approaches in 4 of 6 total comparisons 713

across the three experiments (Fig. 8). There were no significant performance differences 714

between RSA and encoding analysis. Overall, however, all three methods were very 715

close in performance. 716

Computational cost 717

A practical concern is the speed at which the model comparison can be performed. This 718

is usually not important when evaluating the model fit on a small number of 719

participants or ROIs. However, if a larger number of models is evaluated continuously 720

over the cortical surface using a searchlight approach [52,53], or in data sets with large 721

numbers of participants, computational cost becomes a practical issue. While we cannot 722

treat this issue exhaustively, we provide here a brief overview over the computation time 723

required for the three methods for our specific examples and implementation. In 724

general, the computation time will of course depend on the number of conditions, the 725

number of channels, the exact variant of each technique. Our goal here is simply to give 726

the reader a starting point for making a choice for a particular application, trading off 727

computational and statistical efficiency. 728

Both RSA and PCM operate on the inner product matrix of the activity estimates, 729

thus the computational costs for these approaches is virtually independent of the 730

number of voxels. PCM works on the MK × MK inner product matrix of the activity 731

estimates, whereas RSA operates on a K × K matrix of distances between conditions. 732

For a small number of conditions, this explains the favorable computational cost of RSA. 733

However, when using likelihood-based RSA, the covariance matrix of the distances 734

needs to be calculated and inverted. The size of this matrix is (K (K -1)/2)2 and it 735

therefore grows with the 4th power of the number of conditions K. For Exp. 3 (Fig. 8F) 736

with K = 96, this is computationally costly, whereas PCM still only needs to invert 737

matrices of size (MK )2. Using RDM-correlation-based model selection (whether rank, 738

Pearson or fixed-intercept), RSA is much more computationally efficient (not shown). 739

For encoding models, conducting the actual ridge regression for each cross-validation 740

fold (dark blue area) is extremely fast and efficient. The main cost of the technique lies 741

in the determination of the optimal ridge coefficient (light blue area). In our 742

simulations, we use restricted maximum likelihood estimation (Eq. 18) to do so – 743

therefore this cost is always M times higher than for PCM alone. Depending on the 744

implementation, generalized cross-validation [46] may offer a considerable speed-up. If 745

very high speeds are required, one could use a constant ridge coefficient and accept the 746

possible loss in model selection accuracy. In sum, while PCM is computationally feasible 747

across the three experiments, encoding models were less efficient in the present 748

implementation and likelihood-based RSA was less efficient than PCM for the 749

condition-rich scenario of Experiment 3. Alternative variants of encoding models (with 750

fixed ridge coefficient) and RSA (with correlation-based model selection) are less 751

statistically efficient, but beat PCM in terms of computational efficiency. 752

Discussion 753

In this paper, we defined representational models as formal hypotheses about the 754

distribution of the activity profiles in the space defined by the experimental conditions. 755

That is, a representational model specifies, which features are represented in a brain 756

PLOS 25/35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 2, 2017. ; https://doi.org/10.1101/071472doi: bioRxiv preprint 

https://doi.org/10.1101/071472


region, and how strongly they are represented. The “strength” of representation of a 757

feature has two aspects: the number of responses (e.g. neurons) dedicated to a feature 758

and the scaling of their activity profiles relative to the noise. The second-moment 759

matrix of the activity profiles captures the combined effect of these aspects of feature 760

strength. Two distinct representations with identical second-moment matrices therefore 761

support linear decoding of any given feature at the same signal-to-noise ratio. This 762

holds independent of the question whether the distribution of activity profiles is 763

Gaussian. It motivates using the second moment as a summary statistic for 764

characterizing representations. RSA, PCM and encoding models offer different tests of 765

representational models, but all three depend, explicitly or implicitly, on the 766

second-moment matrix to characterize each representational hypothesis. Thus, these 767

methods are deeply related and should be understood as part of the same multivariate 768

toolbox. The main characteristics of the three methods are summarized in Table 1. 769

Encoding models without prior define subspaces, not 770

distributions of activity profiles 771

There is a fundamental difference between encoding models with and without weight 772

priors. Without a prior on the feature weights, encoding models test how well the 773

subspace spanned by the model features captures the observed activity profiles. For 774

models to be discriminable, the dimensionality (i.e. the number of features) of each 775

model must be substantially lower than the number of experimental conditions. As the 776

number of model dimensions increases, the subspaces of competing models increasingly 777

overlap. Once the number of features matches the number of experimental conditions, 778

their subspaces comprise the entire space of activity profiles, each perfectly fits the 779

training data, and their predictions for unseen data become identical. 780

A subspace specifies what activity profiles are possible and what activity profiles are 781

impossible (though they might still arise as estimates because of the noise). A subspace 782

might be conceptualized as an infinite flat distribution over the subspace dimensions, 783

with 0 probability outside the subspace. However, a uniform distribution on an infinite 784

interval has an infinite second moment and hence does not specify the neural 785

representation uniquely. 786

L2-norm regularization (i.e. ridge regression) is equivalent to imposing a Gaussian 787

prior on the regression weights. With such a prior, the representational model specifies 788

a probability distribution with a finite second moment. When changing the form of 789

regularization, one also changes the implicit prior, and hence the representational model 790

that is being tested. Thus, regularization is not simply a trick for stabilizing the fit. 791

Instead, the weight prior forms an integral part of the model, which determines the 792

strength with which each feature is encoded according to the model. Choosing a specific 793

form of regularisation therefore constitutes a decision about the neuroscientific 794

hypothesis to be tested rather than a methodological consideration. 795

Encoding models tests hypotheses about activity profile 796

distributions, not features sets 797

Encoding models do not support inferences about the particular feature set generating a 798

representation, because infinitely many feature sets can span the same space. Even 799

when using a prior, the feature set that characterizes a given representational model is 800

not unique. Features should not in general be constrained to be orthogonal in the space 801

of experimental conditions, because the structure of the model is not usually meant to 802

depend on the experimental conditions chosen. Whether the features chosen are 803

orthogonal or not, there is an infinite number of basis sets of features that express the 804
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same representational model (inducing the same second moment of activity profiles, Eq. 805

3). For example, two equally long correlated feature vectors can equally well describe a 806

distribution with elliptical isoprobability-density contours (Fig. 3A) as two orthogonal 807

features, with one vector longer than the other. Thus, when one representational model 808

is shown to be superior to others, it does not imply anything special about the feature 809

set chosen to express that model. These complications need to be kept in mind in the 810

interpretation of the results of encoding model analyses. It is very tempting to attribute 811

meaning to the particular feature basis chosen, especially when they are mapped onto 812

the cortical surface [17, 21]. When interpreting these maps, one needs to remember that 813

a feature set only describes a distribution of activity profiles, and that very different 814

maps can emerge when the same distribution is described by a rotated set. In PCM and 815

RSA, the equivalence of different feature sets is made explicit, as they lead to the same 816

second-moment and representational dissimilarity matrices. 817

Likelihood-based RSA is more sensitive than correlation-based 818

RSA 819

When using RSA to test representational models, the crossnobis estimator provides a 820

highly reliable measure of dissimilarity with the added advantage of having an 821

interpretable zero-point [32]. Rank-based, Pearson, and fixed-intercept correlation 822

provide fast and straightforward ways of measuring the correspondence between 823

predicted and observed distances, so as to select the representational model most 824

consistent with the data. However, using simple correlations ignores the dependence of 825

the distance estimates, as well as their unequal variances. In other words, the sampling 826

distribution of the estimated RDM in the space spanned by the dissimilarities (one 827

dimension per pair of conditions) is not isotropic. This problem is addressed in 828

likelihood-based RSA, which uses a multivariate-normal approximation to the sampling 829

distribution of the crossnobis RDM estimate [29]. The approximation provides an 830

analytical expression for the statistical dependency of distance estimates, as well as 831

their signal-dependent variances. In the simulations, likelihood-based RSA was shown 832

to be more powerful than correlation-based RSA. Its model-selection accuracy was only 833

slightly below the theoretical upper bound, as established by PCM. Likelihood-based 834

RSA might therefore become the approach of choice when comparing representational 835

models using crossnobis estimates. 836

There are situations, however, in which the models are not specific enough to 837

support ratio-scale predictions of representational dissimilarities. Moreover, for 838

measurement modalities like fMRI, it might be undesirable to assume a linear 839

relationship between predicted and measured representational dissimilarities. 840

Rank-correlation-based RSA [25, 27] provides a robust method that is not dependent on 841

the assumption of a linear reflection of the underlying neural dissimilarities in the data 842

RDM. It is also more computationally efficient in the context of condition-rich designs. 843

Likelihood-based RSA becomes computationally expensive as the number of conditions 844

increases. A practical compromise might be to only use the diagonal of the 845

variance-covariance matrix, which would dramatically reduce computational complexity 846

at the expense of neglecting dependencies among dissimilarity estimates. 847

Which method is best? 848

For all simulations, model selection using PCM [22] was better than competing methods. 849

This is not surprising, as the data were simulated exactly according to the generative 850

model underlying this approach (Gaussian distribution of noise and signal, 851

independence across voxels). In this case, PCM implements the likelihood-ratio test, 852

which by the Neyman-Pearson lemma [24] is the most powerful test. Beyond confirming 853
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what we know from theory, the simulations were important because they revealed how 854

close the other two techniques come to the theoretical upper bound established by PCM. 855

Results showed that encoding models with a prior and likelihood-based RSA perform 856

near-optimally. In practice, we therefore expect these three techniques to provide similar 857

answers. When its assumptions hold, PCM has clear advantages for model comparison, 858

providing optimal power at reasonable computational cost. However, the other two 859

techniques have other advantages that make them attractive for specific applications. 860

RSA using RDM correlation for model selection gives up statistical efficiency for 861

computational efficiency, and beats PCM at the latter. When rank correlation is used 862

to compare RDMs, the inference does not rely on a linear relationship between the true 863

dissimilarities and the estimated dissimilarities, an assumption that might be violated in 864

many contexts. RSA also provides readily interpretable intermediate statistics 865

(cross-validated distances), which are closely related to linear decoders for all pairs of 866

stimuli. These statistics can be used to test whether two conditions have different 867

activity patterns [27,29], or whether the dissimilarity is larger for one pair than for 868

another pair of conditions. Multidimensional scaling of the stimuli on the basis of their 869

representational dissimilarities also provides an intuitive visualization of the 870

representational structure [25], which can be very helpful in the generation of novel 871

representational hypotheses. 872

In contrast, PCM sometimes demands complicated approaches to answer simple 873

questions: For example, to test the hypothesis that a difference between two conditions 874

is encoded, one would need to fit one model that allows for separate patterns and one 875

model that does not – and then compare the marginal likelihood of these models. 876

Furthermore, PCM requires the noise to be explicitly modeled, whereas RSA removes 877

the bias arising from noise through cross-validated distances. 878

Encoding analysis explicitly estimates the first-level parameters that describe the 879

response for each individual voxel. This enables the mapping of the estimated features 880

onto the cortical surface to study their spatial distribution [17,21]. 881

In sum, the three methods are deeply related in that they test hypotheses about the 882

second moment of the activity profiles. However, each method constitutes a unique 883

perspective on the data and supports different kinds of exploratory analyses. We view 884

the methods as complementary tools that are part of a single coherent toolkit for 885

analyzing representations. 886

Single-voxel vs. multi-voxel inference 887

An important issue, which we have not touched upon so far, is whether to perform 888

model comparison on single or multiple voxels. While RSA and PCM are usually 889

applied to groups of voxels (such as for ROIs or searchlights), encoding models are often 890

compared on the single-voxel level. This tendency, however, is not strictly inherent in 891

methodological constraints: The searchlight approach for RSA and PCM can be reduced 892

to single voxels, and encoding models can be combined with multi-voxel searchlights. 893

Analyses with coarser granularity give up some spatial precision of the map in exchange 894

for greater statistical power. Searchlight mapping boosts power (1) by locally combining 895

the evidence, (2) by enabling the use of a multivariate noise normalization, and (3) by 896

reducing the effective number of multiple comparisons [54]. There is no reason to 897

assume that a single-voxel searchlight is always the optimal choice when balancing 898

spatial precision and power. Based on our previous results [32], we expect that ignoring 899

voxel dependencies will entail a loss of sensitivity when making inferences on 900

representational models for regions of interest comprising multiple responses. 901
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Testing models without overfitting to the noise and to the 902

sample of experimental conditions 903

Whenever a model is fitted using experimental data, its parameters will necessarily be 904

overfitted to the data to some extent. Assessing the performance of a fitted model 905

therefore requires independent test data. An important question is whether the test 906

data should consist in independent measurements for the same experimental conditions 907

or in measurements for a fresh sample of experimental conditions (e.g. a different 908

sample of visual images). The simple answer is that it depends on the inference we 909

would like to make. If our hypothesis is restricted to the present set of conditions (e.g. 910

five finger movements), we need only account for overfitting to the noise in the data and 911

require different measurements for the same conditions. If our hypothesis is about a 912

population of conditions (e.g. all natural images), we need to account for overfitting to 913

the condition sample and require measurements for an independent random sample of 914

conditions from the population of conditions covered by our hypothesis. 915

However, overfitting only needs to be accounted for when the model being tested 916

had parameters fitted in the first place. Encoding models always require independent 917

test sets to account for the over-fitting of the first-level parameters of the 918

representational model (feature weights). RSA and PCM, by contrast, rely explicitly on 919

summary statistics of the responses. Therefore, only second-level parameters related to 920

the strength of the signal and noise need to be fitted (see Table 1). Because the 921

representational models considered here had the same number of such second- level 922

parameters, they could be compared directly. 923

What about decoding approaches? 924

Decoding is widely used in multivariate analysis of brain imaging data [11–13]. Can it 925

serve us also as a tool for comparing representational models? While one can use 926

standard decoding approaches to determine whether specific features are represented in 927

an area or not, it does not lend itself to the comparison of full representational models 928

(as defined here). Representational models determine (via the second moment matrix) 929

the decodability of any linear feature, not just a restricted set of features. This is most 930

obvious in RSA, where the RDM assembles all pairwise condition discriminabilities. It 931

is of course possible to use decoding in the context of the methods considered here. For 932

example, some studies have used encoding models to decode stimuli [15, 16,21]. 933

Decoding accuracy can then serve, instead of correlation or R2
cv, to evaluate the 934

performance of an encoding model on held-out data. While this approach is motivated 935

by the intuitive demonstration of mind reading, it does not provide a particularly 936

natural or powerful approach to adjudicating between representational models. 937

Alternatively, we could use classification accuracy as a measure of dissimilarity between 938

two conditions in the context of RSA [55]. However, classification essentially converts a 939

continuous measure of dissimilarity into a binary label of correct / incorrect. It is 940

therefore expected to be less informative than the underlying continuous measure, and 941

we have shown previously that this entails a loss of sensitivity in practice [32]. In sum, 942

decoding is not particularly useful for the evaluation of representational models [14,23] 943

and should therefore be limited to situations, in which the quality of the decoding itself 944

is the measure of interest. 945

Flexible representational models 946

All models considered here were ”fixed”, i.e., they did not include free parameters that 947

would change the predicted second-moment matrix. In many applications, however, the 948

relative importance of different features (for example encoding strength for orientation 949
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and color) are unknown. In this case, the predicted second moment can be expressed as 950

the weighted sum of different pattern components, i.e. G =
∑
i ωiCi [22, 56–58], with 951

the weights being free second-level parameters. In other situations, G is a nonlinear 952

function of free model parameters: For example, G depends non-linearly on the spatial 953

tuning width in population receptive field modeling [59]. Both RSA and PCM already 954

provide a mechanism to estimate such parameters, as both approaches already need to 955

estimate the signal strength parameters s by maximizing the respective likelihood 956

function (Eq. 17, 28) – and the analytical derivatives of the likelihood (Eq. 17, 28) with 957

respect to the parameters are easily obtained. In the context of encoding approaches 958

using ridge regression, free model parameters that change the model structure would 959

result in independent scaling of different features, rotations, or extensions of the model 960

matrix M. At the time of writing there are no published examples of such parameter 961

optimization in the context of cross-validated encoding models that we know of. 962

The inclusion of free parameters into the model also enables the specification of 963

measurement models. Representational models ideally test hypotheses about the 964

distribution of activation profiles of the core computational elements – i.e. neurons. 965

When using indirect measures of brain activity such as fMRI or MEG, the distribution 966

of activity profiles across measurement channels is also influenced by the measurement 967

process, which samples and mixes neuronal activity signals in the measurement 968

channels [30,60–63]. As the underlying brain computational models become more 969

specific and detailed, the corresponding measurement models will also have to be 970

improved. 971

Higher-order moments of the activity profiles 972

We focused on approaches that characterize the distribution of activity profiles by its 973

second moment. If the true distribution of the activity profiles is a multivariate 974

Gaussian, then the second moment fully defines the distribution of activity profiles. 975

However, a representational hypothesis may not only predict that the response for 976

condition A is uncorrelated to the response for condition B, but, for example, that 977

channels either respond to A or B, but not to both A and B. Such tuning is for example 978

prevalent in primary visual cortex, where neurons (and voxels) respond to a stimulus in 979

a one specific part of the visual field, but less often two or more disparate locations [59]. 980

This would correspond to a non-Gaussian prior on the feature weights. In a recent 981

publication, Norman-Haignere and colleagues [64] suggested a likelihood-based method, 982

in which the Gaussian prior on the feature weights W is replaced with a Gamma 983

distribution, essentially providing a non-Gaussian extension of PCM. It will be 984

interesting to determine to what degree such non-Gaussian distributions are present in 985

fMRI or single-cell data, and what computational function these may serve. 986

It is important to stress that the approaches considered here are still appropriate 987

when the distribution of activity profiles is truly non-Gaussian. Even in the 988

non-Gaussian case, the second moment determines the representational geometry and 989

thus the decodability of all possible features. It therefore remains essential for 990

characterizing the representation. Taking into account higher moments of the activity 991

profile distribution would enable us to distinguish between representations that afford 992

the same decoding of features (assuming that readout neurons have access to the entire 993

code), but achieve this by distinct population codes. 994

Conclusions 995

If advances in brain-activity measurements are to yield theoretical insights into brain 996

computation, they need to be complemented by analytical methods to test 997

computational models of information processing [65]. The main purpose of this paper 998
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was to provide a clear definition of one important class of models – representational 999

models – and to compare three important approaches of testing these. We have shown 1000

that PCM, RSA and encoding analysis are all closely related, testing hypotheses about 1001

the distribution of activity profiles. Moreover, all three approaches, in their dominant 1002

implementations, are sensitive only to distinctions between representations that are 1003

reflected in the second moment of the activity profiles. Thus, these three methods are 1004

properly understood as components of a single analytical framework. Each of the three 1005

methods has particular advantages and disadvantages and preferred areas of application. 1006

1. PCM provides an analytic expression for the marginal likelihood of the data under 1007

the model, and therefore constitutes the most powerful test for adjudicating 1008

between representational models if the assumptions hold. Its analytical 1009

tractability and relative computational efficiency are further attractive features, 1010

especially when considering models with increasing numbers of free parameters. 1011

2. RSA provides highly interpretable intermediate statistics and is therefore ideally 1012

suited for the visualization and exploratory analysis. Furthermore, simple models 1013

are often more easily tested than with PCM. The normal approximation to the 1014

distribution of estimated distances enables inference that is nearly as powerful as 1015

the likelihood-ratio test provided by PCM. Finally, dissimilarity-rank-based RSA, 1016

though less sensitive, provides a means of inference that does not rely on the 1017

assumption of a linear relationship between predicted and measured dissimilarities 1018

and is computationally efficient even for condition-rich designs. 1019

3. Encoding approaches enable the voxel-wise mapping of model features onto the 1020

cortical surface. They therefore are the natural choice when the spatial 1021

distribution of features or the voxel-wise comparison of representational models is 1022

the main interest. 1023

We hope that the general framework presented here will enable researchers to 1024

combine these approaches to make progress revealing the computational mechanisms of 1025

biological brains. 1026
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