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ABSTRACT 29 

Background: Bacteria modulate subcellular processes to handle stressful environments. Genome-wide 30 

profiling of gene expression (RNA-Seq) and fitness (Tn-Seq) allows two views of the same genetic 31 

network underlying these responses. However, it remains unclear how they combine, enabling a 32 

bacterium to overcome a perturbation. 33 

Results: Here we generate RNA-Seq and Tn-Seq profiles in three strains of S. pneumoniae in response 34 

to stress defined by different levels of nutrient depletion. These profiles show that genes that change 35 

their expression and/or become phenotypically important come from a diverse set of functional 36 

categories, and genes that are phenotypically important tend to be highly expressed. Surprisingly, we 37 

find that expression and fitness changes rarely occur on the same gene, which we confirmed by over 140 38 

validation experiments. To rationalize these unexpected results we built the first genome-scale metabolic 39 

model of S. pneumoniae showing that differential expression and phenotypic importance actually 40 

correlate between nearest neighbors, although they are distinctly partitioned into small subnetworks. 41 

Moreover, a meta-analysis of 234 S. pneumoniae gene expression studies reveals that essential genes and 42 

phenotypically important subnetworks rarely change expression, indicating that they are shielded from 43 

transcriptional fluctuations and that a clear distinction exists between transcriptional and phenotypic 44 

response networks. 45 

Conclusions: We present a genome-wide computational/experimental approach that contextualizes 46 

changes that occur on transcriptomic and phenomic levels in response to stress.  Importantly, this 47 

highlights the need to connect disparate response networks, for instance in antibiotic target identification, 48 

where preferred targets are phenotypically important genes that would be overlooked by transcriptomic 49 

analyses alone.  50 
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INTRODUCTION  51 

How organisms handle and overcome stress in their environment is a central question in biology, with 52 

applications in fields ranging from bioengineering to drug(-target) discovery. With the advent of 53 

genome-wide approaches, it has become clear that even relatively simple perturbations, such as a change 54 

in extracellular pH or the presence of an antibiotic, require complex physiologic responses affecting 55 

multiple subcellular processes [1-7]. A complete cellular stress response can be separated into at least 56 

two organization levels. The transcriptional response describes the change in gene expression following 57 

stress, while the phenotypic response describes how the importance of each gene (fitness) changes due to 58 

stress. Although the transcriptional and phenotypic stress responses are inter-dependent, they are 59 

measured experimentally by two disparate technologies. Transcriptomic profiling, as measured by 60 

cDNA microarrays or RNA-Seq, has been particularly popular in deciphering the complex 61 

bacteria-environment interaction to identify genes that change in their transcript abundance upon various 62 

environmental perturbations, such as exposure to antibiotics [8,9], interaction with host niches [10], and 63 

disruption of iron homeostasis [11].  Although such profiles provide a detailed picture of the 64 

transcriptional landscape, it remains to be determined whether transcript abundance alone is predictive 65 

of the phenotypic importance of a gene [12,13]. Alternatively, genome-wide mutant fitness profiling 66 

approaches, such as transposon insertion sequencing (Tn-Seq), have been developed to directly link 67 

genotypes to phenotypes and thereby measure the phenotypic stress response on a genome-wide scale 68 

[14-18]. This means that Tn-Seq determines the phenotypic importance of each gene in the genome in a 69 

specific environment (referred to as “gene fitness” in this paper) by measuring the effect each gene 70 

knockout in the genome has on fitness. For example, the lower the fitness, the more important a gene is 71 

for maintaining survival under a specific (e.g. stressful) condition [2,14,18]. Although both 72 

transcriptomic and phenotypic fitness profiling interrogate the same gene network, little is known about 73 

how these two data types correlate, i.e. are differentially expressed genes also phenotypically important 74 

during stress? Indeed, it is generally assumed that differentially expressed genes also represent 75 

phenotypically important genes. However, this assumption has not been thoroughly investigated, raising 76 

the possibility that if transcriptional and phenotypic stress responses are not correlated, then measuring 77 

either one alone offers an incomplete and incorrect picture of the cellular response. Here we determine 78 
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whether a correlation between transcription and phenotype exists and whether these stress responses can 79 

be combined to obtain a complete physiologic response. 80 

 As our model system we employ the human pathogenic bacterium Streptococcus pneumoniae, a 81 

major respiratory pathogen and source of morbidity and mortality. S. pneumoniae colonizes the 82 

nasopharynx asymptomatically, but by disseminating to other tissues it can trigger disease, including 83 

pneumonia, meningitis, sepsis, and otitis media, which results in ~1 million deaths annually among 84 

children <5 years of age and ~0.5 million among groups including the immunocompromised and the 85 

elderly (>65 years) [19-21]. One possible challenge in exploring the physiologic response in a species 86 

such as S. pneumoniae is the genomic variation among strains. The increasing availability of fully 87 

sequenced genomes for this and other species has demonstrated a distinction between the species’ core 88 

genome (the set of genes shared by all strains) and its pan-genome (the species’ global genetic repertoire) 89 

[22-25]. Because no gene or pathway functions in a vacuum, rather they are connected by complex 90 

genetic networks [26,27], the presence or absence of genes among different pneumococcal strains 91 

suggests that each strain’s genomic network may be differently wired, which could potentially make 92 

phenotypes strain-dependent. Indeed, we have recently shown that strain-specific phenotypic stress 93 

responses in S. pneumoniae, for instance in response to antibiotics, may be common [1]. Thus, when 94 

working with a bacterium with a large pan-genome, an ideal approach should obtain a species-wide, 95 

generalizable view of how the bacterium overcomes a stressful environment. 96 

 In this study, we investigate whether differentially expressed genes are also phenotypically 97 

important during stress in S. pneumoniae. We generate an unbiased, high-quality, and extensively 98 

validated profile of the bacterial stress response by employing two genome-wide approaches, RNA-Seq 99 

and Tn-Seq, to measure both the transcriptional and phenotypic stress response for three pneumococcal 100 

strains under three different levels of nutrient depletion. Surprisingly, there is little correlation between 101 

differential expression and phenotypic importance across the entire genome. To contextualize the 102 

transcriptional and phenotypic profiles, we built and curated the first genome-scale metabolic model in 103 

the genus Streptococcus. By integrating all our data into this model we show that the disparate genes 104 

with expression and fitness changes are actually closely connected in the genomic network. However, 105 

phenotypically important and essential genes seem to be transcriptionally shielded from large 106 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2016. ; https://doi.org/10.1101/071704doi: bioRxiv preprint 

https://doi.org/10.1101/071704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

fluctuations in expression and therefore organizationally separated from transcriptionally plastic, but 107 

phenotypically unimportant, genes. Importantly, we provide a detailed roadmap to develop similar 108 

systems-level approaches in other microorganisms. Our approach facilitates profiling and reconciling 109 

transcriptomic and mutant fitness datasets and enables mapping of an organism’s full physiologic 110 

response to an environmental disturbance. Moreover, this study provides a clear rationale that 111 

emphasizes the importance of targeting phenotypically important genes rather than differentially 112 

expressed genes in applications such as in drug target discovery. 113 

  114 
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RESULTS AND DISCUSSION 115 

Designing a robust nutrient depletion assay for S. pneumoniae. To avoid bias in the bacterial 116 

response to nutrient depletion that might result from genomic variation in a particular strain, we selected 117 

three phylogenetically distant strains to represent S. pneumoniae: TIGR4 (T4), Taiwan-19F (19F) and 118 

D39 (Additional File 1). Both T4 and 19F can cause invasive pneumococcal disease (IPD): T4 is a 119 

serotype 4 strain that was originally isolated from a Norwegian patient with IPD [28,29]; 19F is a 120 

multi-drug resistant strain isolated from a patient with IPD in Taiwan [30,31] (Table 1). D39 is a 121 

historically important and commonly used serotype 2 strain that was originally isolated from a patient 122 

about 90 years ago [32] (Table 1). Concerning their genomic content, the three strains share 1647 genes, 123 

while T4 has 217, 19F has 140 and D39 has 93 strain-specific genes (Additional Files 2 and 3). To 124 

simulate systemic nutrient depletion, we designed three increasingly restrictive media to cultivate S. 125 

pneumoniae. The first, semi-defined minimal media (SDMM), is a relatively rich media we have used 126 

previously [1,2] that contains a single carbon source (glucose), yeast extract, casein hydrolysate 127 

(digested amino acids), salts, trace metals, and vitamins (Table 2). The second, a chemically defined 128 

media (CDM), is based on a previously described recipe [33], however the original composition did not 129 

allow each strain to grow robustly. By adjusting the recipe, mainly by taking SDMM as the basis and 130 

replacing the yeast extract and casein hydrolysate by an equimolar mixture of the 20 amino acids, 131 

comparable growth rates to SDMM are achieved. CDM is thus completely defined, is less nutrient rich 132 

then SDMM, but still contains several non-essential components. By iteratively removing components 133 

of CDM, we created a minimal CDM, or MCDM, that still enables each strain to grow. In contrast to 134 

SDMM and CDM, each component in MCDM is essential for growth in at least one of the three strains, 135 

and removing any component of MCDM triggers severe growth defects in at least one strain. Nutrient 136 

availability therefore decreases from SDMM to CDM, and further to MCDM (Additional File 4), which 137 

is illustrated by a decrease in the growth rate of S. pneumoniae (Table 1, Additional File 5). By using 138 

multiple strains and three media conditions, generalizable -- instead of strain and/or 139 

environment-specific -- profiles are assembled that map the phenotypic and transcriptomic stress 140 

responses. 141 

 142 
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Genome-wide fitness and expression profiling reveal the phenotypic and transcriptional 143 

importance of cellular processes upon nutrient depletion. We applied two high-throughput, 144 

genome-wide methods to determine on two different levels how S. pneumoniae deals with nutrient 145 

depletion stress. The first level is measured by Tn-Seq, which quantifies a gene's effect on the growth 146 

rate (fitness) resulting from a genetic disruption by transposon insertions [18]. The second level is 147 

determined by RNA-Seq, which measures gene expression by quantifying transcript abundance. Tn-Seq 148 

fitness data thus provides insight into the phenotypic importance of each gene, while RNA-Seq provides 149 

insight into which genes respond to stress on a transcriptional level. 150 

Six transposon insertion libraries for each strain were constructed and grown in each media to 151 

generate Tn-Seq profiles and a comprehensive genotype-phenotype map for each strain/environment 152 

pair (Figure 1a). As expected, and as we have shown before [1,2,14], the majority of insertions do not 153 

produce a significant fitness change, and more fitness defects (fitness < 1) were observed than increases 154 

in fitness (fitness > 1) (Additional File 6). To complement the Tn-Seq fitness data, genome-wide gene 155 

expression was measured for each strain/media pair by RNA-Seq. Four replicates from mid-exponential 156 

phase cells were prepared for each strain/media pair and sequenced at high depth (3.5-16 million 157 

reads/sample) [34]. Each sample contained reads mapping to 88-96% of all annotated genes in the 158 

corresponding genome, and transcript abundance between genes varied by nearly 105 (Figure 1b, 159 

Additional File 6). Comparing the raw expression value (i.e. transcript abundance, not fold change) with 160 

fitness revealed that most genes with a fitness defect are highly expressed (Figure 1c), which is a pattern 161 

that holds across all strains and all three media. However, this pattern is of little predictive value, since the 162 

majority of highly expressed genes do not have a fitness defect or increase, and thus transcript abundance 163 

alone does not predict fitness. 164 

 165 

Validation experiments confirm that high-throughout profiles consist of high confidence data. The 166 

high-throughput genome-wide approaches Tn-Seq and RNA-Seq provide comprehensive profiles of cell 167 

physiology at two different levels. However, as with any high-throughput experiment the resulting 168 

datasets require careful validation to assess their accuracy. Tn-Seq data were validated by constructing 31 169 

individual gene deletion mutants across the three strains. The mutants were used in monoculture growth 170 
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assays and 1x1 competition assays in which the wild type strain is competed against the mutant to obtain 171 

fitness. In total 122 genotype-phenotype relationships were validated across the three strains and three 172 

media conditions, which to our knowledge is the largest validation set generated to date for different 173 

strains of a bacterial pathogen for which no ordered knockout arrays exist. This resulted in a strong 174 

correlation (R2 = 0.82), which is similar to correlations we achieved previously [1,2] and confirms 175 

high-confidence Tn-Seq fitness data (Figure 2a; Additional File 7). Importantly, these data also give 176 

detailed information on what type of stress is experienced by the bacterium. For example, Tn-Seq data 177 

shows that in rich media (SDMM) ∆aroE (SP1376), which catalyzes the conversion of 178 

3-dehydroshikimate to shikimate and is associated with an upstream reaction in the de novo synthesis 179 

pathway of aromatic amino acids, has a growth defect (SDMM: WaroE = 0.75), which we indeed validated 180 

(Figure 2b). However, a more severe defect in growth is measured when ∆aroE is grown in CDM and 181 

thus under stress by limited availability of amino acids (CDM: WaroE = 0.26). Moreover, the gene becomes 182 

almost conditionally lethal in MCDM in the absence of aromatic amino acids (MCDM: WaroE < 0.10). 183 

These data not only show that the Tn-Seq data consist of high confidence fitness values, but it also 184 

pinpoints environment-dependent weaknesses in the genomic network, highlighting how different genes 185 

become important in an environment-dependent manner. Moreover, it shows what type of stress is 186 

experienced in the environment; the conditional importance of aroE suggests an increasing lack of 187 

aromatic amino acids in CDM and MCDM. 188 

 Additionally, the RNA-Seq data were validated by qPCR by measuring the expression of nine genes 189 

in the three media conditions (Figure 2c). The changes in expression measured by qPCR match the 190 

RNA-Seq differential expression data across all strains and media (Additional File 8), confirming that the 191 

generated genome-wide expression profiles represent real changes in transcription. 192 

 193 

Identifying genetic drivers of the nutrient stress response. The validated high-throughput data were 194 

used to identify genes responsible for the phenotypic (Tn-Seq) and transcriptomic (RNA-Seq) stress 195 

responses. By comparing fitness across environments we determined which genes changed their fitness 196 

(∆fitness, or ∆W) as S. pneumoniae transitions from rich media (SDMM) to defined (CDM) or minimal 197 

(MCDM) media (Figure 3a). Thus genes whose importance increases upon nutrient depletion will have 198 
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a decreased fitness (i.e. a negative ∆fitness) in the more restrictive media, while those whose importance 199 

does not change will have a ∆fitness of 0. Those genes whose importance decreases will have an 200 

increased fitness (i.e. a positive ∆fitness). Following a change from SDMM to either CDM or MCDM, 201 

each strain had an average of 12 genes increase in fitness and 29 genes decrease in fitness. For example, 202 

gene SP1555 (dihydrodipicolinate reductase) is a key enzyme for lysine biosynthesis. A deletion of 203 

SP1555 thus blocks de novo lysine synthesis and should hamper S. pneumoniae’s ability to overcome the 204 

depletion of extracellular lysine in CDM and MCDM. Indeed, Tn-Seq data shows that SP1555 is not 205 

important in rich media (SDMM: WSP1555 = 0.95), but shows decreasing fitness, and thus increasing 206 

importance, in the more stringent media (CDM: WSP1555 = 0.78, ∆WSP155 = - 0.17; MCDM: WSP155 = 0.07, 207 

∆WSP155 = - 0.71).  208 

 Besides genes that change in fitness, genes that change in expression were identified by comparing 209 

transcript abundances between SDMM and either CDM or MCDM (Figure 3b). On average, the media 210 

shift caused 101 genes to significantly increase expression and 125 genes to decrease expression. 211 

Overall, 5.4 times more genes showed significant expression changes compared to significant fitness 212 

changes. Importantly, in both the Tn-Seq and RNA-Seq datasets, the significant changes were 213 

distributed across a variety of cellular subsystems, indicating that the nutrient depletion environments 214 

trigger stress that is experienced network-wide (Figure 3c). Among metabolic subsystems, amino acid 215 

pathways are especially well represented, with 17% of genes showing a fitness change and 23% of genes 216 

differentially expressed (Additional File 6).  217 

 218 

Genome-wide data visualization with a whole cell model reveals that expression profiles are poor 219 

predictors of phenotypic importance. S. pneumoniae designates a large fraction of its genome to 220 

metabolism, and a number of metabolic enzymes have been linked to the bacterium's phenotypic stress 221 

response to nutrient and antibiotic perturbations [1,2]. Given the large number of metabolic genes with 222 

fitness or expression changes during nutrient depletion (Figure 3c), we focused on metabolic pathways to 223 

identify patterns in how S. pneumoniae handles and overcomes stress. To analyze metabolism in a 224 

systematic and comprehensive way, a genome-scale metabolic model of S. pneumoniae was assembled. A 225 

draft metabolic model was derived from the KBase system [35] (http://kbase.us) by collecting metabolic 226 
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reactions associated with the annotated genomes for T4, 19F, and D39. To account for non-enzymatic 227 

reactions and reactions with misannotations, a gap-filling algorithm [36] added reactions to ensure growth 228 

of the model on SDMM, CDM, and MCDM. Pathways in the model were manually curated by comparing 229 

reactions and gene associations to KEGG [37] and BioCyc [38], with a particular emphasis on amino acid 230 

and nucleotide metabolism (Additional Files 9 and 10). The final model, called iSP16, details the 231 

interconversion of 866 metabolites by 928 reactions, catalyzed by 463 genes (43.9% of all ORFs in T4). 232 

To our knowledge, iSP16 is the first curated, genome-scale metabolic model in the genus Streptococcus.  233 

 Using iSP16, we searched for patterns in the location of fitness and expression changes during 234 

nutrient stress. Initially, we expected the Tn-Seq and RNA-Seq data to align, as increasing expression of a 235 

metabolic enzyme can increase flux through an important pathway [39]. However, overlaying the datasets 236 

onto the network shows that, when transitioning from SDMM to CDM, metabolic pathways either change 237 

on a transcriptional level or their fitness (phenotypic importance) changes, but they almost never change 238 

in the same location (Figure 4a). Moreover, upon transitioning to MCDM, the clusters of fitness or 239 

expression changes expand but they almost never merge (Figure 4b). This means that, contrary to our 240 

expectations (and popular belief), overlap between fitness and expression changes are incredibly rare 241 

(Figure 4). 242 

 A clear example of the disconnect between fitness and expression changes is the shikimate pathway, 243 

the biosynthetic route for the aromatic amino acids (Figure 5a). Beginning with the glycolytic and 244 

pentose phosphate pathway intermediates phosphoenol-pyruvate (PEP) and erythrose-4-phosphate (E4P), 245 

the shikimate pathway uses seven enzymatic reactions before branching in sub-pathways specific for 246 

tryptophan (Trp), phenylalanine, and tyrosine. The branchpoint occurs immediately after gene SP1374, 247 

with gene SP1816 catalyzing the first reaction of the Trp-specific branch (Figure 5a). Compared to 248 

SDMM, CDM contains reduced tryptophan, and MCDM contains no tryptophan (Table 2, Additional 249 

File 4). We expected that the removal of Trp would cause increased expression of the shikimate pathway 250 

to compensate for the absence of Trp and decreased fitness when any of the pathway's genes are 251 

interrupted. Although this pathway shows both fitness and expression changes in our data, the fitness 252 

changes are restricted to the genes above the branch into tryptophan synthesis (SP1700 - SP1374), while 253 

the expression changes are below the branch point (SP1817 - SP1812) (Figure 5a). The sole biosynthetic 254 
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route to tryptophan thus contains disjoint sets of genes with fitness and expression changes, indicating that 255 

a single pathway can be split between the phenotypic and transcriptional stress responses. 256 

 Strikingly, the lack of correlation between fitness and expression changes is not limited to metabolic 257 

genes. When plotting genome-wide expression changes against fitness changes (Figure 5b), no clear 258 

relationship is observed between fitness and expression changes; almost all genes appear on either the 259 

horizontal or vertical axes of Figure 5b, indicating either a fitness change with no expression change, or 260 

vice versa. Therefore, even though fitness and expression changes occur across the genome, their 261 

disjointedness would go unnoticed if only Tn-Seq or RNA-Seq experiments were performed, suggesting 262 

that upon exposure to stress, expression profiles are not good predictors of what is actually phenotypically 263 

important in a bacterium. 264 

 265 

Cellular networks link changes in gene expression and fitness. In the metabolic network, fitness and 266 

expression changes rarely overlap, but they often seem to be located near one another (Figure 4). Thus 267 

even though expression changes are not indicative of genes that are phenotypically important, expression 268 

changes suggest that phenotypically important genes are often very close neighbors. To test this 269 

hypothesis a nearest neighbor analysis was performed in which each gene with a fitness change is paired 270 

with the closest gene in the network with an expression change (Figure 5c). The same procedure was 271 

repeated, starting with the genes with expression changes and searching for nearby fitness changes. 272 

Importantly, the nearest neighbor transformation restores the expected relationship between increased 273 

expression and decreased fitness. Prior to considering the nearest neighbors, 33% of the genes in Figure 274 

5a appeared in the upper left quadrant (decreased fitness and increased expression) (Figure 5d). After 275 

pairing with nearby genes, 59% of the genes moved into this quadrant, the largest change for any quadrant 276 

of the graph. 277 

 This raises at least two questions: 1.) How close, on average, are paired neighbors; and 2.) Is there a 278 

neighbor-to-neighbor relationship between the size of the fitness change and the change in expression? 279 

For instance, are genes with the largest fitness changes neighbors with genes with the largest expression 280 

changes? To answer these questions distances between genes in the metabolic network were quantified by 281 

counting the number of reactions between enzymes (Figure 6a). For instance, genes associated with the 282 
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same reaction have a distance of zero, while genes associated with reactions that share a common 283 

metabolite have a distance of one. To quantify the magnitude of both the fitness and expression changes, 284 

we multiply the two changes. This product corresponds to the area of a rectangle drawn between a point in 285 

Figure 5c and the origin (Figure 6b). This “area off axes” is maximized when both the fitness and 286 

expression changes are large, and it is near zero when either the fitness or expression change is small. 287 

Finally, by plotting the fitness-expression product against the distance between the corresponding genes 288 

(Figure 6c), two conclusions can be drawn. First, the majority of fitness and expression changes pair at 289 

short distances, with 80% of all pairs within a distance of two, and 93% within a distance of three. Second, 290 

the size of the fitness and expression changes in each pair decreases with distance (p < 0.005, ANOVA). 291 

This analysis (Figure 5) thus shows quantitatively what is visually suggested in Figure 4; fitness and 292 

expression changes occur in distinct, but co-localized genes. Moreover, the largest changes in fitness are 293 

close to the largest expression changes, which means that fitness and expression changes are not only 294 

co-located, but have a magnitude that matches their neighbors'. 295 

 Further visual inspection of the metabolic network maps (Figure 4) suggests that genes with fitness 296 

changes and genes with expression changes are not distributed evenly throughout the network. Instead, it 297 

appears that small clusters of fitness and expression changes are present, suggesting small sub-networks 298 

that either change transcriptionally or that are conditionally important. To quantify the existence of these 299 

clusters, we compared the distribution of distances among all genes, genes with fitness changes, and genes 300 

with expression changes (Figure 6d). Genes with an expression change (∆expression→∆expression) are 301 

indeed clustered at shorter distances to other differentially expressed genes, and the same is true for genes 302 

that change in fitness (∆fitness→∆fitness) (p < 0.005, t-test of Poisson fit to distributions of distances) 303 

(Figure 6d). In contrast, essential genes, derived from these and previous Tn-Seq data [2,14] (Additional 304 

File 11) are not closely clustered (Figure 6e, essential→essential). Instead, essential genes are closer to 305 

genes with fitness changes than they are to either genes with expression changes or other essential genes 306 

(Figure 6e, essential→∆essential and essential→∆fitness, p < 0.05). This distribution shows that: 1.) 307 

Phenotypic stress response genes lie closer to essential genes than transcriptional stress response clusters; 308 

and 2.) Both transcriptional control and important functions are intertwined, but separated into small 309 

clusters that correspond to either the phenotypic or transcriptional stress responses. Therefore, it appears 310 
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that genes that become phenotypically important in a new environment are shielded from highly 311 

fluctuating changes in expression, while nearby genes that are less important on a phenotypic level may 312 

fluctuate to a much larger extent, suggesting these different sets of genes are part of differently organized 313 

regulatory modules.  314 

 315 

Meta-analysis reveals partitioning of phenotypic and transcriptomic stress responses across 316 

multiple conditions. If these distinct sets of genes are indeed organized in different regulatory modules, 317 

this would suggest that essential genes and the phenotypically important genes we identified would be 318 

universally shielded from expression changes across any condition. To test this hypothesis, we performed 319 

a meta-analysis using all publicly available S. pneumoniae datasets in the Gene Expression Omnibus 320 

(GEO) database. Using microarray data from 234 experiments (Additional File 9), we calculated the 321 

“expression plasticity” across a wide range of genetic and environmental perturbations (Figure 7a). The 322 

plasticity is the relative variance in expression of the gene (and its homologs) across all datasets in the 323 

GEO database. This means that genes with low plasticity rarely vary in their expression levels, while 324 

high plasticity genes vary widely in their expression across conditions. The GEO meta-analysis shows 325 

that both essential genes (which are phenotypically important in all environments) as well as genes with 326 

fitness changes in our dataset have low expression plasticity across the GEO datasets (Figure 7b). 327 

Furthermore, plotting the GEO expression plasticity against the size of the fitness change in our 328 

experiment reveals that genes with the largest fitness changes have the lowest plasticity (Figure 7c). 329 

And thus, not only do the phenotypically important genes have no corresponding expression change in 330 

our experiments, they also hold their expression relatively constant across all the experiments in GEO. 331 

This meta-analysis suggests that the partitioning of the phenotypic and transcriptional stress responses 332 

extends beyond the nutrient depletion stresses analyzed in this study and further suggests that the 333 

phenotypic and the transcriptional response networks are composed of highly dissimilar regulatory 334 

modules. 335 

 336 

  337 
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CONCLUSIONS 338 

A popular assumption is that differentially expressed genes are good proxies for genes that are important 339 

for maintaining the survival of a microbe under stressful conditions [8-11]. Our validated genome-wide 340 

profiles for three strains of S. pneumoniae show in detail that genes and pathways that become important 341 

upon nutrient depletion are generally not differentially expressed. It is possible that the products of the 342 

genes that change their fitness are characterized by post-transcriptional or post-translational, rather than 343 

transcriptional, changes [40,41]. For instance, enzymes involved in protein and carbohydrate biosynthesis 344 

are heavily modified by lysine succinylation in multi-drug resistant Mycobacterium tuberculosis strains 345 

[42], while S-glutathionylation serves as a major regulation mechanism when Cyanobacteria are under 346 

oxidative stress conditions [43]. However, in general these mechanisms only affect a relatively small 347 

number of genes, and overall there seems to be a strong correlation between transcription and protein 348 

levels, especially during mid-exponential growth [44]. We thus do not believe that our findings are 349 

coincidental and related to our organism or experimental setup, also because several other studies on 350 

bacterial and fungal species have implied similar patterns in certain metabolic pathways and cellular 351 

functions, even though not all of them were validated or conducted on a genome-wide level [40,45,46]. It 352 

seems that a poor correlation between transcriptional change and functional importance is, at least for 353 

bacteria, universal. This means that transcriptomic profiling studies should be assessed carefully when 354 

they are used as a predictor of genes that matter phenotypically, e.g. in genetic engineering or drug target 355 

identification studies. Drug target identification across different domains of life has heavily relied on 356 

transcriptomic data as a surrogate for functional importance [47-53]. For instance, inhibitors of 357 

streptokinase gene expression have been proposed as novel antimicrobials for group A streptococcus 358 

[52], and gene expression datasets were used as a source for co-target identification using a random-walk 359 

model based on M. tuberculosis [51]. Our results provide an important argument to search for 360 

phenotypically important genes instead of differentially expressed genes in future antimicrobial 361 

discovery -- blocking differentially expressed genes may fail to cause a growth defect while 362 

phenotypically important genes directly affect an organism’s fitness. 363 

 In our attempts to unify fitness and expression changes, we showed that leveraging genome-scale 364 

metabolic modeling and topological analyses links both sets of genes in a cellular metabolic network. 365 
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Although changes in transcription status and changes in functional importance occur on separate sets of 366 

genes, our result show that these sets of genes are either in the same pathways or closely related pathways 367 

that share intermediates. This pattern is consistent with the ideas of metabolic control analysis (MCA), 368 

where pathway flux can be controlled by changes in either enzyme abundance or substrate concentrations 369 

[39,54]. A central result of MCA is that the relative importance of enzyme or substrate changes can vary 370 

along a pathway. In our example of the shikimate pathway (Figure 5a), the upper half of the pathway 371 

(SP1371-SP1377) may be controlled by substrate abundance, while flux through the amino acid-specific 372 

branches (e.g. SP1811-SP1818) may be controlled by enzyme abundance. It is important to note that all of 373 

the reversible reactions in the shikimate pathway occur before the branch point (Figure 5a), and the 374 

(reversible) enzymes above the branch point are not differentially expressed. Reversibility allows pathway 375 

intermediates to control flux through feedback mechanisms, possibly lessening the importance of 376 

transcriptional control in the upper branch. By deferring most of the transcriptional control until the lower 377 

branches of the shikimate pathway, S. pneumoniae may be able to control the production of Trp separately 378 

from the other aromatic amino acids while still maintaining adequate flux through the upper branch via 379 

substrate-level feedback.  380 

 A common explanation for the lack of an expected fitness defect is redundancy in the surrounding 381 

network. Since all of the fitness defects in the shikimate pathway occur before it branches into pathways 382 

for individual amino acids, it is possible that redundancies exist that can overcome the loss of a 383 

biosynthetic route for a single amino acid, but not for all three. Although there is no known alternative 384 

route for aromatic amino acid synthesis outside of the shikimate pathway, the Trp-specific genes could be 385 

redundant and thus some genes in the pathway could alleviate the absence of other genes and provide 386 

functional redundancy. Identifying these “hidden” redundancies is a powerful benefit of overlaying 387 

genome-scale phenotypic data onto mathematical models. 388 

In addition to allowing more parsimonious gene regulatory networks, separating transcriptional 389 

control from phenotypic importance may allow bacteria more flexibility to respond to new environments 390 

without incurring a fitness cost. Genes that fluctuate transcriptionally are not important for sustaining 391 

growth and hence have more flexibility in their expression. Phenotypically important genes seem to be 392 

shielded from large, fluctuating expression changes and are possibly controlled by feedback loops, which 393 
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is a mechanism adept at retaining expression levels within tight boundaries [55]. Taken together, these 394 

features allow a bacterium to maintain a tightly controlled, robust core of essential genes while 395 

simultaneously preserving metabolic flexibility.  396 

 In this report, we present a transferable, systems-level approach to reconcile transcription and fitness 397 

changes within a network, which serves as an important attempt to achieve a systems-level understanding 398 

of how a bacterium deals with environmental perturbations. Although metabolism represents the majority 399 

of genes that change in either expression or fitness during nutrient depletion (Figure 3c), we are striving to 400 

achieve a truly holistic view by integrating additional parts of the genomic network, including energy 401 

generation, cell division, transport, and formation and turnover of the cell wall and membrane. Lastly, 402 

applying network topological analyses to contextualize high-throughput experiments has the potential to 403 

provide value in genetic engineering, predicting drug target candidates, and re-evaluating current drug 404 

targets with the goal to achieve a higher success rate in developing novel strategies to eradicate microbial 405 

pathogens.  406 
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METHODS 407 

Bacterial strains, growth and media 408 

Experiments were performed with S. pneumoniae strains TIGR4 (T4; NCBI Reference Sequence: 409 

NC_003028.3) and Taiwan-19F (19F; NC_012469.1), and D39 (NC_008533). All gene numbers are 410 

according to the TIGR4 genome, except the unique genes, which are preceded by SP, SPT, and SPD for 411 

TIGR4, Taiwan-19F, and D39, respectively. A "correspondence table" that matches homologous genes in 412 

the three strains can be found in Additional File 2. Single gene knock-out strains were constructed by 413 

replacing the coding regions with a chloramphenicol or spectinomycin resistance cassette as described 414 

previously [2,14,56]. Except for Tn-Seq experiments, RNA-Seq experiments, and specific growth 415 

conditions, S. pneumoniae was cultivated statically in Todd Hewitt broth with 5% yeast extract and 5 416 

µL/mL of Oxyrase (Oxyrase, Inc), or on sheep’s blood agar plates at 37ºC in a 5% CO2 atmosphere. 417 

When appropriate, liquid culture and blood agar plates contained 4 µg/mL of chloramphenicol (Cm) or 418 

200 µg/mL of spectinomycin (Spec) for selecting strains or mutant libraries that contain drug markers. 419 

Tn-Seq and RNA-Seq experiments were performed in three growth media that contain gradually 420 

decreasing nutrient levels, namely, semi-defined minimal medium (SDMM) [2], chemically defined 421 

medium (CDM; Additional File 4) and minimal chemically defined medium (MCDM; Additional File 422 

4).  423 

 424 

Tn-Seq library construction and selection experiments 425 

Transposon insertion mutant libraries were constructed as previously described with the transposon 426 

Magellan6, which lacks transcriptional terminators therefore allows for read-through transcription and 427 

diminishing polar effects [2,14,57]. Additionally, the mini-transposon contains stop codons in all three 428 

frames in either orientation when inserted into a coding sequence. Six independent transposon libraries 429 

were constructed in T4, 19F, and D39. Tn-Seq experiments were performed with each transposon library 430 

for each of the three strains under the three media conditions (pH 7.3 with 20mM of supplemental 431 

glucose in SDMM and MCDM and 28 mM glucose in CDM). Mutant libraries were grown to mid- to 432 

late-log phase and harvested for genomic DNA isolation. 433 

 434 
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Tn-Seq sample preparation, sequencing and fitness calculation 435 

Sample preparation, Illumina sequencing, and fitness calculations were performed as previously 436 

described [2,14,18,58]. For each insertion, fitness (Wi) representing the growth rate is calculated by 437 

determining the change in frequency for the mutant in the population [58]. Fitness for single genes is 438 

calculated by averaging Wi over all the insertions in the same gene. To determine whether fitness effects 439 

significantly differ between conditions, three requirements must be fulfilled: 1.) Wi is calculated from at 440 

least three data points (insertions), 2.) the difference in fitness between conditions has to be larger than 441 

15% (|Wi - Wj| > 0.15), and 3.) the difference in fitness has to be significantly different in a one sample 442 

t-test with Bonferroni correction for multiple testing.  443 

 444 

Competition and single strain growth assays  445 

1x1 competition experiments were performed by mixing a single gene knock-out strain with the 446 

corresponding wild type strain in a 1:1 ratio and growing for approximately eight generations to late 447 

exponential phase in a particular growth medium [2]. A sample was taken at the beginning and the end 448 

of a competition experiment for CFU counts and plated on blood agar plates (for a total CFU count) and 449 

on blood agar plates with selective antibiotics (for a CFU count of the knock-out strain). Fitness was 450 

then calculated using the same approach as Tn-Seq by determining the ratios of the competing strains at 451 

the start and end of the competition and determining the expansion of the population using CFU counts. 452 

Single-strain growth assays were performed in 96-well plates by taking OD600 measurements on a Tecan 453 

Infinite 200 PRO plate reader. Both competition and single-strain growth assays were performed no 454 

fewer than three times.  455 

 456 

RNA-Seq sample collection 457 

The three strains were grown under each of the three growth media conditions (SDMM, CDM, and 458 

MCDM) in four biological replicates. 5 mL of early mid-log phase liquid culture was harvested by 459 

centrifugation at 4ºC, snap frozen, and stored at -80ºC for RNA isolation. Total RNA was isolated using 460 

the RNeasy Mini kit (Qiagen). 461 

 462 
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RNA-Seq sample preparation, sequencing and expression level calculations 463 

RNA-Seq cDNA libraries were generated following the RNAtag-Seq protocol as previously described 464 

[59]. Briefly, 400ng of RNA was fragmented, depleted of genomic DNA using TURBO DNA-free kit 465 

(Ambion), 5’-dephosphorylated, and subsequently ligated to barcoded RNA adapters at the 3’-terminus. 466 

Barcoded RNA samples were pooled and purified with RiboZero (Illumina). The ribosomal 467 

RNA-depleted samples were converted to Illumina cDNA sequencing libraries in three key steps: 1.) 468 

First strand cDNA synthesis with AffinityScript Multiple Temperature cDNA Synthesis kit (Agilent) and 469 

RNA degradation, 2.) ligation to a 3’-linker, and 3.) PCR amplification using primers that target the 470 

3’-linker and a constant region of the RNA barcodes and contain the Illumina flow cell sequences. The 471 

cDNA libraries were sequenced on an Illumina NextSeq500 platform (single read, 50 base pair). 472 

    Raw reads were demultiplexed, trimmed to 40 base pairs, and quality filtered using custom R 473 

scripts and the ShortRead package. Reads were mapped to the corresponding S. pneumoniae genome 474 

using Bowtie [60] with settings "-n 2 -l 60 -m 1 -B 1". Reads were aggregated to genes using the 475 

GenomicRanges R package and differential expression was calculated using DESeq2 [61].  476 

 477 

qPCR expression analysis 478 

The three wildtype strains were grown in SDMM, CDM, and MCDM to early mid-log phase. Sample 479 

collection and total RNA isolation were performed following the same procedure as RNA-Seq. 4 ug of 480 

RNA from each sample was treated with the TURBO DNA-free kit, after which 400 ng of cleaned-up 481 

RNA was subjected to first strand cDNA synthesis using iScript reverse transcription Supermix 482 

(BioRad). Quantitative PCR was performed using a BioRad MyiQ; each sample was measured in two 483 

biological replicates and three technical replicates. No-reverse transcriptase and no-template controls 484 

were included for each sample. Expression levels from all samples were normalized against the 50S 485 

ribosomal gene SP2204. 486 

 487 

Statistical analysis 488 

Statistical analyses were performed in R (http://www.r-project.org). Gene distributions were fit to either 489 

Poisson (gene distance distributions) or Gamma (GEO plasticity) distributions using the fitdistr function 490 
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in the MASS toolbox. Expected values of the distributions were compared by a t-test. 491 
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 663 

Table 1 Summary of the three S. pneumoniae strains in this study 664 

  665 

Strains TIGR4 Taiwan-19F D39 

RefSeq NC_003028 NC_012469 NC_008533 

Genome size (bp) 2,160,842 2,112,148 2,046,115 

Number of genes 2287 2119 2165 

Origin Isolated from the blood of a 

30-year-old male patient in 

Kongsvinger, Norway 

A patient with invasive 

pneumococcal disease in 

Taiwan 

Clinical isolate, 1916 

Reference Aaberge et al. (1995) 

Tettelin et al. (2001) 

Shi et al. (1995) 

McGee et al. (2001) 

Lanie et al. (2006) 

Doubling time (min)  

SDMM 51 ± 5 74 ± 2 57 ± 4 

CDM 80 ± 7 110 ± 10 74 ± 4 

MMCDM 108 ± 9 118 ± 13 100 ± 8 
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Table 2. Comparison of nutrient availability in SDMM, CDM and MCDM.  666 

Components SDMM CDM MCDM 

Casein Hydrolysate X   

Yeast Extract X   

L-Ala  X  

L-Arg  X X 

L-Asn X X  

L-Asp  X  

L-Cys X X X 

L-Gln X X X 

L-Glu  X  

Gly  X X 

L-His  X X 

L-Ile  X X 

L-Leu  X X 

L-Lys  X  

L-Met  X X 

L-Phe  X  

L-Pro  X X 

L-Ser  X X 

L-Thr  X X 

L-Trp X X  

L-Tyr  X  

L-Val  X X 

Adenine X X X 

Uracil X X X* 

Ca-Pantothenate X X X 

Nicotinic Acid X X X 

Pyridoxine.HCL X X  

Thiamine.HCL X X  

Riboflavine X X  

Biotin  X X  
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K2HPO4 X X X 

NaOAc X X X 

NaHCO3 X X X 

MgCl2.6H2O X X X 

CaCl2 X X X 

CuSO4.5H2O X X X 

ZnSO4.7H2O X X X 

MnSO4.4H2O X X X 

D-Glucose X X X 

X: present in a medium.  667 

* In MCDM uracil was supplied at half the concentration compared to SDMM (Additional File 4). 668 

 669 

  670 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2016. ; https://doi.org/10.1101/071704doi: bioRxiv preprint 

https://doi.org/10.1101/071704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

FIGURE LEGENDS 671 

 672 

Figure 1: High-resolution profiles of phenotype and gene expression during stress incurred by nutrient 673 

depletion. A. Fitness values from Tn-Seq. B. Transcript abundance from RNA-Seq. Both 674 

high-throughput methods were performed on three S. pneumoniae strains (19F, T4, and D39) and in 675 

three media conditions (SDMM, CDM, and MCDM). C. By plotting Tn-Seq and RNA-Seq data on the 676 

same graph it becomes clear that genes with fitness defects (W < 0.85) are highly expressed. 677 

 678 

Figure 2: Tn-Seq and RNA-Seq data correlate strongly with validation experiments. A. A strong 679 

correlation between Tn-Seq fitness and fitness calculated from individual mutant growth curves or 1x1 680 

competitions (Wvalidation; n = 122; shown are mean ± SEM; linear fit yields R2 > 0.82) emphasizes that 681 

the strain-dependent sensitivity profiles are composed of high-confidence Tn-Seq data. B. 682 

Representative growth curves for comparisons between wild type (WT) and mutant ∆SP1376 in three 683 

different conditions, showing the dependence of the mutant on the presence of aromatic amino acids in 684 

the environment. C. Fold change in transcript abundance measured by qPCR and RNA-Seq. Vertical 685 

bars indicate SEM for both experiments. No qPCR and RNA-Seq pairs differed significantly (p < 0.0042, 686 

t-test with Bonferroni correction) indicating RNA-Seq data are composed of high-confidence data as 687 

well. 688 

 689 

Figure 3: Changes in gene fitness and expression occur across all strains, media, and cellular subsystems. 690 

A. ∆fitness (∆W) depicts how genes change their fitness as a strain transitions from rich media (SDMM) 691 

to defined (CDM) or minimal (MCDM) media. B. Shown are how genes change their expression as a 692 

strain transitions from rich media (SDMM) to defined (CDM) or minimal (MCDM) media. Expression 693 

is log2 fold change in transcript abundance from RNA-Seq. In both figures statistically significant 694 

changes are colored and both assays were performed on three S. pneumoniae strains (T4, 19F, and D39) 695 

and two media transitions (SDMM→CDM, SDMM→MCDM). C. Percentage of genes in each category 696 

with significant changes in fitness (red) and expression (green). For total number of genes in each 697 

category (by strain), see Additional File 3. 698 
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 699 

Figure 4: Genes with significant changes in expression (green), fitness (red), or both (blue) are 700 

distributed throughout the iSP16 metabolic model. Lines indicate reactions connecting metabolites 701 

(circles). Minor and currency metabolites are not shown (see Additional File 9). Reactions are colored 702 

based on gene associations in the iSP16 model. 703 

 704 

Figure 5: Fitness and expression changes do not occur on the same gene but appear to be related. A. 705 

Changes in gene expression and fitness are separated in the tryptophan biosynthesis branch of the 706 

shikimate pathway. Single and double-headed arrows indicate reversibility or non-reversibility of 707 

individual chemical reactions, respectively, while arrows spanning two genes indicate enzymatic 708 

subunits catalyzing the same reaction. The dashed blue line (between SP1374 and SP1816) indicates the 709 

branch point into tryptophan biosynthesis. PEP=phosphoenol-pyruvate, E4P=D-erythrose-4-phosphate, 710 

Trp=L-tryptophan. B. Changes in gene expression (RNA-Seq: ∆expression) vs. changes in fitness 711 

(Tn-Seq: ∆fitness (∆W)) are not correlated. For each data point (gene) ∆fitness (∆W) and ∆expression are 712 

plotted depicting how a gene’s fitness and expression change as a strain transitions from rich media 713 

(SDMM) to defined (CDM) or minimal (MCDM) media. C. Genes with significant ∆expression or 714 

∆fitness (∆W) (black) migrate off the horizontal and vertical axes when paired with the nearest neighbor 715 

that changes in fitness or expression (red) (NB. If multiple genes appear at the same distance from the 716 

gene with a fitness change, the expression changes are averaged.). D. The number of genes in each 717 

quadrant of the ∆expression/∆fitness plot shifts before (black) and after (red) nearest-neighbor pairing, 718 

showing that fitness and expression changes are somehow linked. 719 

 720 

Figure 6: Metabolic models can quantify distances between reactions and genes. A. Shown is how 721 

distances are calculated. For instance, the distance between the subunits pgmA and pgmB in glycolysis is 722 

zero, while either enzyme has a distance one to eno and a distance two to pyk. B. The area off axes is the 723 

product of ∆expression and ∆fitness (∆W) and is maximized when both the fitness and expression 724 

changes are large. The area off axes is near zero when either the fitness or expression change is small. C. 725 

Extent of off-axis migration after nearest-neighbor averaging decays with distance between the gene and 726 
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its nearest neighbor, indicating that changes are closely located within the network and that the largest 727 

changes in fitness are close to the largest expression changes. D. Distribution of network distances varies 728 

between genes with fitness and expression changes. Distances between all genes (any), genes with 729 

significant changes in expression (∆expression) or fitness (∆fitness). Unconnected genes (distance = ∞) 730 

are not shown. The short distances between two genes with expression changes or two genes with fitness 731 

changes indicates small subnetworks of either fitness or expression changes. E. Essential genes and 732 

genes with fitness or expression changes are not evenly distributed. On average, essential genes 733 

(essential) are closest to genes with fitness changes (∆fitness) and farthest from genes with expression 734 

changes (∆expression). 735 

 736 

Figure 7: Meta-analysis shows that essential and phenotypically important genes are shielded from large 737 

changes in expression. A. Quantifying gene expression plasticity using meta-analysis of GEO expression 738 

studies. Plasticity is the normalized variance in gene expression across all S. pneumoniae data in GEO 739 

(see Additional File 9). B. Gene expression plasticity is significantly lower for essential genes (p < 10-14) 740 

and conditionally essential genes (genes with a significant fitness change) (p < 10-34, both comparisons 741 

t-test on means of fitted Gamma distributions). Both the essential and conditionally essential genes 742 

appear to be shielded from transcriptional changes not only in our RNA-Seq data, but across all the 743 

expression datasets in GEO. C. Gene expression plasticity decreases with increasing magnitude of the 744 

fitness change (relative to SDMM). Thus the amount of shielding is proportional to a gene's phenotypic 745 

importance, and genes with the largest fitness changes show the smallest variation in expression across 746 

the experiments in GEO. 747 

 748 

 749 

 750 
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