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Abstract

One of the most challenging computer vision problem in plant sciences is the segmentation of root

and soil from X-ray tomography. So far, this has been addressed from classical image analysis

methods. In this paper, we address this root/soil segmentation problem from X-ray tomography

using a new deep learning classification technique. The robustness of this technique, tested for the

first time on this plant science problem, is established with root/soil presenting a very low contrast

in X-ray tomography. We also demonstrate the possibility to segment efficiently root from soil

while learning on purely synthetic soil and root.
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Machine learning is commonly used to designate the ensemble of techniques by which some infor-

mation task (classification, quantification, prediction, identification) can be achieved automatically

from a training data basis. So far, a vast majority of the work in plant phenotyping by imaging

populations of plants has been developed in a classical image analysis method where the choice

of features was made by humans. Some attempts at applying machine learning in plant sciences

have recently appeared (see Ma et al. (2014) for a review). In these cases, however, the combi-

nation of the features was realized by the machine but the initial selection of the features was

still mainly relying on human expertize. This expertize approach is possible when the phenotyping

trait expected to be discriminant, for instance to identify clusters in the population of plants, is

known before-hand. A computer assisted observation of fine traits overpassing human capacity of

inference is nonetheless nowadays accessible. This even corresponds to a current huge trend in ma-

chine learning via the re-new of neural networks used under the form of the so-called deep-learning
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scheme LeCun et al. (1998, 2015) where the features on which the further information task is

realized are directly learned by the computer. First applied in computer vision, deep learning is

progressively being investigated for life science applications including biomedical imaging Greens-

pan et al. (2016), genetics Zhou and Troyanskaya (2015) and also very recently (so recently that it

is even unpublished at the moment of the submission of this article) in plant phenotyping Pound

et al. (2016). A limitation to the application of this technique to the field of plant phenotyping

is that this requires huge training data sets to avoid overfitting. Such training data sets have to

be annotated and at the moment only very few of these are available among the image analysis

community interested in plant sciences (except for the important Arabidopsis case Minervini et al.

(2015)). In this communication, we demonstrate how to circumvent this limitation and illustrate

this on the soil/root segmentation problem.

The soil/root segmentation problem is one of the most challenging computer vision problem of

plant sciences. Monitoring roots in soil is very important to quantitatively assess the development

of the root system and its interaction with soil. This has been demonstrated to be accessible with

X-ray computed tomography for single root systems Pound et al. (2013) and multiple root systems

Mairhofer et al. (2015). The spatial resolution in X-ray computed tomography is very good with

submillimetric resolution for entire root systems. However, the contrast between soil and root is

rather limited Metzner et al. (2015). This makes this segmentation challenging. Currently there

is only one soil-root segmentation software freely available for users Mairhofer et al. (2012). The

process in Mairhofer et al. (2012) is initialized at the soil-root frontier manually by the expert. A

level set method based on the Shannon-Jensen divergence of the gray levels between two conse-

cutive slices is then applied to the stack of images slice by slice from the soil-root frontier down

to the bottom of the pot where the root system is placed. The method is thus based on a prior

of the human expert that the roots should follow some continuous trajectory along the root systems.

We propose another approach to address the root-soil segmentation from X-ray tomography, based

on machine learning trained on annotated data sets. The communication is organized as follows.

Useful machine learning concepts are first shortly recalled for non experts and in order to position

our algorithm among the wide range of machine learning methods. Then, we go through our image

segmentation algorithm which is applied in two experiments : In the first experiment, the root-soil
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image is simulated and has very weak contrast compared to the one used in Mairhofer et al. (2012)

but in conditions which are however shown to be realistic. This is useful to stress the need for the

development of additional tools to address in an extended range of soil-root contrast the problem

of soil-root segmentation from X-ray computed tomography. The second experiment explores, on

better contrasted root/soil, the possibility to realize efficient root-soil segmentation in real images

after having trained our algorithm on purely synthetic data. We discuss in both cases the impact

of the parameters of the proposed algorithm in terms of performance.

1. Concepts

1.1. Machine learning

Machine learning (ML) is a sub-field of artificial intelligence where algorithms learn from data and

predict on data Bishop (2006). The most common task in ML is classification which consists in

teaching the machine how to sort variables with certain attributes in one class or another. We

shall now explain ML and further concepts from an image classification standpoint. In the image

processing field, variables are images, and attributes are features. Extracted after filtering, these

features carry information on the images which can be high or low level, local or global . . .For

example, a feature “edge” could be the number of pixels considered as “edge”, by an edge-searching

method, or their density, or another measure of their structure.

A typical example of classification in our case would be feeding the algorithm with images of

cats and dogs and have it label each image as “cat” or “dog”. Classification is a supervised learning

technique, which means we give the algorithm a batch of already labeled (=classified) images called

a training set. The algorithm starts off by a learning phase, which means it is going to consider

the features and the labels of the training images and search for the best way to use the former

to match the latter. The second phase is the testing one, where the algorithm considers a new

unlabeled set. Using the relationship between features and labels learned from the training set,

if the training set was of a size large enough for the algorithm to learn on many different cases

and “close enough” to the testing set, then the algorithm is capable of predicting the labels of the

new images from their features. A large variety of classification algorithms exists, such as decision

trees, k-nearest neighbors (KNN), support vector machine (SVM) . . .Bishop (2006).
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1.2. Deep learning

Deep learning (DL) is a branch of ML imagined in the early 1980s, but its emergence had to wait

for the computational power of the 2000s LeCun et al. (1998, 2015). It is a ML process structured

on a so-called convolutional neural network (CNN). CNN works as a classifier, taking an image as

an input and giving a label as an output.

A CNN is composed of several stacked layers of “neurons”, small computing elements, taking an

input, passing it through a function and yielding an output. Neurons are connected to other neu-

rons in upper or lower layers with each neuron link having a certain weight, and information flows

through these connections. The input on the first layer of neurons is the image to be processed.

Output of the first layer neurons is simply the values of the features computed on the image. These

values then go through the network, undergoing subsampling, non linear transformation and linear

combination as they pass through the layers, to finally yield a single output : the label of the image.

The CNN workflow is the following : During the training phase, features are computed for one

image on the first layer, then flowed through the layers. A label is predicted : some neurons will

have probably weighted in for one class, and some for the other. The predicted label is compared to

the actual label. If the prediction is correct, then all neuron pathways which lead to this prediction

are enhanced, i.e. they get more weight in the decision process next time, and all wrong neurons

pathways are reduced. As training progresses, the best neurons are "selected" for the decision

process.

The most interesting aspect of CNN is this : Each neuron can be seen as a feature extractor,

applying a filter to the image. The filters from layers other than the first one are the result of a

combination of filters from the layer above (because input of a neuron is simply a linear combination

of outputs of neurons above). This has two profound consequences : (a) There is a hierarchy in the

CNN neurons, i.e. neurons of the first layers detect low-level features (blobs, stripes, . . .), and this

information passed on is used in the deeper layers to search for more complex features (spirals,

faces, . . .) ; (b) since weights between neurons are constantly changing as training goes on, filters

change too, and so computed features also change.

This last point is the crucial point that made CNN a revolution in ML algorithms : It implies that

features to use are found automatically during training. Until CNN, the ML dogma was "training
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set + features to extract trained classifier". Now, only the training set is necessary : ML has gone

from feature engineering to feature learning.

1.3. Transfer learning

One of the problems of DL with CNN is that the learning phase, where the network undergoes

weight modification, can be very time-consuming and may need a very large set of images.

In this article we use a common trick called transfer learning Pan and Yang (2010) to circumvent

this problem. The idea is to use an already trained CNN to classify images. This trained CNN

has been trained for a classification application which is not the one we want to perform. To

understand why this approach for the classification is however working, let us recall that a CNN

has two functionalities : (a) it has modeled features over training, (b) it classifies images given

as input using these features. Only the (a) functionality of the pre-trained CNN is used in the

transfer learning approach. This training-modeling phase of the CNN is realized beforehand on an

existing very large database of images, manually classified in different cases among a large array of

possible classes (e.g. dog races, guitar types, professions, plants, . . .). By being built on this large

database, the CNN is assumed to have selected a very good feature space because it is now capable

of sorting very diverse images in very diverse categories. The assumption is somehow grounded

by the existence of common features (blobs, tubes, edges, . . .) in images from natural scenes. The

study of these common features in natural scenes is a well-established problematic in computer

vision which has been investigated for instances in gray level images Ruderman (1997); Gousseau

and Roueff (2007), in color images Chapeau-Blondeau et al. (2009); Chauveau et al. (2010) and

even in 3D images Chéné et al. (2013). It is thus likely that, since our images to be classified share

some common features with the images of the database used for the training of the CNN, the

selected features will also operate efficiently on our images. Please note that we do not use the (b)

part of the pre-trained CNN because this CNN was trained on classes which are probably not the

ones we are interested in, but then we simply feed our computed features to a classic classifier (as

described in section 1.1) such as SVM.

2. Implementation

In this section we describe how, from the concepts shortly recalled in the previous section, we desi-

gned an implementation capable of addressing the soil-root segmentation from X-ray tomography
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images.

2.1. Application to image segmentation

We are interested in classifying each pixel of the image to segment as root or soil. However, the

ML techniques presented in the previous section do not consider single scalars but images as input

to realize a classification. Therefore, the idea is to consider for the classification of a pixel a small

window, also called patch, centered on this pixel. Each patch is therefore a small part of the image,

and its class ("soil/root") is the class of the central pixel around which it was generated. It is these

patches which are given to the pre-trained CNN. Once the features are computed for each patch,

these features are given to a classic classifier. There is of course finally a training phase where

this classifier receives labeled patches (coming from a segmented image), and then a testing phase

where the classifier predicts the patch class.

2.2. Algorithm

Our algorithm, based on transfer learning and described as Algorithm 1, goes through three

basic steps, both for training and testing : creating the patches around the pixels, extracting the

features from these patches with a pre-trained CNN, and feeding them to a SVM. The training

image is labeled (each pixel is labeled “part of the object” or “part of the background”), and these

labels are fed to the SVM along with the computed features to train it. The trained SVM is then

capable of predicting pixel labels from the testing image’s features. As underlined in Algorithm

1, the parameters to be tuned or chosen by the user rely on the size of the patch and the size of

the training data set.

2.3. Material

In this article, we used an existing pre-trained CNN developed by Chatfield et al. (2014) and

trained on Imagenet

(http ://www.vlfeat.org/matconvnet/pretrained/). We used this CNN because it is one of the most

general ones (some CNN were trained on more specific cases such as face recognition), and so it

can be expected to be more efficient in transfer learning on our problem. This network is composed

of 22 layers and yields a total of 1000 features. Convolutional filters applied to the input image

in the first layer of the CNN can be seen in Fig. 1. These filters appear very similar to wavelets

Flandrin (1998) oriented in all possible directions. This is likely to enhance blob-like or tube-like

structures such as the tubular roots or grainy blobs of the soil found in our X-ray tomography.
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Algorithm 1 Proposed machine learning algorithm for image segmentation
1: CNN ← load(ImageNet.CNN) ;
2: training image ← root-soil-training-image.png ; // image which segmentation we know
3: testing image ← root-soil-testing-image.png ;
4: size images = size(training image) ;
5: nb of training pixels = to be fixed by the user ; patch size = to be fixed by the user ;
6:
7: // Training
8: training labels ← training image.labels ;
9: training patches ← create patches(training image, nb of training pixels, patch size) ;

10: training features ← compute features(training patches, CNN) ;
11: trained SVM ← train SVM(training features, training labels) ;
12:
13: // Testing
14: testing patches ← create patches(testing image, size images, patch size) ;
15: testing features ← compute features(testing patches, CNN) ;
16: segmented image ← trained SVM.predict labels(testing features) ;
17:
18: function create patches(image, nb of pixels, patch size)
19: for i=1 :nb of pixels do
20: x← random ; y ← random ;
21: patches(i) ← crop image(image, x, y, patch size) ; return patches ;
22:
23: function compute features(patches,CNN)
24: for i=1 :length(patches) do
25: features(i) ← CNN.compute features(patches(i)) ; return features ;
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The classifier used was a linear SVM. It was chosen after comparing performances on our data

by cross validation with all other types of classifiers available in Matlab. Computing was run on

Matlab R2016A, on a machine with an Intel (R) Xeon (R) 3.5 GHz processor, 32 GB RAM, and

a FirePro W2100 AMD GPU.

Figure 1: Convolutional filters selected by the first layer of the chosen CNN.

All CT data are measured with an individually designed X-ray system at the Fraunhofer EZRT

in Furth, Germany using a GE 225 MM2/ HP source Aerotech axis systems and the Meomed

XEye 2020 Detector operating with a binned rectangular pixel size of 100 µm. The source was

operated at 175 kV acceleration voltage with a current of 4.7 mA. To further harden the spectra,

a 1 mm thick copper pre-filtering was applied. The focus object distance was set to 725 mm and

the focus detector distance to 827 mm resulting in a reconstructed voxel size of 88.9 µm. To mimic

the data quality typically occurring in high-throughput measurement modes, only 800 projections

with 350 ms illumination time where recorded within the 360 degrees of rotation. This results in a

measurement time of only 5 minutes for scanning the whole field of view of about 20 cm. The pot

used for the measurement was a PVC tube with 9 cm diameter and only a small partial volume

in the middle part of the whole reconstructed volume was used to reduce the segmentation time.

The roots used as reference in experiment of section 3 and as experimental data for experiment of

section 4 were maize plants of the type B73. During the growth period, the plants were stored in a

Conviron A1000PG growth chamber. The temperature within the 12 hours of light is 21◦ C and 18
◦ C during the night. Two different soils were used for the two experiments. In experiment of section

3, the soils were the commercially available Vulkasoil 0/0,14 obtained from VulaTec in Germany.

In experiment of section 4, the soils were the agricultural soil used in Metzner et al. (2015). Both

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 25, 2016. ; https://doi.org/10.1101/071662doi: bioRxiv preprint 

https://doi.org/10.1101/071662


soils were mainly mineral soils with a coarse particle size distribution. While the Vulkasoil inhibits

in experiment of section 3 a very low contrast to the root system, the high amount of sand in the

agricultural soil of section 4 sample increases the contrast visibly.

3. Segmentation of simulated roots

In this section, we designed a numerical experiment dedicated to the segmentation of simulated

root systems after learning from other simulated root systems. Learning and testing images are

both generated the same way : 3D (244*244*26) soil images are real soil images coming from X-ray

tomography. Root structure is generated from the L-system simulator of Leitner et al. (2010) under

the form of Benoit et al. (2014a) presented in 3D in Benoit et al. (2014b). Simulated roots are

added to the soil by replacing soil pixels by root pixels. The intensities of the roots are measured

from a manual segmentation in real tomography images of maize in Vulkasoil. The estimated mean

and standard deviation are given in Table 1. We then simulated with same mean and standard

deviation for the gray levels the roots from a spatially independent and identically distributed

Gaussian noise. As visible in Fig. 2, learning and testing images are not performed on the same

realization of soil, nor the same root structure. This experiment is interesting because the use of

simulated roots enable us to experiment various levels of contrast between soil and root. Also,

since the L-system used is a stochastic process, we have access to an unlimited size of training or

testing data set. It is therefore possible with this simulation approach to investigate the sensibility

of the machine learning algorithm of the previous section to the choice of the parameters (size of

the patch, size of the training data sets, . . .).
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Figure 2: Presentation of simulated root systems. Panel A shows a slice of the training image (including
soil and root). Roots were generated by simulating an L-system structure and replacing soil pixels by root
pixels with gray intensity level drawn from a white Gaussian probability density function with fixed mean
and standard deviation. Position of root pixels are shown in white in panel C which acts as a binary
ground truth. Panel B gives a slice of the testing image where roots were generated the same way, and
have the same mean and standard deviation than in panel A. Ground truth of Panel B is given in panel
D.

3.1. Nominal conditions

As nominal conditions for the root/soil contrast, we considered the first-order statistics (mean and

standard deviation) of roots and soil given in Table 1 which corresponded to the contrast found

in the real acquisition conditions of Maize in Vulkasoil (as described in section 2.3). As visible in

Figs. 2 A and B, these are conditions which provide a very low contrast.

Statistics Root µ Root σ Soil µ Soil σ
Values 100 15 125 20

Table 1: Mean (µ) and standard deviation (σ) values for the roots and soil in Fig. 2. Images are coded
on 8 bits. Training and testing images have the same statistics.

In the conditions of Table 1, with a combination of the information obtained with a patch of 2

pixels and 15 pixels (see section 3.2) and a training data set of 1000 patches, the segmentation

results obtained are given in Fig. 3 with statistical performance given in the confusion matrix of

Table 2. To summarize the performance of the segmentation with a simple scalar, we propose a

quality measure QM obtained by multiplying sensitivity (which proportion of root pixels were
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detected as such) and specificity (which proportion of detected root pixels are truly root pixels)

QM =
TP 2

(TP + FP )(TP + FN)
(1)

with TP being true positives, FP false positives and FN false negatives. The quality measure QM

is maximized at 1 for perfect segmentation. For the segmentation of Fig. 3, QM = 0.23. As visible

in Table 2 and in Fig. 3, the segmentation is not perfect especially since false positives outnumber

true positives. However, the quality of the segmentation cannot be fully captured by sole pixel to

pixel average metrics. The spatial positions of false positive pixels are also very important. And,

as visible in Fig. 3, false positives (in yellow) are gathered just around the true positives and small

false positives clusters are much smaller than the roots. This means that we get a good idea of

where the roots actually stand and with very basic image processing techniques such as particle

analysis and morphological erosion, one could easily yield a much better segmentation result. Also,

when the segmentation is applied on the whole 3D stack of images, it appears in Fig. 3 panels E

and F, that the overall structure of the root system is well captured by comparison with the 3D

structure of the ground truth shown in Fig. 3 panels B and C. It is useful to recall, while inspecting

Figs. 3 E and F that the process classification is realized in a pixel by pixel 2D process and it

would also be possible to improve this result by considering 3D patches.
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Figure 3: Experiments on simulated root. Panel A gives a slice of the binary ground truth (position
of the roots in white). Panels B and C provide 3D view of ground truth from two different standpoints.
Panel D gives the result of the segmentation. Blue pixels mean true negative (soil pixels predicted as
such), yellow is false positive (soil pixels predicted as roots), orange true positive (root pixels predicted as
such), and purple false negative (none in this result). Panels E and F are 3D views of the segmentation
in the two viewing angles of panels B and C.

Root pixel Soil pixel
Predicted root 0.6% 1.9%
Predicted soil 3.10−3% 97.5%

Table 2: Confusion matrix of results in nominal conditions as shown in Fig. 3. Total number of pixels
was 1.784.744.

To obtain the 3D (266*266*26 pixels) result of Fig. 3 E and F, about 2 hours were necessary.

Computing time is mainly (95%) due to computing of the features on all the pixels of the testing

image while the other steps had a negligible computation cost. Here we considered the full feature

space (1000 features) from Chatfield et al. (2014). It would certainly be possible to investigate the

possibility to reduce the dimension of this feature space while preserving the performance obtained

in Fig. 3. Instead in this study, we investigate the robustness of our segmentation algorithm when

the parameters or datasets depart from the nominal conditions exhibited in this section.
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3.2. Robustness

A first important parameter for using our ML approach is the size of the learning data set. In

usual studies based only on real data of finite size, the influence of the learning data set is difficult

to study since increasing the learning data set necessitates to reduce the testing data set. With

the data from the previous section, where roots are simulated, we do not have to cope with this

limitation since we can generate an arbitrary large training data set. Figure 4 illustrates the quality

of the segmentation obtained for different training data sets sizes on a single soil/root realization.

A degradation of the results is visible only when the training size is decreased from 100 to 25

patches. Since the root simulator is a stochastic process, performance is also given in Fig. 5 as a

function of the size of the training data set, in terms of box plot with average performance and

standard deviation computed over 5 realizations for each size of training data set tested. As visible

in Fig. 5, the average performance are found almost constant, and the increase of the training data

set mainly benefits to the decrease of the dispersion of the results.

Figure 4: Segmentation results for a training size of 25, 100, 500, 1000 and 2000 patches, drawn from
the 3D training image (see Fig. 2). The image to segment was of size 266*266 with 312 root pixels. Same
color code as in Fig. 3.
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Figure 5: Quality of segmentation QM for a training size of 25, 100, 500, 1000 and 2000 patches. The
root simulator being a stochastic process, the performance are given in terms of box plot with average
performance (red line) standard deviation (solid line of the box) and max-min (the “mustach” of the box)
computed over 5 realizations for each size of training data set tested.

A second parameter of importance to use our ML approach is the size of the patch. As visible

in Fig. 6 left, decreasing the size of the patch produces finer segmentation of the roots and their

surrounding tissue but also increases spurious false detection far from the roots. Increasing the

patch size, see Fig. 6 right, produces a good segmentation of roots, with very few false detection

far from the roots but with over segmentation on the tissue directly surrounding the root. An

interesting approach can consist in combining the results produced from a small and a large patch

by a simple logical AND operation which detects as root only the pixels detected as root for both

sizes of patches. This was the strategy adopted in Fig. 3 which removes false detection far from the

root while preserving a fine detection of the root with few false detection in the tissue surrounding

the roots.

Figure 6: From left to right segmentation results for a patch size of 5, 15, 25 and 31 pixels wide. Roots
in the image to segment could have a diameter of 10 to 15 pixels. Same color code as in Fig. 3.
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4. Segmentation on real roots

In this section, we investigate the performance of our ML algorithm when applied to real roots. The

contrast considered is higher than in the previous section (see detail in section 2) and corresponds

to the one found in Mairhofer et al. (2012). We conducted the numerical experiment described

in Fig. 7 designed for the segmentation of real root systems after learning from simulated root

systems and simulated soil.

We tried to limit the size of the set of parameters controlling the simulated root and soil. First,

the shape of the root systems is not chosen realistically (we found it was not mandatory), but the

typical size of the object is chosen similar to the size of the real roots to be segmented. Also, like in

the nominal conditions section, we tuned the first-order statistics (mean and standard deviation)

of roots and soil given in Table 3 which corresponded to the contrast found in real acquisition

conditions (Fig. 7, panel B). In addition, we tuned the second-order statistics of the simulated soil

and roots on real data sets. These second-order statistics were controlled by mean of the algorithm

described in Fig. 8. By operating this way, we obtained the very promising segmented images of

Fig. 9 with a confusion matrix given in Table 4.

Image Root µ Root σ Soil µ Soil σ
Statistics 110 15 180 25

Table 3: Mean (µ) and standard deviation (σ) values for the roots and soil of the experiment with real
root images. Images are coded on 8-bits. Training and testing images have the same statistics : simulated
training images were created to resemble the testing ones.
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Figure 7: Experiment on real root : Panel A shows a slice of the training image (simulated). The
corresponding binary ground truth is given in white in panel C. Root intensity values are generated from
a white Gaussian probability density function with fixed mean and standard deviation, and are then low-
pass filtered (see Figure 8) until the autocorrelation of the root (A) is similar to the one of real roots
(B). Same goes for the soil. Panel B is a slice of the testing image, a real image of an X-ray tomography
reconstruction. Panel D shows approximate ground truth of B created manually.

Figure 8: Pipeline for creating simulated texture with the same autocorrelation as real images. White
noise is generated, then a low-pass filter is applied. This filter is realized by a multiplicative binary mask in
the discrete cosine transform domain where low spatial frequencies are multiplied by 1 and the high spatial
frequencies are multiplied by 0. The size of the mask acts as the cutoff frequency of this filter. We start
with a very high cutoff frequency (i.e. we don’t change much the white noise). The autocorrelation matrix
of the new image is then compared to the one of the real image, and the cutoff frequency is decreased if
they are not similar enough, making the image "blurrier" and the autocorrelation spike wider.
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Figure 9: Panel A shows ground truth (manually estimated). Panel B shows the segmentation obtained
from our ML algorithm, with parameters training set size = 1000, patch = 12. Color code is the same as
in Fig. 3

Root pixel Soil pixel
Predicted root 6.9% 1.0%
Predicted soil 3.7% 88.4%

Table 4: Confusion matrix of the results of Fig. 9. Total number of pixels was 49.248. QM=0.57

4.1. Robustness

We have engineered the training data, generated from simulation, to enable our ML algorithm

to yield the good segmentation result of Fig. 9. We found that the simulated training data must

share some similar statistics with the real image for the segmentation to work. Specifically, it is

sufficient to ensure the match of the first-order statistics (mean, standard deviation) and second-

order statistics (autocorrelation) with the corresponding statistics of the image to be segmented.

To test the robustness of this result, we have realized the same segmentation while changing one

of these statistics in the training data, the other two staying similar to the testing data. Evolution

of the performances can be found in Fig. 10.
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Figure 10: Panel A, top, shows evolution of QM when the root intensity mean varies from 0 to 255 in
the training data (s.d. and autocorrelation staying the same as testing data). The vertical blue line is the
value of root mean in the testing data (the one we used for our results of Fig. 9). Bottom part shows part
of training images with different means as an illustration. Panels B and C show same results for standard
deviation and autocorrelation. Autocorrelation was quantified as the value of the cutoff frequency of the
filter during the simulated image’s creation.

As expected, segmentation is best when training data resembles testing data (vertical line in

Fig. 10). However, segmentation remains good when statistics depart in a reasonable range around

the optimal value. These ranges are visible in Fig. 10. For example, panel A shows that the

mean of the root in the 80-120 range provides reasonably good results compared to the optimum

case of 97 which corresponds exactly to the mean of the image to be segmented. This establishes

conditions where it is possible to automatically produce efficient segmentation of soil and root in

X-ray tomography. Such regimes of stability are found also in panels B and C of Fig. 10 for the

standard deviation and the autocorrelation.

5. Conclusion

In this article, we have demonstrated the value of deep learning to address the difficult problem

of soil-root segmentation from X-ray tomography images. This was obtained from the so-called

transfer learning approach where a convolutional neural network is trained on a huge image data

set, distinct from soil-root, for classification purposes to select a feature space which is then used

to train an SVM on the soil-root segmentation problem. We demonstrated that such an approach

gives very good results on simulated roots and on real roots even when the soil/root contrast is
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very low. We have discussed the robustness of the obtained results with respect to the size of the

training data sets and the size of the patch used to classify each pixel. We illustrated the possibility

to perform segmentation of real roots from training on purely synthetic soil and root. This was

obtained in stationary conditions where both soil and root could be approximated by their first

order and second order statistics.

These first uses of deep learning for the soil-root segmentation problem can serve as a reference to

investigate more complex situations which are found in practice. The water density of root may

not be constant along the root systems. The soil because of gravity, is often not found to present

the same compactness along the vertical axis. It would therefore be important to push forward the

investigation initiated in this article in the direction of non-stationarity of the gray levels in the

root and in the soil. Also as discussed in section 3 of this article, this work opens many perspectives

of optimization in the selection of the convolutional neural network, the extension of the patches

in 3D and the post processing of the classified images.

It is important to underline again that the use of simulated data, which offers the possibility to

generate unlimited data sets and which enables the control of all parameters of the data set, was

specially useful to establish conditions on which transfer learning can be expected to give good

results with real soil/root segmentation. Also, thanks again to the use of simulated data which

creates annotated ground truth, our approach could serve to present a comparison with classic

image analysis methods for soil/root segmentation (for instance Mairhofer et al. (2012)) or other

deep learning based algorithms. However, transfer learning is a generic approach which can be

applied whenever a classification task is targeted. It could thus also be applied to other computer

vision problem for the plant sciences which can be expressed in classification terms such as the

detection of pathogens and healthy tissue Neethirajan et al. (2006); Sankaran et al. (2010), the

segmentation of shoot from background Chéné et al. (2012) or the classification of species Gwo

et al. (2013) to cite only a few recent issues in plant phenotyping. This calls for the generation of

annotated data sets or the production of simulators so as to establish in controlled conditions the

typical performances to be expected with deep learning applied in plant sciences in the same way

as initiated in this article.
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