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Abstract

A most important property of biochemical systems is robustness. Static robustness, e.g.,
homeostasis, is the insensitivity of a state against perturbations, whereas dynamics
robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to
the extensively studied static robustness, dynamics robustness, i.e., how a system creates
an invariant temporal profile against perturbations, is little explored despite transient
dynamics being crucial for cellular fates and are reported to be robust experimentally.
For example, the duration of a stimulus elicits different phenotypic responses, and
signaling networks process and encode temporal information. Hence, robustness in time
courses will be necessary for functional biochemical networks. Based on dynamical
systems theory, we uncovered a general mechanism to achieve dynamics robustness.
Using a three-stage linear signaling cascade as an example, we found that the temporal
profiles and response duration post-stimulus is robust to perturbations against certain
parameters. Then analyzing the linearized model, we elucidated the criteria of how such
dynamics robustness emerges in signaling networks. We found that changes in the
upstream modules are masked in the cascade, and that the response duration is mainly
controlled by the rate-limiting module and organization of the cascade’s kinetics.
Specifically, we found two necessary conditions for dynamics robustness in signaling
cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the
perturbed module is not the slowest. 2) Constraints on the initial conditions: The
kinase activity needs to be fast enough such that each module is saturated even with
fast phosphatase activity and upstream information is attenuated. We discussed the
relevance of such robustness to several biological examples and the validity of the above
conditions therein. Given the applicability of dynamics robustness to a variety of
systems, it will provide a general basis for how biological systems function dynamically.

Author Summary

Cells use signaling pathways to transmit information received on its membrane to DNA,
and many important cellular processes are tied to signaling networks. Past experiments
have shown that cells’ internal signaling networks are sophisticated enough to process
and encode temporal information such as the length of time a ligand is bound to a
receptor. However, little research has been done to verify whether information encoded
onto temporal profiles can be made robust. We examined mathematical models of linear
signaling networks and found that the relaxation of the response to a transient stimuli
can be made robust to certain parameter fluctuations. Robustness is a key concept in
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biological systems—it would be disastrous if a cell could not operate if there was a
slight change in its environment or physiology. Our research shows that such dynamics
robustness does emerge in linear signaling cascades, and we outline the design principles
needed to generate such robustness. We discovered that two conditions regarding the
speed of the internal chemical reactions and concentration levels are needed to generate
dynamics robustness.

Introduction 1

Robustness is one of the most important concepts in biological systems. In general, it is 2

the ability of an organism to maintain a state or behavior against external or internal 3

perturbations, and many frameworks of robustness have emerged [1–7]. Homeostasis, for 4

example, is the ability of an organism or a cell to maintain a certain state, such as its 5

body temperature or calcium content, against external environmental changes. In fact, 6

numerous mechanisms have been uncovered that are adopted to regulate its internal 7

environment against external perturbations. In developmental biology, differentiated 8

cellular states are known to be robust to disturbances, as was pioneered in the study by 9

Waddington, who described the cell differentiation process as a ball rolling down an 10

epigenetic landscape to settle into a stable valley [8]. This is a metaphorical 11

representation of robustness often used, while in terms of dynamical systems theory, one 12

mathematical formulation for static robustness can be described as an orbit being 13

pulled into a stable attractor. The robustness discussed therein concerns the stationary 14

state, and thus is regarded as static robustness. 15

In biology, however, both the static cellular states and dynamic processes are 16

important to make certain responses against external changes robust and to ensure 17

proper development. Waddington coined the term homeorhesis for such dynamics 18

robustness for a transient time course [9]. Indeed, in the developmental process, 19

temporal ordering of cell differentiations and their timing are robust. Besides the 20

developmental process, cellular responses against external stimuli are often robust to 21

perturbations since these time courses are often relevant to cellular function. Despite 22

the importance, such dynamics robustness, i.e., robustness in the temporal course, is 23

little understood as compared with extensive studies on static robustness. Here we 24

study dynamics robustness, the insensitivity of transients to initial conditions or 25

parameters. We adopt the term dynamics robustness as opposed to dynamic or 26

dynamical robustness since those terms have been defined elsewhere in a different 27

context. For example in [10], dynamic robustness refers to the insensitivity of a 28

steady-state against changes in protein concentrations to distinguish from the 29

robustness of a steady-state against gene deletions. We stress that our focus is on the 30

robustness of the dynamics themselves against parameter perturbations. 31

As a specific example for such robustness, we focus on signaling pathways of covalent 32

modification cycles. Indeed robustness therein has been extensively investigated, as 33

given by a recent review by Blüthgen and Legewie [11]. Although their review is focused 34

on static robustness in signal transduction pathways, they also note that ideas of 35

robustness with regards to generating an invariant temporal profile (dynamics 36

robustness) has to be developed [11]. In fact, there are several experiments suggesting 37

robustness in the transient properties of certain biochemical networks: Different 38

transient profiles of input stimuli can elicit different phenotypic responses. For example, 39

it was shown that the duration of activation could lead to two different responses in 40

PC12 cells; transient activation leads to proliferation, and sustained activation leads to 41

differentiation [12,13]. In a similar manner, the duration that a MAPK cascade is 42

stimulated can lead to different responses in yeast [14]. Moreover, temporal profiles of 43

the p53 pathway, which is inactivated in almost all human cancer cells, are also reported 44
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to be drastically altered by the types of stresses administered to the cells and cause 45

different responses depending on the dynamic profiles [15]. All of these experimental 46

reports suggest the need for studies on dynamics robustness. Beyond such experimental 47

results, research in the last decade has shown that signaling cascades can theoretically 48

encode information into their dynamic profiles and process such information as 49

well [16,17]. For these dynamical processes to function, the time courses need to achieve 50

a certain level of robustness. 51

By investigating a class of signaling cascade systems, we also propose a novel 52

concept, duration robustness, as a quantitative manifestation of dynamics robustness, 53

wherein the duration of a response upon inputs is robust against perturbations. In a 54

general class of cascading systems, we showed that duration robustness is an emergent 55

property: Downstream modules are shielded from perturbations in the kinase activity in 56

the upstream layers. Here, the organization of the fast and slow kinetics resulting in a 57

rate-limiting module, is primarily responsible for such robustness. In a linear signaling 58

system, by having fast kinase activity, the output time courses were shown to be robust 59

to perturbations in the phosphatase activity. We uncovered two necessary conditions for 60

dynamics robustness and demonstrated that it can be observed in general linear 61

signaling systems via protein modifications. Furthermore, we verified that dynamics 62

robustness is a property of the well-known model of a MAPK network described by 63

Huang and Ferrell [18]. 64

Results 65

Our results are organized as follows: We study a simple model of basic linear signaling 66

cascade and see how perturbing the parameters in the model affect the relaxation time 67

courses. We first focus on perturbing the phosphatase parameters as they are known to 68

tend to control the duration in a signaling cascade. We then show how perturbing the 69

kinase activities affect the results. Next, we analyze the linearized and normalized model 70

of the aforementioned basic linear cascade to determine what underlying features of the 71

cascade architecture causes dynamics robustness. From this analysis, we derive the 72

conditions under which dynamics robustness is expected to emerge. Finally, we examine 73

a more complicated mass-action model of a MAPK cascade to verify whether the results 74

observed in the simple model are indeed features of a more biologically inspired model. 75

Dynamics Robustness in the Heinrich Model 76

We first examined the Heinrich model of a general, linear signaling cascade (a detailed 77

description can be found in the Methods Section). The basic idea is that a stimulus, the 78

concentration of E
0

, activates a kinase, i.e., converts M
0

to M

p

0

, which goes on to 79

activate a kinase downstream. This process occurs in three steps, and the concentration 80

of the final activated kinase, Mp

2

, is considered the output response. 81

When time t < 0, a constant input Einit

0

is applied to the system until Mp

i

at each 82

layer reaches the steady-state concentration, which we define as M̃
i

. At time t = 0, E
0

83

is set equal to zero and the system begins to relax into a deactivated state. Because it 84

has been reported that phosphatase activity controls the duration more than the kinase 85

activity [19,22], we individually perturbed the total phosphatase activity at each layer 86

and computed the new temporal profile to see if it remains robust. The parameters were 87

chosen to reflect the same organization as the biologically relevant MAPK cascade 88

parameters reported in [18] (see Supporting Information); the kinase activities are 89

relatively fast, and the phosphatase rate constants are organized relatively as 90

fast-slow-fast in the three stage setup. The specific � values from this parameter set 91
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Table 1. Parameters in the Heinrich model.

E

init

0

Initial input strength at time t < 0

M

i

Unphosphorylated substrate in the i

th module

M

p

i

Phosphorylated substrate in the i

th module

M

tot

i

Total substrate in the i

th module (M
i

+M

p

i

)

M̃

i

Steady-state value of Mp

i

under E
0

= E

init

0

↵

i

Effective kinase activity in the i

th module

�

i

Effective phosphatase activity in the i

th module

g

i

Initial phosphorylation level of ithmodule (M̃
i

/M

tot

i

)

correspond to the black circles in Figs. 1D-F. For clarity, the Heinrich model parameter 92

definitions are given in Table 1. 93

The results for the Heinrich model are plotted in Fig. 1. There is an interesting 94

parameter region where the temporal profiles are close together despite �

0

decreasing 95

from 102 to 10�2 (Fig. 1A). There is a similar parameter region for �
2

(Fig. 1C). In a 96

certain range of �
0

and �

2

, the temporal profiles do not change based on the 97

phosphatase activity. See Fig S2 for the difference of the temporal profiles against 98

changes in the phosphatase activity. However, there is no such parameter region in 99

which the temporal profiles are not changed when �

1

is perturbed (Fig. 1B). The 100

temporal profiles of the output, Mp

2

, show dynamics robustness against changes in the 101

phosphatase activity in the first and third layers, i.e., the time course profiles are robust 102

to perturbations in �

0

and �

2

. 103

As a simpler, analytically tractable measure for the robustness of the temporal 104

profiles, we numerically computed the half-life, #, which, as in [19], is defined to be the 105

duration of the response. We plotted # as a function of �
i

on a log-log scale in 106

Figs. 1D-F. In this paper, we focus our discussion on the relaxation process of strongly 107

activated cascades because the dynamics of a weakly activated signaling cascade are 108

fundamentally different, and do not involve a significant relaxation time course. To 109

clearly describe the criterion of activation, we introduce the parameter g
i

= M̃

i

/M

tot

i

, 110

which is the ratio of the phosphorylated substrate to the total substrate in i

th module. 111

As we are interested in the response dynamics of the cascade, the initial activation g

2

112

should be sufficiently high. Henceforth, we use the criterion that the cascade is activated 113

if g
2

> 0.5 (although the value 0.5 itself is not essential). We color the inactivated region 114

in gray in Figs. 1D-F and focus on the dynamics in the region of strong activation. 115

As an indicator of robustness of # against perturbations in �

i

, we use the notion of 116

logarithmic gain (see Methods section). In a typical case, such as in a single layered 117

cascade, the logarithmic gain of the duration versus phosphatase activity would be �1, 118

i.e., the duration is inversely proportional to the phosphatase activity, as expected by 119

the relaxation form exp(��t). The regions between the dashed vertical lines in 120

Figs. 1D and F represent where the magnitude of the logarithmic gain is less than 0.3, 121

which is distinctly smaller than 1. These flatter slopes indicate that the duration is 122

robust against changes in �

0

and �

2

. 123

In Figs. 1D and F, the black circle, which represents the �

i

value from Table S2 and 124

the corresponding # value, is in the region of duration robustness, which means that 125

with this parameter set reflecting actual kinetics in signaling cascades, the duration is 126

robust to perturbations in the phosphatase activity in the first and last layer of the 127

cascade (�
0

and �

2

respectively). However, the second module is sensitive to 128

perturbations in the phosphatase activity. 129

In all three cases, there are common features in the plots of the duration. As 130

mentioned earlier, if the phosphatase activity in any layer is too high, then the system is 131
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Figure 1. Dynamics Robustness in the Heinrich model. (A, B, C) The
temporal profiles of the response relaxation for different values of �

0

(A), �
1

(B), and �

2

(C). Different colors indicate the time courses for different �
i

values from the set
{�0

i

,�

1

i

, . . . ,�

38

i

} = {104.0, 103.8, . . . , 10�3.6} where �

0

i

is for the lower leftmost line, and
�

38

i

is for the top rightmost line. (D, E, F) The duration, #, as a function of �
0

(D), �
1

(E), and �

2

(F). # is plotted for the left y-axis. The initial phosphorylation level of M
2

(i.e., g
2

) as a function of �
i

corresponds to the right y-axis. When g

2

< 0.5, we consider
the system to be in a deactivated state and color this region in gray. In between the
vertical dashed lines, the system is in an activated state and the magnitude of the
logarithmic gain of # with respect to �

i

is less than 0.3. A magenta triangle indicates
where �

i

becomes the minimum � value. A black dot indicates the # with the
parameters from Table S2.
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Figure 2. Effects of the Kinase Activity on Duration Robustness in the
Heinrich Model. (A, B) Duration, #, as a function of �

0

(A) and �

1

(B) with varied
↵

0

. Different lines indicate # for different ↵
0

values as given by the inset box in (B).
Circles and diamonds represent �max

0

and �

max

1

, respectively. (C) �max

i

as a function of
↵

0

. A solid line and a dashed line are �

max

0

and �

max

1

, respectively. The circles and the
diamonds correspond to these symbols in (A) and (B). (D, E) Duration, #, as a function
of �

0

(A) and �

1

(B) with varied ↵

1

. (F) �max

i

as a function of ↵
1

. Same colors, lines
and symbols are adopted as (A), (B), and (C).

in an inactivated state, which is colored in gray in Figs. 1D-F. On the other hand, if the 132

phosphatase activity in the i

th layer is too low, then the logarithmic gain of the 133

duration against �
i

is roughly �1, i.e., the duration of the response is strongly 134

dependent on the rate-limiting module in the cascade. In Figs. 1D-F we plotted a 135

magenta triangle at the value where �

i

becomes less than all other � values, and the 136

logarithmic gain indeed becomes �1 near this point. However, the upper bound for the 137

phosphatase concentration that exhibits duration robustness cannot be described by the 138

rate-limiting effect only. 139

Effects of the Kinase Activity on Duration Robustness 140

Although linear signaling cascades can show duration robustness against perturbations 141

in the phosphatase concentrations, it is still unclear what effects the kinase activity has. 142

Therefore, we computed the duration versus phosphatase activity (# vs. �
i

) for different 143

values of ↵
i

(Fig. 2). 144

Increasing ↵

0

expands the interval of duration robustness for �
0

, since the upper 145

limit is increased while the lower limit remains fixed (Fig. 2A). This increase of ↵
0

, 146

however, does not expand the duration for varied �

1

(Fig. 2B). On the other hand, 147

increasing ↵

1

expands the interval of duration robustness both for �
0

and for �
1

: the 148

slope of # against �
1

is flatter, resulting in the appearance of the region for duration 149

robustness for �
1

. 150

Here, the upper limit of duration robustness is roughly given by the largest value of
�

i

, which we call �max

i

, at which the system is activated. The �max

i

values are marked in
Figs. 2A, B, D, and E. By using the criterion of g

2

, �max

i

is given by the maximal value
of �

i

that satisfies g
2

(�
i

) > 0.5. �max

i

is then used as an indicator for the upper limit of
the interval of duration robustness. To derive an expression for �max

i

, we see that g
i

,
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the phosphorylation level at each stage, can be written as a sequence of iterations:

g

0

=
1

1 + �0

↵0

,

g

1

=
1

1 + �1

↵1g0

=
1

1 + �1

↵1

⇣
1 + �0

↵0

⌘
,

g

2

=
1

1 + �2

↵2g1

=
1

1 + �2

↵2

⇣
1 + �1

↵1

⇣
1 + �0

↵0

⌘⌘
.

(1)

If changes in the kinase activity cause changes in �

max

i

, then the region of duration 151

robustness will change as seen in Fig. 2. The iterative nature of Eq. 1 demonstrates how 152

upstream information is shielded. It clearly shows that increasing ↵

k

will proportionally 153

increase �

max

i

only for i  k. For i > k, increasing ↵

k

has a negligible effect on �

max

i

, 154

and hence, has a negligible effect on the interval of duration robustness for �
i

. This is 155

somewhat counterintuitive because one usually considers alterations propagating 156

downstream in a linear signaling cascade, whereas alterations in the kinase activity 157

affects the range of duration robustness only in upstream modules. This is because the 158

constraint for initial conditions back-propagates. In general, having fast kinase activity 159

in the downstream modules is ideal if one wishes to generate a region of duration 160

robustness against the upstream phosphatase activities. 161

Duration Robustness in a Linearized Model 162

To better understand how duration robustness is generated and the criteria needed, we 163

analyzed the linearization of the Heinrich model about the origin, the only equilibrium 164

point once the stimulus is removed. Duration robustness is also a property of the linear 165

model as can be seen in Fig. 3. The global linearization of the Heinrich model is a 166

significant departure, and the time-course profiles for the linear case are drastically 167

different from the ones for the nonlinear Heinrich model. In particular, the conserved 168

quantities in the nonlinear model are no longer conserved in the linear model. However, 169

the plots of the duration against the phosphatase activity in Figs. 3 are remarkably 170

similar to those in Figs. 1. (The plots of the time-courses are provided in the 171

Supporting Information, Fig. S3). This strongly suggests that the nonlinear kinetics are 172

not important for duration robustness, although we will show that the nonlinearity of g
2

173

as a function of �
i

does play a crucial role. 174

If �
0

6= �

1

6= �

2

, the normalized solution (mp

i

= M

p

i

/M̃

i

) is just a linear combination
of exponentials:

m

p

2

(t) = c

0

(�
i

,↵

i

)e��0t + c

1

(�
i

,↵

i

)e��1t + c

2

(�
i

,↵

i

)e��2t
.

The duration (the time # such that mp

2

(#) = 0.5) can be approximated by:

# ⇡

8
>>><

>>>:

1

�0
log(2c

0

(�
i

,↵

i

)) if �
0

< �

1

,�

2

,

1

�1
log(2c

1

(�
i

,↵

i

)) if �
1

< �

0

,�

2

,

1

�2
log(2c

2

(�
i

,↵

i

)) if �
2

< �

0

,�

1

.

(2)

The pertinent question is how # is made robust to changes in �

i

. If �
i

is the minimum 175

� value, then the duration according to Eq. 2 is roughly inversely proportional to �

i

, 176

which means that the logarithmic gain is going to be around �1. In fact, in the limit as 177

�

i

goes to 0, the logarithmic gain converges to �1. In this case, accordingly, there is no 178
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duration robustness. Hence, to have duration robustness against �
i

, the first constraint 179

is 180

min{�
j

} < �

i

, (3)

which we refer to as the constraint on the rate-limiting process. 181

The lower limit of the �

i

interval in which duration robustness emerges is 182

determined by this rate-limiting condition; however, this condition is not sufficient to 183

determine the upper limit of the interval of �
i

. As already discussed, the initial 184

phosphorylation level g
2

at the output layer has to be sufficiently activated, and as 185

shown in Fig. 3, the upper limit is strongly related to this initial phosphorylation level 186

g

2

. Indeed, we can use Eq. 2 to understand this behavior analytically. Suppose that �
k

187

is the minimum � value and that i 6= k. Then the logarithmic gain is given by: 188

@ log(#)

@ log(�
i

)
=

1

log(2) + log(c
k

)

@ log(c
k

)

@ log(�
i

)
. (4)

Therefore, if the logarithmic gain of c
k

with respect to �

i

is small, then duration 189

robustness will emerge. As shown in the Supporting Information, @ log(ck)

@ log(�i)
is strongly 190

dependent on �@ log(g2)

@ log(�i)
. 191

If g
2

has a sigmoidal nature as seen in Fig. 3, then it has two regions where it is 192

relatively constant with respect to �

i

and a transition state between the two relatively 193

constant regions. If this transition occurs before the module becomes rate limiting, then 194

duration robustness will emerge because g

2

will have a weak dependence on �

i

. As 195

mentioned previously in relationship with Eq. 1, changes in upstream kinase activity 196

have a negligible effect on g

2

, i.e., upstream information is shielded. Hence to increase 197

the transition point and expand the region of duration robustness in the i

th module, it 198

is necessary that there exists some j � i such that �
j

⌧ ↵

j

. In other words, it is 199

necessary that in a module downstream, the kinase activity relative to the phosphatase 200

activity needs to be very fast. We refer to this constraint regarding g

2

as the constraint 201

on initial conditions. 202

The arguments based on Eqs. 1 and 2 can be extended to an N-stage cascade, and
the conditions needed to generate duration robustness in the i

th module can be
summarized as

min{�
j

} < �

i

,

�

N

↵

N

✓
1 +

�

N�1

↵

N�1

✓
· · ·

✓
1 +

�

0

↵

0

◆◆◆
< 1,

9k � i such that �
k

⌧ ↵

k

,

(5)

where the first condition represents the constraint on the rate-limiting process, and the 203

latter two conditions give the constraint on the initial conditions. 204

The arguments made for the linearization can also be extended to general linear 205

signaling cascades. The rate-limiting condition can easily be understood using slow 206

manifold theory. The eigenmodes of a linear signaling cascade are proportional to the 207

phosphatase activity. Likewise, the phosphorylation levels at each stage do display a 208

switch-like nature. Because the kinase activity controls the phosphorylation levels, both 209

constraints, i.e., the rate-limiting condition and the constraint on the initial conditions, 210

will also be necessary in any model of a linear signaling cascade. 211

Note that while both the original and linearized Heinrich models display duration 212

robustness, the original Heinrich model displays a stronger type of dynamics robustness 213

in the sense that the time-course profiles themselves are robust to changes in �

i

under 214

certain conditions (see Fig. 1 and Fig. S3). This is mainly because in the linear model, 215

the response is unsaturated and can vary, whereas the response in the nonlinear model 216

is saturated, bounded, and decreasing for all relevant parameter regimes. 217
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Figure 3. Duration Robustness in the Linearized Heinrich Model. The
duration, #, and the initial phosphorylation level, g

2

, as a function of �
0

(A), �
1

(B),
and �

2

(C). # and g

2

plotted in a similar manner of Fig.1. The approximation of the
duration given in Eq. 2 is plotted as blue ⇥’s. Plots of the time course profiles are
provided in the Supporting Information (Fig. S3).

Dynamics Robustness in the Huang Ferrell Model 218

To verify the general results on a more biologically inspired system, we next examined 219

the Huang Ferrell (HF) model [18] of a linear signaling cascade (for a detailed 220

description, see Supporting Information). This model is a complete mass action 221

description of a MAPK signaling pathway, which is a linear cascade with three layers. 222

The middle and last layers represent double phosphorylation events, which lead to 223

ultrasensitivity [18]. The HF model also explicitly assumes that a phosphatase at each 224

layer removes the active phosphate groups, and thus, the phosphatase activity is directly 225

proportional to the total phosphatase concentration, P tot

i

, in each layer. The results in 226

Fig. 4 demonstrate that duration robustness is also a property of the HF model. There 227

are parameter regimes where the duration of the relaxation is insensitive to 228

perturbations. Like the original Heinrich model, the HF model also displays dynamics 229

robustness in which the time-course profiles themselves are robust to changes in the 230

phosphatase concentrations. Figs. 4(C) and (F) show that the last layer in the HF 231

model has slightly stronger dynamics robustness than the Heinrich model. This suggests 232

that higher nonlinearities in signaling cascades may enhance dynamics robustness. 233

Discussion 234

In the present paper, we have demonstrated that dynamics robustness, i.e., the 235

insensitivity of the time courses against changes in certain parameters, is observed in 236

the relaxation process of signaling cascades. By using a general linear cascading system, 237

the time course of the output layer downstream is shown to be almost insensitive to 238

changes in upstream parameters. As a consequence of dynamics robustness, the 239

duration in which activated state lasts is also robust to parameter changes, a property 240

we termed duration robustness. By analyzing the cascading process, the conditions for 241

duration robustness are given by the constraint on the rate-limiting process and on the 242

initial conditions. Since multiple layers are needed to generate duration robustness, this 243

suggests that this property is a byproduct of how temporal information is processed 244

downstream. 245
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Figure 4. Dynamics Robustness in the Huang Ferrell Model. (A, B, C) The
temporal profiles of the response relaxation for different values of P tot

0

, P tot

1

, and P

tot

2

respectively. Different lines are for different values of P tot

i

taken from the set
{100.4, 100.2, . . . , 10�5}. (D, E, F) The duration, #, and the initial phosphorylation level,
g

2

are plotted as a function of P tot

i

, in the same way as Fig.1.

Conditions for duration robustness 246

We have shown that linear signaling cascades of varying complexity display duration 247

robustness against perturbations in the phosphatase activity in the i

th stage, and that 248

two main conditions are responsible for this phenomenon: 249

1) The constraint on the rate-limiting process. The phosphatase activity in the 250

i

th stage, �
i

, should not be the minimum � value. This unfortunately means that the 251

slowest module in a linear cascade will not display duration robustness. This constraint 252

determines the lower limit for the range of duration robustness, i.e., � < �

i

. If �
i

is the 253

minimum � value in the cascade, then the duration time is inversely proportional to �

i

254

as described by usual relaxation processes. In general linear signaling cascades, this 255

means that the phosphatase activity in module i should not be the slowest. For certain 256

parameter regions, our results are contrary to the idea that upstream phosphatase 257

activity controls the duration of the system more than downstream in a strongly 258

activated cascade [19]. 259

2) The constraint on the initial conditions. To achieve duration robustness, the 260

initial phosphorylation level of the output layer also has to be robust. For the Heinrich 261

model, the initial phosphorylation level, g
i

, is given as a sequence of iterations as Eq. 1, 262

and if the kinase activity in some layer is sufficiently high, g
i

will be robust against 263

changes in the upstream phosphatase activity. In other words, information at upstream 264

layers is shielded by the strong kinase activity. This constraint determines the upper 265

limit for duration robustness. 266

Intuitively, if the kinase activity is low, the phosphatase activity should be low 267

enough to allow the cascade to be active. How large �

i

can be is largely determined by 268

the kinase activity, ↵
i

. A stronger kinase activity allows the phosphatase to be at a 269

higher level and the system to remain in an activated state. Although too low kinase 270

activity changes the initial phosphorylation level, too high kinase activity has little 271
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effect, due to the saturation of the phosphorylation. This determines the upper limit of 272

�

i

for the region of duration robustness. 273

In general, linear signaling cascades do display such saturation, as a result of
conservation of the substrate at each layer, and as for the Heinrich model, the
steady-state phosphorylation level in i

th layer could be given as

g

i

=
1

1 + f

i

(g
i�1

,↵

i

,�

i

)
,

where, f
i

(g
i�1

,↵

i

,�

i

) is a decreasing function of the kinase activity, ↵
i

, and an 274

increasing function of the phosphatase activity, �
i

. In this case, increasing the kinase 275

activity downstream can shield the upstream information, and then lead to duration 276

robustness against changes in the phosphatase activity in upstream modules. This is 277

interesting as changes appear to be propagated upstream. This type of 278

downstream-to-upstream perturbation transference was reported in the steady-state 279

concentration of linear cascades as retroactivity [23], whereas our upstream propagation 280

in the duration robustness is a different type of retroactivity since it concerns with the 281

initial condition for shielding the information. 282

Biological Relevance 283

Our results showed that within the range of a biologically relevant parameter set of a 284

MAPK signaling pathway reported in [18], the duration and temporal profile of a 285

strongly activated response are robust against perturbations in the phosphatase 286

activities in the first and last modules. Past research has shown that temporal profiles 287

of signaling cascades upon different inputs can lead to drastically different behaviors in 288

cells. As mentioned earlier, transient versus sustained activation leads to different 289

developmental responses [12, 13], and the behavior of transients in the p53 pathway is 290

important to understanding certain types of cancer [15]. Our theory of dynamics 291

robustness suggests that the transients involved in such decision processes can be robust 292

to internal fluctuations in the concentrations of enzymes. We claim that stronger kinase 293

activities are important for generating robust temporal profiles and that such a 294

relationship will be verified experimentally. 295

The fast-slow-fast organization of the kinetics in the three-stage cascade is not 296

necessary for dynamics robustness since it is observed in two-stage cascades as well. We 297

looked at other kinetic organizations and their results intuitively agreed with the results 298

in this paper; the rate-limiting module tends to control the duration and the other 299

modules display robustness under the constraints discussed. Whether the fast-slow-fast 300

organization is a byproduct of another selected property or is selected for a beneficial 301

trait regarding dynamics robustness is unknown. However, one possible benefit is the 302

emergence of a plateauing response as observed in Fig. 4(A) and Fig. 1(A). In this 303

plateauing behavior, the response remains in a quasi-steady state before decaying 304

exponentially. It is possible that a three-stage linear cascade may be used to store 305

information in one of these reliably timed plateaus. Dynamics robustness may explain 306

the reliability of the response, but future work is needed to explain the mechanism of 307

the plateauing response and its relationship with dynamics robustness. This type of 308

plateauing response has been discussed before as kinetic memory in other biochemical 309

systems [24,25] and such memory will also emerge in a linear cascade with a 310

fast-slow-fast organization. 311

As a design principle, a signaling cascade with the conditions discussed previously 312

are ideal for robust transients and this parameter organization is reflected in [18]. Since 313

reliably timed transients are useful in signal processing, robustness would make such 314

properties evolutionarily feasible. Indeed, a repetitive cascade structure would be easily 315
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evolvable by gene duplication [26,27], wherein the function of the original cascade is 316

safeguarded by robust parameters. 317

We focused on linear signaling cascades because of the recent interest in their 318

temporal dynamics, but our idea of dynamics robustness can be generalized to any 319

biochemical network. Two common properties of the cascade architectures we examined 320

were mass conservation and an active molecule working as a kinase downstream. This 321

suggests that such robustness can be achieved by similar designs such as the 322

two-component signaling network in bacteria, and may be a universal feature in 323

biological signaling cascades via protein modifications. There are some biochemical 324

processes which are known to be reliably timed, such as lysis of bacteria and 325

chromosome segregation during mitosis [28,29], and these reliably-timed processes might 326

be considered as a demonstration of dynamics robustness. Such robustness should be an 327

essential property to many biological systems, and the expansion of the present 328

formulation will provide a future fruitful area of research. 329

The concept and explicit results of dynamics robustness we have presented here 330

should be timely and of importance. In many biological phenomena, the time course, 331

such as the response against external stimuli or the developmental process, is crucially 332

important, and must be sufficiently robust to perturbations. This point has been noted 333

before, but so far there is no theory for such dynamics robustness. For example, the 334

scale invariance of time course has gathered much attention as 335

fold-change-detection [30]. Dynamics robustness concerns with the insensitivity to 336

external changes rather than the scale invariance of time courses, and does not require 337

strong constraints as imposed in the fold-change-detection. Dynamics robustness can 338

appear in a cascading system in general, by shielding upstream parameter changes. 339

Thus it will have broader impacts and applications. 340

We demonstrated this dynamics robustness in standard models of signal 341

transduction. As these models are based on experimental data, and agree rather well 342

with them, our dynamics robustness can be straightforwardly confirmed in cell-signaling 343

experiments. Also considering the generality of our results, many other experimental 344

topics will benefit from dynamics robustness. 345

Models and Methods 346

We looked at different models of varying complexity. Although we use the nomenclature 347

of kinases and phosphatases to represent the activating enzymes and deactivating 348

enzymes, our model can be applied generally to any linear signaling cascade. We used 349

mass action kinetics to simulate the chemical reactions, and all of our equations were 350

solved using MATLAB’s (version R2009a) built-in numerical integrator ode15s. 351

Heinrich Model In the Heinrich model described in [19] and diagrammed in Fig. 5, 352

the receptor, E
0

, converts M
0

to M

p

0

, and M

p

0

converts M
1

to M

p

1

, and M

p

1

converts 353

M

2

to M

p

2

, which is the output. The second order reaction rate at which M

i

is 354

activated is ↵̄
i

, and the first order deactivation rate for Mp

i

is �
i

. We assume that after 355

an initial, constant stimulus and equilibration of the system, the receptor is immediately 356

shut off and the system relaxes. 357

There are a few major simplifying assumptions in this model that make it useful for
examining the qualitative behavior of linear cascades. The assumptions are that the
intermediate complexes formed by each kinase-substrate pair is negligible, that the
backward reaction from the complexes is insignificant, and that the active phosphatase
concentration is nearly constant. This means that the phosphatases and the
intermediate complexes can be ignored, the desphosphorylation rate can be expressed as
a first-order reaction rate, and that the sum of the inactive and active forms of each
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Figure 5. Diagram of the Heinrich Model. A linear signaling cascade is a
biochemical network where the product of one reaction acts as an enzyme for a reaction
downstream. The Heinrich model captures the basic essence of such an architecture.
For time t < 0, the receptor, E

0

receives a stimulus with strength E

init

0

. E
0

then
converts M

0

to M

p

0

. Mp

0

then converts M
1

to M

p

1

, and M

p

1

converts M
2

to M

p

2

. The
concentration of Mp

2

is considered the output response. After the system reaches a
steady-state, at time t = 0, the stimulus is immediately removed, and the system then
settles into a deactivated state.

substrate is constant, i.e., M
i

+M

p

i

= M

tot

i

where M

tot

i

represents the total amount of
substrate M

i

. Although these assumptions ignore some details, they enable us to
analyze the models mathematically while still capturing the overall behavior of a
signaling cascade. The corresponding set of equations post-stimulus is:

Ṁ

p

0

= ��

0

M

p

0

,

Ṁ

p

1

= ↵̄

1

M

p

0

(M tot

1

�M

p

1

)� �

1

M

p

1

,

Ṁ

p

2

= ↵̄

2

M

p

1

(M tot

2

�M

p

2

)� �

2

M

p

2

,

M

p

0

(0) = M̃

0

=
↵̄

0

E

init

0

M

tot

0

↵̄

0

E

init

0

+ �

0

,

M

p

i

(0) = M̃

i

=
↵̄

i

M̃

i�1

M

tot

i

↵̄

i

M̃

i�1

+ �

i

.

(6)

We note that Eqs. 6 is equivalent to Heinrich’s model, albeit with a slightly different
form. An equivalent normalized model, i.e., where m

p

i

(0) = 1, has the form:

ṁ

p

0

= ��

0

m

p

0

,

ṁ

p

1

= ↵

1

g

0

m

p

0

�
g

�1

1

�m

p

1

�
� �

1

m

p

1

,

ṁ

p

2

= ↵

2

g

1

m

p

1

�
g

�1

2

�m

p

2

�
� �

2

m

p

2

,

(7)

where ↵

0

= ↵̄

0

E

init

0

and ↵

i

= ↵̄

i

M

tot

i�1

are the effective kinase activities. 358

Logarithmic Gain How robust a system is to a perturbation in a parameter is 359

quantitatively measured by logarithmic gain. If one plots the dependent variable (say y) 360

against a parameter (say x) on a log-log scale, then the logarithmic gain at a point is 361

the slope of the tangent at that point. In other words, the logarithmic gain at a point 362

x

0

is @ log(y)

@ log(x)

at x
0

. If y is inversely proportional to x, then the logarithmic gain will be 363

�1. This concept has been used in systems biology to measure the robustness of 364

steady-state concentration levels and transition times [20,21], but here we use it to 365

measure how robust the half-life of a linear signaling cascade is against parameter 366

changes, which, to the best of our knowledge has not been done before. 367
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Supporting Information 368

S1 Appendix 369

Additional Information. We provide a table of the parameters used in our 370

simulations, additional figures, and equation derivations. 371

References

1. Wagner GP, Booth G, Bagheri-Chaichian H. A population genetic theory of
canalization. Evolution. 1997 Apr;51(2):329–347.

2. Barkai N, Leibler S. Robustness in simple biochemical networks. Nature. 1997
Jun;387:913–917.

3. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis.
Nature. 1999 Jan;397:168–171.

4. Siegal ML, Bergman A. Waddington’s canalization revisited: developmental
stability and evolution. Proc Natl Acad Sci U S A. 2002;99(16):10528–10532.

5. Wagner A. Robustness and evolvability in living systems. Princeton, New Jersey:
Princeton University Press; 2005.

6. Ciliberti S, Martin OC, Wagner A. Robustness can evolve gradually in complex
regulatory gene networks with varying topology. PLoS Comput Biol. 2007
Feb;3(2):e15.

7. Kaneko K. Evolution of robustness to noise and mutation in gene expression
dynamics. PLoS ONE. 2007 May;2(5):e434.

8. Waddington CH. Canalization of development and the inheritance of acquired
characters. Nature. 1942 Nov;150:563–565.

9. Waddington CH. The strategy of genes. London: George Allen and Unwin; 1957.

10. Shinar G, Milo R, Mart̀ınez MR, Alon U. Input-output robustness in simple
bacterial signaling systems. Proc Natl Acad Sci USA. 2007;104(50):19931–19935.
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Figure S1: Diagram of the Huang and Ferrell Model. Unlike the Heinrich model, the HF model assumes
double phosphorylation events, i.e., two phosphate groups are needed to fully activate M

1

and M
2

. Once the
system reaches an equilibrium state, the stimulus at the top layer is removed at a rate of �.

In the original Huang and Ferrell (HF) model, an input stimuli, E
0

, activates a MAP-kinase at the top layer.

We labeled this substrate, M
0

. We note that our labels are di↵erent from the labels Huang and Ferrell used

so we could be consistent with other models in this paper. The activated form, Mp

0

, can be deactivated by

P
0

, or it can go on to activate a MAP-kinase downstream, M
1

. Using Xenopus oocyte extracts as a model,

Huang and Ferrell assumed that two phosphorylation events are needed to activate M
1

and the next MAP-kinase

downstream, M
2

. Likewise, the activated form, Mpp

1

, is deactivated by the phosphatase P
1

in a two step process,

and Mpp

2

is dephosphorylated by P
2

in a two step process. The Mpp

2

concentration is regarded as the response.

The rate equations are derived by mass action assumptions. The kinetic parameters that Huang and Ferrell used,

which reflect actual parameters experimentally derived, are listed in Table S1. To best illustrate the concept of

dynamics robustness, the basal phosphatase concentrations we used are slightly di↵erent from the original Huang

and Ferrell parameters.
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As in the Heinrich model, we gave the system an initial input with strength Einit

0

. We allowed the system

to reach an equilibrium state, and then removed the stimulus at a rate of �. Because the HF model assumes

complex formation, it was necessary to specifically remove the stimulus instead of simply setting it equal to zero

as was done in the Heinrich model.

The stoichiometry of the Huang-Ferrell model [1] with enzyme destruction is given by:

E
0

��! ?,

E
0

+M
0

a0

�
d0

C
0

k0�! E
0
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.

and the corresponding mass-action system is given by:

Ė
0

= ��E
0

� a
0

E
0

M
0

+ (d
0

+ k
0

)C
0

,

Ṁ
0

= �a
0

E
0

M
0

+ d
0

C
0

+ k̃
0

X
0

,

Ċ
0

= a
0

E
0

M
0

� (d
0

+ k
0

)C
0

,
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Ṁp

1

= k
1

C
1

� ã
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M tot

2

= M
2

+Mp

2

+Mpp

2

+ C
3

+ C
4

+X
3

+X
4

,

P tot

2

= P
2

+X
3

+X
4

,

where the last six equations represent the conserved quantities.

2 Heinrich and HF Model Parameters

Parameter Units Value From [1] Base Value for Our Results

Einit

0

µM �� 3⇥ 10�3

M tot

0

µM 3⇥ 10�3 3⇥ 10�3

P tot

0

µM 3⇥ 10�4 5⇥ 10�3

M tot

1

µM 1.2 1.2

P tot

1

µM 3⇥ 10�4 3⇥ 10�4

M tot

2

µM 1.2 1.2

P tot

2

µM 0.12 0.01

� (min)�1 �� 0, 100

a
i

, ã
i

(µM ·min)�1 1000 1000

d
i

, d̃
i

(min)�1 150 150

k
i

, k̃
i

(min)�1 150 150

Table S1: Parameters used for the Huang and Ferrell model. The original parameters from [1] are displayed in
the third column. The parameters used for our results are within a reasonable range of the original parameter
set, but are slightly di↵erent to better exemplify dynamics robustness.

Parameter Value Parameter Value

Einit

0

1 M tot

0

1

M tot

1

1 M tot

2

1

↵
0

1 �
0

0.5

↵
1

10�1 �
1

10�2

↵
1

102 �
2

2

Table S2: Parameters used for the Heinrich model [2] . These parameters were chosen to reflect the same
organization of the kinetics from the Huang and Ferrell model.
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3 Complete Results for the Heinrich, Linearized, and Huang-Ferrell

Model

Here we display the time-course profiles, the L2 norm between consecutive temporal profiles, the duration, and the

logarithmic gain of the duration with respect to changes in the phosphatase activity for the Heinrich, Linearized

Heinrich, and the HF models.

Heinrich Model. In Fig. S2(A), we set �
1

and �
2

equal to their base values from Table S2. We then integrated

the Heinrich model for each of the �
0

values taken from the set {�0

0

,�1

0

, . . . ,�37

0

,�38

0

} = {104.0, 103.8, . . . , 10�3.4, 10�3.6}.

There is an interesting point where changing �
0

does not alter the temporal profiles by very much. To measure

how close the time-course profiles are, in Fig. S2(B), we computed the L2 norm between consecutive temporal

profiles from Fig. S2(A). In other words, we computed

��Mp

2

(⌧ ;�i

0

)�Mp

2

(⌧ ;�i+1

0

)
��
2

=

sZ
b

a

��Mp

2

(⌧ ;�i

0

)�Mp

2

(⌧ ;�i+1

0

)
��2 d⌧ ,

where ⌧ = log
10

(t) and the integral is approximated using Matlab’s trapzmethod over the interval [�2, 4 + log
10

(6)].

In Fig. S2(C), we computed the half-life for the Heinrich model for each of the �
0

values taken from the

set {�0

0

,�1

0

, . . . ,�151

0

,�152

0

} = {104.0, 103.95, . . . , 10�3.55, 10�3.6}. In Fig. S2(D), we numerically approximated the

logarithmic gain of the duration versus changes in �
0

using Matlab’s di↵ method on the results in Fig. S2(C).

In Fig. S2(E-H), we repeated the experiment except setting �
0

and �
2

to their base values from Table S2 and

varied �
1

. In Fig. S2(I-L), �
0

and �
1

are set to their base values from Table S2 and �
2

is varied. The results

show that there is an interval of �
0

where the system is in an activated state and the temporal profiles and their

duration are very robust against perturbations in �
0

. Likewise for �
2

, albeit with a weaker robustness compared

to �
0

. However, no such interval exists for �
1

.

Linearized Heinrich Model. The same experiment as for the Heinrich model was performed for its lineariza-

tion about the origin and the results are displayed in Fig. S3. Unlike in the Heinrich model, the temporal profiles

are not very robust to changes in �
i

when the system is in an activated state. However, the results for the

duration in Fig. S3(C,G,K) are remarkably similar to the results for the nonlinear model in Fig. S2(C,G,K).
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This suggests that while the nonlinear kinetics are important for achieving dynamics robustness in the Heinrich

model, the nonlinear kinetics are not important for achieving duration robustness.

HF Model. The same experiment as for the Heinrich model was performed for the HF model and the results

are displayed in Fig. S4. In Fig. S4(A), we set P tot

1

and P tot

2

equal to their base values from Table S1. We

then integrated the HF model for each of the P tot

0

values taken from the set {P tot,0

0

, P tot,1

0

, . . . , P tot,26

0

, P tot,27

0

} =

{100.4, 100.2, . . . , 10�4.8, 10�5.0}. In Fig. S4(B), we computed the L2 norm in the di↵erence between consecutive

temporal profiles. We integrated over the log of time and over the interval [�2, 4]. In Fig. S4(C), we computed

the half-life for the HF model for each of the P tot

0

values taken from the set {P tot,0

0

, P tot,1

0

, . . . , P tot,107

0

, P tot,108

0

} =

{100.4, 100.35, . . . , 10�4.95, 10�5}. In Fig. S4(D), we numerically approximated the logarithmic gain of the duration

versus changes in P tot

0

. We then repeated the experiment in the same manner as in the Heinrich results to

generate the other plots. The results are qualitatively similar as the Heinrich results in Fig. S2, which suggests

that dynamics robustness and duration robustness are intrinsic properties of linear signaling cascades.
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Figure S2: Complete Results for the Heinrich Model. (A, E, I) The temporal profiles of the response
relaxation for di↵erent values of �

0

(A), �
1

(E), and �
2

(I). (B, F, J) The consecutive similarity in the temporal
profiles for �

0

(B), �
1

(F), and �
2

(J). The gray portion of the lines in (B, F, J) indicate that the system is in
a deactivated state (i.e., g

2

< 0.5) for those values of �
i

. (C, G, K) The half-life of the response as a function
of �

0

(C), �
1

(G), and �
2

(K). The magenta triangle triangle indicates when the �
i

value becomes the minimum
� value. The black dot represents the base �

i

value from Table S2. The grayed out region indicates that the
system is in a deactivated state for those values of �

i

. The region between the dashed vertical lines indicate that
the magnitude logarithmic gain of the duration against �

i

is less than 0.3. (D, H, L) The logarithmic gain of the
duration against �

0

(D), �
1

(H), and �
2

(L).
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Figure S3: Complete Results for the Linearized Heinrich Model. (A, E, I) The temporal profiles of the
response relaxation for di↵erent values of �

0

(A), �
1

(E), and �
2

(I). (B, F, J) The consecutive similarity in the
temporal profiles for �

0

(B), �
1

(F), and �
2

(J). The gray portion of the lines in (B, F, J) indicate that the system
is in a deactivated state (i.e., g

2

< 0.5) for those values of �
i

. (C, G, K) The half-life of the response as a function
of �

0

(C), �
1

(G), and �
2

(K). The magenta triangle triangle indicates when the �
i

value becomes the minimum
� value. The black dot represents the base �

i

value from Table S2. The grayed out region indicates that the
system is in a deactivated state for those values of �

i

. The region between the dashed vertical lines indicate that
the magnitude logarithmic gain of the duration against �

i

is less than 0.3. (D, H, L) The logarithmic gain of the
duration against �

0

(D), �
1

(H), and �
2

(L).

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2016. ; https://doi.org/10.1101/071589doi: bioRxiv preprint 

https://doi.org/10.1101/071589
http://creativecommons.org/licenses/by/4.0/


10
0

10
2

10
4

0

1.2

Time (Diff. P
0
tot)

M
2pp

10
0

10
2

10
4

0

1.2

Time (Diff. P
1
tot)

M
2pp

10
0

10
2

10
4

0

1.2

Time (Diff. P
2
tot)

M
2pp

10
4

10
2

10
0

0.1

0.3

0.5

0.7

P
0
tot

||f
i+

1
f i|| 2

10
4

10
2

10
0

0.1

0.3

0.5

0.7

P
1
tot

||f
i+

1
f i|| 2

10
4

10
2

10
0

0.1

0.3

P
2
tot

||f
i+

1
f i|| 2

P
0
tot

ϑ

g
2

10
4

10
2

10
0

10
1

10
3

10
4

10
2

10
0

0

1

P
1
tot

ϑ g
2

10
4

10
2

10
0

10
0

10
2

10
4

10
2

10
0

0

1

P
2
tot

ϑ

g
2

10
4

10
2

10
0

10
1

10
3

10
4

10
2

10
0

0

1

β
0

Lo
g 

G
ai

n

10
2

10
0

10
2

0.9

0.7

0.5

0.3

0.1

β
1

Lo
g 

G
ai

n

10
2

10
0

10
2

0.9

0.7

0.5

0.3

0.1

β
2

Lo
g 

G
ai

n

10
2

10
0

10
2

0.7

0.5

0.3

0.1

A B C D

E F G H

I J K L

Figure S4: Complete Results for the HF Model. (A, E, I) The temporal profiles of the response relaxation
for di↵erent values of P tot

0

(A), P tot

1

(E), and P tot

2

(I). (B, F, J) The consecutive similarity in the temporal
profiles for P tot

0

(B), P tot

1

(F), and P tot

2

(J). The gray portion of the lines in (B, F, J) indicate that the system
is in a deactivated state (i.e., g

2

< 0.5) for those values of P tot

i

. (C, G, K) The half-life of the response as
a function of P tot

0

(C), P tot

1

(G), and P tot

2

(K). The magenta triangle triangle indicates when the P tot

i

value
becomes the minimum P tot value. The black dot represents the base P tot

i

value from Table S1. The grayed out
region indicates that the system is in a deactivated state for those values of P tot

i

. The region between the dashed
vertical lines indicate that the magnitude logarithmic gain of the duration against P tot

i

is less than 0.3. (D, H,
L) The logarithmic gain of the duration against P tot

0

(D), P tot

1

(H), and P tot

2

(L).
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4 Derivation of Equations

4.1 The largest value of �i at which the system is activated

The equations for �max

i

can be easily derived from the g
i

functions, and they also demonstrate how the kinase

activities only alter the �max

i

values and the corresponding regions of duration robustness upstream.

�max

0

= ↵
0

✓
↵
1

�
1

✓
↵
2

�
2

� 1

◆
� 1

◆
,

�max

1

= ↵
1

✓
↵
2

�
2

� 1

◆ 
1

1 + �0

↵0

!
,

�max

2

= ↵
2

0

@ 1

1 + �1

↵1

⇣
1 + �0

↵0

⌘

1

A .

4.2 Logarithmic Gains

In the main text it was shown that

@ log(#)

@ log(�
i

)
=

1

log(2) + log(c
k

)

@ log(c
k

)

@ log(�
i

)
,

where i and k are such that �
k

is the minimum � value and i 6= k. Our goal is to determine under what conditions

is
��� @ log(#)

@ log(�i)

���⌧ 1.

Case I: �
0

is minimum � value, and duration robustness with respect to �
1

. First, let us consider the

case when �
0

is the minimum � value, and under what conditions will the duration be robust to changes in �
1

.

We have that

c
0

=
↵
1

↵
2

g
0

g
2

(�
2

� �
0

)(�
1

� �
0

)
.

Hence,

@ log(c
0

)

@ log(�
1

)
= �@ log(�

1

� �
0

)

@ log(�
1

)
� @ log(g

2

)

@ log(�
1

)
=

��
1

�
1

� �
0

� @ log(g
2

)

@ log(�
1

)
.
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Therefore,
@ log(#)

@ log(�
1

)
=

�1

log(2) + log(c
0

)

✓
�
1

�
1

� �
0

+
@ log(g

2

)

@ log(�
1

)

◆
.

Thus, to minimize
��� @ log(#)

@ log(�1)

��� when �
1

is su�ciently larger than �
0

, it is necessary to maximize c
0

and to minimize
��� @ log(g2)

@ log(�1)

���. Now,

@ log(g
2

)

@ log(�
1

)
=

�
⇣
1 + �0

↵0

⌘
�
1

�
2

g
2

↵
1

↵
2

Hence, if

�
1

�
2

⌧ ↵
1

↵
2

,

then
��� @ log(#)

@ log(�1)

��� will be minimized.

Case II: �
0

is minimum � value, and duration robustness with respect to �
2

. A similar argument as

above shows that the condition needed is

�
2

⌧ ↵
2

.

Case III: �
1

is minimum � value, and duration robustness with respect to �
0

. In this case, we have

that

c
1

=
↵
2

g
2

(�
2

� �
1

)

✓
g
1

+
↵
1

g
0

�
0

� �
1

◆
.

Hence,
@ log(c

1

)

@ log(�
0

)
= � @ log(g

2

)

@ log(�
0

)
+

@

@ log(�
0

)

✓
g
1

+
↵
1

g
0

�
0

� �
1

◆
.

It can be shown that the second term is equal to

�

�
0

�
1

↵
0

↵
1

� 
g
1

1 + ↵1g0

(�0��1)g1

!
�


�
0

�
0

� �
1

� �
0

�
0

+ ↵
0

� 
1

1 + g1(�0��1)

↵1g0

!
.

The terms in the parentheses are all less than 1. Hence, |log(2) + log(c
1

)| can be maximized and @ log(ck)

@ log(�i)
can be

minimized if

�
0

�
1

�
2

⌧ ↵
0

↵
1

↵
2

.
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Case IV: �
1

is minimum � value, and duration robustness with respect to �
2

. We have that

@ log(c
1

)

@ log(�
2

)
= �@ log(�

2

� �
1

)

@ log(�
2

)
� @ log(g

2

)

@ log(�
2

)
,

and the same argument as Case I can be used to show the condition needed is

�
2

⌧ ↵
2

.

Case V and VI: �
2

is minimum � value, and duration robustness with respect to �
0

, �
1

. We have

that

c
2

= 1 +
↵
2

g
2

(�
1

� �
2

)

✓
g
1

+
↵
1

g
0

�
0

� �
2

◆
.

A similar analysis as above shows that the condition needed is that

�
i

�
i+1

· · ·�
N

⌧ ↵
i

↵
i+1

· · ·↵
N

.

Summary In all, given the constraint that the cascade is considered activated, the constraint on the initial

conditions can be grouped together as:

�
N

↵
N

✓
1 +

�
N�1

↵
N�1

✓
· · ·

✓
1 +

�
0

↵
0

◆◆◆
< 1,

9k � i such that �
k

⌧ ↵
k

.
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