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Abstract

In mouse visual cortex (V) many neurons respond to overlapping grating stimuli
(plaid stimuli) with highly selective and facilitatory responses, which are not
simply predicted by responses to single gratings presented alone. This complexity
is surprising since excitatory neurons in V are considered to be mainly tuned to
single preferred orientations. We hypothesised that complex responses to plaid
stimuli may arise as a consequence of rules for selective excitatory connectivity
within the local network in the superficial layers of mouse V. Although local
excitatory connections have been found to be more prevalent and stronger
between neurons that share similar functional response features, the extent to
which local connectivity rules shape neuronal responses in V and the details of
how network structure relates to functional responses remain unknown. Here we
examined two possible alternative connectivity schemes: in the first case, local con-
nections are aligned with visual properties inherited from feedforward input (a ‘like-
to-like’ scheme specifically connecting neurons that share similar preferred ori-
entations); in the second case, local connections group neurons into excitatory subnet-
works that combine and amplify multiple feedforward visual properties (a ‘feature
binding’ scheme). By comparing predictions from large scale computational models
with in vivo recordings of visual representations in mouse V, we found that
responses to plaid stimuli were best explained by a assuming ‘feature binding’ con-
nectivity. Unlike under the ‘like-to-like’ scheme, selective amplification within
feature-binding excitatory subnetworks replicated experimentally observed facilit-
atory responses to plaid stimuli; explained selective plaid responses not predicted
by grating selectivity; and was consistent with broad anatomical selectivity
observed in mouse V. Our results show that visual feature binding can occur
through local recurrent mechanisms without requiring feedforward convergence,
and that such a mechanism is consistent with visual responses in mouse V.
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Author summary

The brain is a highly complex structure, with abundant connectivity between
nearby neurons in the neocortex, the outermost and evolutionarily most recent
part of the brain. Although the network architecture of the neocortex can appear
disordered, connections between neurons seem to follow certain rules.These rules
most likely determine how information flows through the neural circuits of the
brain, but the relationship between particular connectivity rules and the function
of the cortical network is not known. We built models of visual cortex in the
mouse, assuming distinct rules for connectivity, and examined how the various
rules changed the way the models responded to visual stimuli. We also recorded
responses to visual stimuli of populations of neurons in anaesthetised mice, and
compared these responses with our model predictions. We found that connections
in neocortex probably follow a connectivity rule that groups together neurons that
differ in simple visual properties, to build more complex representations of visual
stimuli.This finding is surprising because primary visual cortex is assumed to sup-
port mainly simple visual representations. We show that including specific rules
for non-random connectivity in models of the brain is crucial. Precise measure-
ments of those rules in real brains is also essential.

Introduction

Much of our current understanding of local cortical connectivity in neuronal cir-
cuits of the neocortex is based on the presumption of randomness. Anatomical
methods for estimating connection probabilities [,] and techniques for using
anatomical reconstructions to build models of cortical circuits [-] are largely
based on the assumption that connections between nearby neurons are made
stochastically in proportion to the overlap between axonal and dendritic arborisa-
tions [].

On the other hand, a wealth of evidence spanning many cortical areas and several
species indicates that cortical connectivity is not entirely random. In species that
display smooth functional maps in primary visual cortex (V), such as cat and
macaque monkey, long-range intrinsic excitatory connections tend to preferen-
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tially connect regions of similar function [-]. Although rodents exhibit a map-
less, “salt and pepper” representation of basic visual features across V [], non-
random connectivity is nonetheless prevalent both within and between cortical
layers [-], reflecting similarities in functional properties [-] or projection
targets [-].

The degree of specificity of cortical connections among excitatory neurons thus
appears to be an important feature of local circuitry, which likely influences the
functional response properties of cortical neurons [,]. In spite of its relevance,
the impact of specific excitatory connectivity on network representations of sens-
ory inputs and information processing has not been addressed experimentally or
through theory; it therefore remains an open question how the arrangement of
local recurrent connections affects cortical representations of visual stimuli. Des-
pite multiple descriptions of specific connectivity in cortex, the rules underlying
the configuration of these connections are not entirely clear. Whereas strong con-
nections are more prevalent between neurons with similar receptive fields, the
majority of synaptic connections are made between neurons with poorly-correl-
ated receptive fields and poorly correlated responses []. This sea of weak syn-
aptic inputs might be responsible for non-feature-specific depolarisation [] or
might permit plasticity of network function []. However, another possibility is
that weaker connections underlie higher-order connectivity rules that have not yet
been described. For example, we recently showed that neuronal responses to com-
pound visual stimuli (e.g. plaid stimuli composed of two grating components) can
be selective and highly complex in mouse V []. We proposed that local con-
nectivity in V could be structured such that simple visual features were bound
together through recurrent interactions []. But what is the exact relationship
between connectivity rules and information processing in visual cortex? And how
do the rules governing specific excitatory connectivity, which we know to exist in
rodents [,,], shape and inform visual representations?

Here we examined these questions by analysing the computational properties of
cortical networks with defined rules for local connectivity. We simulated visual
responses to grating and plaid stimuli in large networks with properties designed
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to resemble the superficial layers of mouse V, assuming distinct connectivity
schemes. We then compared the response patterns and visual representations pre-
dicted by the network simulations with those recorded in vivo in mouse V.

Specifically, we evaluated two broad classes of connectivity patterns, where specific
local excitatory connectivity is defined according to the visual response properties

of neurons (Fig. ):
1. Strictly “like-to-like” connectivity, such that neurons with similar response prop-

erties defined by their feed-forward inputs to each neurons (e.g. orientation
tuning of neurons in the superficial layers, arising from tuned input from layer )
are grouped into subnetworks;

2. A form of “feature-binding” connectivity, such that excitatory neurons with differ-
ing feed-forward visual properties (e.g. distinct orientation preference) are
grouped together.

**** FIGURE  NEAR HERE ****

These distinct rules give rise to radically different visual representations of plaid
stimuli, both in terms of complexity of visual response selectivity of individual
neurons and regarding facilitation versus suppression in response to these com-
pound stimuli. We found that the complexity of plaid responses in mouse V was
reproduced in our simulations when assuming the ‘feature-binding’ connectivity
scheme, with local connections cutting across feedforward response properties,
but not when assuming purely ‘like-to-like’ connections.

Our results therefore suggest that local excitatory connections within mouse V
are formed with respect to complex or compound visual response properties, such
that they do not necessarily align with simpler feedforward properties. This pat-
tern of connectivity would allow subnetworks in V to detect particular configura-
tions of visual stimuli, and might be used to tune visual cortex to the complex
statistics of natural vision.
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Results

Responses to plaid stimuli are selective and facilitatory in mouse 
V1

Under the assumption that the configuration of local recurrent connections in
cortex might lead to differential processing of simple and compound visual stim-
uli, it is important to quantify the relationship between responses to grating and
plaid stimuli in visual cortex. Recent reports have highlighted the facilitatory and
selective nature of plaid responses in mouse primary visual cortex [-]. Most
neurons in mouse V respond to plaid stimuli in accordance with a simple super-
imposition of their responses to the two underlying grating components (i.e.
“component cell” responses; []). However, a significant proportion of neurons
that are visually responsive, reliable and selective exhibit complex responses to
plaid stimuli that are difficult to explain with respect to simple combinations of
grating components []. Plaid stimuli are often constructed from a single choice
of relative component angle (º orthogonal gratings), leaving open the possibil-
ity that a richer set of plaid stimuli would help to classify neurons with these
complex responses.

We therefore probed mouse V with grating component stimuli composed of
grating stimuli with  drift directions, and three full sets of plaid stimuli com-
posed of º, º and º relative grating component orientations. We recorded
responses from layer / neurons in V using two-photon imaging of animals with
viral delivery of GCaMPm (Fig.a–f;  animals,  sessions,  / respons-
ive / imaged neurons; see Methods). We defined a modulation index (MI) to
quantify the degree of facilitation or suppression elicited by plaid stimuli over
grating stimuli, for single cortical neurons; large positive values for MI indicate
strong facilitation in response to plaid stimuli, whereas large negative values indic-
ate strong suppression (see Methods). Visual responses to the full set of plaid
stimuli were dominated by facilitation, and were significantly more facilitatory
than when considering only the set of º plaids (Fig.i; median modulation
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index MI .±[. .] vs .±[-. .]; p< ⨉–, Wilcoxon
rank-sum; all following values are reported as median±% bootstrap confidence
intervals unless stated otherwise).

**** FIGURE  NEAR HERE ****

The presence of stronger facilitation when comparing responses to the full set of
plaid stimuli with responses to º plaids alone, is consistent with our earlier find-
ing that some neurons in mouse V are highly selective for particular combina-
tions of grating components []. Accordingly, we used a plaid selectivity index
(PSI) to quantify how selective were the responses of single neurons over the set
of plaid stimuli (see Methods). The PSI was defined in analogy to orientation or
direction selectivity indices (OSI or DSI), such that values of PSI close to  indic-
ate that a neuron responds to only a single plaid stimulus out of the set of presen-
ted plaid stimuli. Values of PSI close to  indicate that a neuron responds equally
to all plaid stimuli. Responses to the full set of plaid stimuli were highly selective;
significantly more selective than predicted by a component model generated using
all plaid and grating stimuli (Fig.h; median PSI .±[. .] vs .±[.
.]; p< ⨉–, Wilcoxon rank-sum) and indeed significantly more selective
than responses to the º plaids alone (Fig.h; median º PSI .±[. .];
p< ⨉– vs all plaids, Wilcoxon rank-sum).

Therefore, probing visual cortex with a dense set of plaid stimuli reveals richer
visual responses than when probed with a set of only º plaids. Indeed, recent
results suggest that using an expanded set of plaid stimuli evokes more pattern-
cell responses in mouse V []. Consistent with this finding, our results show
that using a dense set of plaids does not make responses to compound stimuli
trivial to predict based on component responses. In addition, we found that visual
responses were more facilitatory and more selective than when measured using
º plaids alone.
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Local excitatory connections in cortex are broadly selective for 
preferred orientation

How are selective responses to plaid stimuli generated in V? As we suggested
previously, one possibility is that specific grating component representations are
combined through local excitatory connectivity []. Synaptic connection probab-
ility is enhanced by similarity of orientation preference [,,], suggesting that
local excitatory connections may group together neurons with common preferred
orientations. Connection probability is even more strongly modulated by neuronal
response correlations to natural movies; i.e., the likelihood for a synaptic connec-
tion is higher for neuronal pairs responding similarly to natural scenes [,,].

If connections in mouse V were strictly governed by preferred orientation, then
neurons with similar orientation preference should also predominately have sim-
ilar responses to natural movies, and vice versa. We recorded visual responses pop-
ulations of neurons labelled with the synthetic calcium indicator OGB in anaes-
thetized mouse V ( animals,  / responsive neurons with overlapping
receptive fields / imaged neurons; Fig.a–c; see Methods). We used signal correla-
tions to measure the similarity between the responses of pairs of neurons with
identified receptive fields (Fig.a) to drifting grating (Fig.b) and natural movie
(Fig.c) visual stimuli (see Methods).

We found that neuronal pairs with high signal correlations to natural scenes,
which are most likely to be connected in cortex [,,], showed only a weak
tendency to share similar orientation preferences (Fig.d–e; pairs with OSI>.;
p=., Kruskall-Wallis).This is consistent with earlier findings in cat area  (V),
which showed a poor relationship between responses to gratings and natural
movies [].

**** FIGURE  NEAR HERE ****

Similarly, under a like-to-like connectivity rule, synaptically connected neurons in
mouse V should share both similar orientation preference and responsiveness to
natural movies. We therefore compared response correlations and preferred ori-
entations for pairs of mouse V neurons, which were known to be connected from
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in vivo / in vitro characterisation of functional properties and connectivity (data
from [] used with permission;  animals,  patched and imaged cells,  con-
nected pairs). Consistent with our results comparing responses to gratings and
natural movies, connected pairs of cells with similar orientation preference were
not more likely to share a high signal correlation to flashed natural scenes (Fig.f;
p=., Kruskall-Wallis). Also consistent with earlier findings [,], we
observed a positive relationship between synaptic connectivity and similarity of
orientation preference (Fig.g; p=., Ansari-Bradley test). However, strongly
connected pairs (strongest % of excitatory post-synaptic poten-
tials —EPSPs—over connected pairs) were not more similar in their preferred
orientation than the remaining pairs (p=., Ansari-Bradley test vs weakest %
of connected pairs). Connected pairs spanned a wide bandwidth of preferred ori-
entations, with more than % of connections formed between neurons with
orthogonal preferred orientations. Spatial correlation of receptive fields is a com-
paratively better predictor for synaptic connectivity than shared orientation pref-
erence, but a majority of synaptic inputs are nevertheless formed between neurons
with poorly- or un-correlated responses []. We conclude that similarity in ori-
entation preference only partially determines connection probability and strength
between pairs of neurons in mouse V.

This weak functional specificity for similar visual properties can be explained by
two possible alternative connectivity rules. In the first scenario, local excitatory
connections in cortex are aligned with feedforward visual properties, but with
broad tuning (Fig. a; a “like-to-like” rule). As a consequence, all connections
show an identical weak bias to be formed between neurons within similar tuning,
and the average functional specificity reported in Fig.g and elsewhere [,]
reflects the true connection rules between any pair of neurons in cortex.

Alternatively, local excitatory connections may be highly specifically tuned but
follow rules that are not aligned with feedforward visual properties (Fig. b; a “fea-
ture-binding” rule). If measurements of functional specificity were made pair-wise
and averaged across a large population, any specific tuning shared within groups
of neurons would therefore be averaged away and appear as a sea of random con-
nections. For example, subpopulations of excitatory neurons might share a small
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set of feedforward visual properties; in this case, connections within a subpopula-
tion could still be highly specific, but this specificity would not be detected
through purely pairwise measurements.

Specific connectivity gives rise to amplification and competition

The dynamics of neuronal networks defined with particular connectivity rules
remains generally unknown, although some results suggest that specific con-
nectivity leads to reduced dimensionality of network activity patterns []. We
therefore explored the relationship between specific connectivity and network
dynamical properties in a non-linear, rate-based network model incorporating
realistic estimates for recurrent excitatory and inhibitory connection strength in
layers  / of mouse V (“analytical model”; Fig.; see Methods).This small model
consists of four excitatory and one inhibitory neuron with homogenous con-
nectivity (Fig.a), designed to be equivalent to a much larger model with
stochastic synaptic connectivity. As is suggested by estimations of strong excitat-
ory feedback in cortex [,], our model required inhibitory feedback to maintain
stability (an inhibition-stabilised network or ISN; Fig.S; [-]; but see []).

**** FIGURE  NEAR HERE ****

Non-random connectivity, in the form of specific excitatory connections within
subnetworks (Fig.b; SNs; [,]), introduced selective amplification within sub-
networks and competition between subnetworks (Fig.c). Surprisingly, these
computational mechanisms were strongly expressed even when only a minority of
synapses (s around %) were made to be subnetwork-specific (Fig.c; Fig.S).
Specific connectivity rules resulted in functional grouping of sets of excitatory
neurons (Fig.b), permitting the network to operate in a soft winner-take-all
regime [,].

Neither competition nor amplification was present under parameters designed to
approximate random connectivity in mouse V (Fig.a, c; Fig.S). This is not
because the network architecture was incapable of expressing competition, but
because the recurrent excitatory connections were insufficiently strong under
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assumptions of random stochastic connectivity. We conclude that specific excitat-
ory connectivity strongly promotes amplification and competition in neuronal
responses.

Selective amplification under like-to-like and feature-binding 
connectivity rules

Amplification in the network with specific connectivity is selective (Fig.b–c):
neurons within a subnetwork recurrently support each other’s activity, while neur-
ons in different subnetworks compete. Therefore, which sets of neurons will be
amplified or will compete during visual processing depends strongly on the pre-
cise rules used to group neurons into subnetworks. We therefore examined the
impact of “like-to-like” and “feature-binding” rules on responses in our analytical
model.The excitatory network was partitioned into two subnetworks; connections
within a subnetwork corresponded to selective local excitatory connectivity within
rodent V. Under the “like-to-like” rule, neurons with similar orientation prefer-
ences were grouped into subnetworks (Fig.d). We tested the response of this
network architecture to simulated grating and plaid stimuli, by injecting currents
into neurons according to the similarity between the orientation preference of
each neuron and the orientation content of a stimulus. Under the “like-to-like”
rule, responses of pairs of neurons to simple grating stimuli and more complex
plaid stimuli were highly similar (Fig.d). Amplification occurred within subnet-
works of neurons with the same preferred orientation, and competition between
subnetworks with differing preferred orientation [,] (visible by complete sup-
pression of response of neurons in lower traces of Fig.d).

Alternatively, we configured the network such that the rules for local excitatory
connectivity did not align with feedforward visual properties (a “feature-binding”
rule). We configured subnetworks by grouping neurons showing preference for
either of two specific orientations (Fig.e). When this “feature-binding” con-
nectivity rule was applied, neuronal responses to grating and plaid stimuli differed
markedly (cf. top vs bottom panels of Fig.e). Selective amplification was now
arrayed within populations of neurons spanning differing orientation preferences,
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and competition occurred between subnetworks with different compound feature
preferences. Importantly, a “feature-binding” rule implies that neurons with the
same preferred orientation could exist in competing subnetworks. While their
responses to a simple grating of the preferred orientation would be similar and
correlated (Fig.e; indicated by a high response correlation measured over grating
responses "g), the same two neurons would show decorrelated responses to a plaid
stimulus (Fig.e; indicated by a low response correlation measured over plaid
responses "p). We conclude that changes in pairwise response similarity, provoked
by varying the inputs to a network, can provide information about the connectiv-
ity rules present in the network.

Feature-binding connectivity leads to facilitation and 
decorrelation in large networks

The results of our simulations of small networks suggest that rules for specific
local connectivity can modify the correlation of activity between two neurons in a
network, depending on the input to the network. The question follows how con-
nectivity rules shape distributed representations of visual stimuli, examined across
a large network and over a broad set of stimuli.

We therefore simulated the presentation of grating and plaid visual stimuli in a
large-scale non-linear, rate-based model of the superficial layers of mouse V, con-
sisting of , neurons (of which approximately % were inhibitory; [,];
see Table  for all parameters used in these models). Non-spiking linear-threshold
neuron models provide a good approximation to the F–I curves of adapted cor-
tical neurons []; model neurons with linear-threshold dynamics can be directly
translated into integrate-and-fire models with more complex dynamics [,],
and in addition form good approximations to conductance-based neuron models
[].

Our model included realistic estimates for connection strength and connection
sparsity in mouse V, and a random salt-and-pepper arrangement of orientation
preference as reported for rodent V []. We defined connection rules for sparse
stochastic connectivity based primarily on overlap of dendritic and axonal fields,
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modulated by connectivity rules designed to test the difference between “like-to-
like” and “feature-binding” schemes. We quantified response similarity between
pairs of neurons as suggested by the results of the small network simulations: by
measuring response similarity over a set of grating stimuli ("g), and separately
over a set of plaid stimuli ("p; see Methods).

In the network that implemented a “like-to-like” connection rule for recurrent
excitatory connectivity (Fig.a–b), pairs of neurons showed similar responses to
both grating and plaid stimuli (Fig.b; R=. between "g and "p), in agreement
with the analytical “like-to-like” model of Fig.d.

**** FIGURE  NEAR HERE ****

However, in the network that implemented a “feature-binding” connection rule,
where in addition to spatial proximity and similarity in preferred orientation sub-
networks were defined to group neurons of two distinct preferred orientations
(Fig.c–d), neurons showed decorrelation in response to plaid stimuli (Fig.d,
R=. between "g and "p), in agreement with the analytical “feature-binding”
model of Fig.e. Different configurations of local recurrent excitatory connectivity
produced by “like-to-like” or “feature-binding” rules can therefore be detected in
large networks, by comparing responses to simple and compound stimuli.

Consistent with our analytical models, networks including only random excitatory
connectivity without any specificity did not give rise to decorrelation (Fig.Sb;
R=. between "g and "p). This shows that decorrelation between plaid and
grating responses in our models does not arise simply due to random connectivity,
but requires the active mechanism of selective amplification through feature-
binding subnetwork connectivity.

Inhibitory responses were untuned in our simulations (blue traces in Fig.a, c), in
agreement with experimental observations of poorly-tuned inhibition in
mouse V [,-].
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Visual responses in mouse V1 are consistent with “feature-binding”
connection rules

Our analytical network results show that in principle the configuration of local
excitatory connectivity, whether aligned with or spanning across feedforward
visual properties, has a strong effect on visual representations (Fig.). Our large-
scale simulations show that these effects can be detected in large networks as
differences in the pairwise correlations of responses to simple and compound
visual stimuli (Fig.). We therefore aimed to test which connectivity scheme is
more likely to be present in visual cortex, by examining responses of neurons in
mouse V.

Using two-photon calcium imaging, we recorded responses of populations of
OGB-labelled neurons in mouse V to a set of contrast-oscillating oriented grat-
ing stimuli over a range of orientations, as well as the responses to the set of plaid
stimuli composed of every possible pair-wise combination of the oriented grating
stimuli (Fig.a;  animals,  sessions,  / responsive / imaged neurons; see
Methods). Responses to plaid stimuli in mouse V suggest that stimulating with a
denser sampling of compound stimulus space leads to a better characterisation of
response selectivity (Fig.). Accordingly, we probed responses in mouse V under
stimuli analogous to those used in the model simulations, with a dense coverage
of plaid combinations over a set of finely-varying grating orientations.

**** FIGURE  NEAR HERE ****

We found that consistent with our earlier findings examining º drifting plaid
stimuli [], responses to grating stimuli did not well predict responses to plaid
stimuli. Pairs of neurons with similar preferred orientation but with highly differ-
ing responses to plaid stimuli were common (Fig.b–c; R=. between "g and
"p; OSI >.).The degree of decorrelation we observed in mouse V was consider-
ably higher than predicted by the “like-to-like” model, and was more consistent
with the “feature-binding” model (Fig.e).
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Decorrelation induced by plaid responses and the lack of a relationship between
grating and plaid responses in mouse V were not a result of unreliable or noisy
responses in vivo. We included in our analysis only neurons that were highly reli-
able, and responded significantly more strongly than the surrounding neuropil
(see Methods). As a further control, we used experimentally recorded responses to
grating stimuli to generate synthetic plaid responses for mouse V that would
result from a cortex with like-to-like subnetwork connectivity (Fig.d, inset; see
Methods). Our control data were generated from single-trial responses of single
V neurons, and therefore included the same trial-to-trial variability exhibited by
cortex. This control analysis indicates that a “like-to-like” rule among V neurons
would result in a higher correlation of grating and plaid responses than experi-
mentally observed (Fig.d; median R=.±[. .] between "g and "p;
n= bootstrap samples; compared with R=. for experimental results;
p<., Monte-Carlo test).

Importantly, this control analysis is not restricted to our “like-to-like” rule, but
makes similar predictions of highly correlated grating and plaid responses for any
arbitrary model that combines grating components to produce a plaid response, as
long as that rule is identical for every neuron in the network [].This is because
if a single consistently-applied rule exists, then any pair of neurons with similar
grating responses (high "g) will also exhibit similar plaid responses (high "p). In
contrast, neurons that are connected within the “feature-binding” model combine
different sets of grating components, depending on which subnetwork the neur-
ons are members of.

Neurons in mouse V exhibited a wide range of facilitatory and suppressive
responses to plaid stimuli, roughly equally split between facilitation and suppres-
sion (Fig.f–g; % vs %; MI >. and MI <–.).The proportion of facilitat-
ing and suppressing neurons in mouse V was similar to that exhibited by
responsive neurons in our “feature-binding” model (Fig.g; V versus F.B., p=.;
two-tailed Fisher’s exact test, nV1 =, nF.B. =). In contrast, neither the “like-to-
like” model (L-to-L) nor a model with random non-specific connectivity (Rnd)
exhibited significant facilitation in responsive neurons, and both were significantly
different from the distribution of facilitation and suppression in mouse V
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(Fig.g; p<. in both cases; two-tailed Fisher’s exact test, nL-to-L = ,
nRnd = ). The wide range of facilitatory and suppressive responses observed in
mouse V is more consistent with a feature-binding rule for local connectivity,
compared with a like-to-like rule or random non-specific connectivity.

Discussion

Whereas feedforward mechanisms for building response properties in visual net-
works have been extensively studied, it is not well understood how visual
responses are shaped by local recurrent connections. We hypothesised that the
configuration of local recurrent cortical connectivity shapes responses to visual
stimuli in mouse V, and examined two alternative scenarios for local connection
rules: essentially, whether local excitatory connections are made in accordance
with feedforward visual properties (“like-to-like”; Fig. a), or whether local excit-
atory connections span across feedforward visual properties to group them (“fea-
ture-binding”; Fig. b). We found that highly selective and facilitatory responses
to plaid stimuli observed in mouse V (Fig., Fig.; []) are consistent with
tuning of recurrent connections within small cohorts of neurons to particular
combinations of preferred orientations. Moreover, responses in mouse V are
inconsistent with a simple configuration of cortical connections strictly aligned
with feedforward visual responses.

Amplification and competition might underlie facilitation and 
suppression

Our theoretical analysis and simulation results demonstrate that non-random
excitatory connectivity affects the computational properties of a cortical network
by introducing amplification of responses within subnetworks of excitatory neur-
ons, and competition in responses between subnetworks (Fig.a–c). Several recent
studies have demonstrated that visual input is amplified within the superficial
layers of cortex [-], and recent results from motor cortex suggest competition
between ensembles of neurons []. Our modelling results indicated that some
form of non-random local excitatory connectivity is required for such amplifica-
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tion to occur through recurrent network interactions, with reasonable assumptions
for anatomical and physiological parameters for rodent cortex (Fig.a–c; Fig.S).
This still leaves in question whether the particular configuration of non-random
excitatory connectivity plays a role.

Our simulation results showed that the effects of amplification and competition
on cortical responses are tuned to the statistics of local connectivity. This implies
that stimuli matching the statistics of a subnetwork will undergo stronger ampli-
fication than non-matching stimuli (Fig. ). In our “feature-binding” model, the
statistics of subnetwork connectivity were similar to plaid stimuli composed of
two grating components. As a result, plaid stimuli gave rise to stronger amplifica-
tion than single grating components alone, when the composition of the plaid
matched the composition of connectivity within a particular subnetwork.This led
to a facilitatory effect, where some neurons responded more strongly to plaid
stimuli than to the grating components underlying the plaid stimuli. Conversely,
competition between subnetworks led to weaker responses to some plaid stimuli,
for neurons that “lost” the competition. Competition could therefore be one cor-
tical mechanism underlying cross-orientation suppression in response to plaid
stimulation.

*** FIGURE  NEAR HERE ***

In contrast, suppression in the “like-to-like” and “random” models occur because
the energy in the stimulus is spread across two grating components, and is not
combined by the network to form strong plaid selectivity. In the “like-to-like”
model, competition occurs between representations of the two oriented grating
components of the plaid, causing additional suppression. The presence of ampli-
fied, strongly facilitating plaid responses in mouse V is therefore consistent with
the existence of subnetworks representing the conjunction of differently-oriented
edges.
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Detecting feature-binding connectivity rules in cortex

We found that the precise rules that determine local connections among neurons
in cortex can strongly affect the representation of visual stimuli. The “feature-
binding” rule we examined embodies the simplest second-order relationship
between connectivity and preferred orientation, and was chosen for this reason.
We cannot rule out more complicated connectivity rules as being present in
mouse V, but we have shown that a simple “like-to-like” rule cannot explain
responses to plaid visual stimuli. Random, non-specific connections were also
unable to explain complex plaid responses in mouse V (Fig.S).

How can the detailed statistics of “feature-binding” rules be measured in cortex?
Existing experimental techniques have been used to measure only first-order
statistical relationships between function and cortical connectivity [,-,].
Unfortunately, current technical limitations make it difficult to measure more
complex statistical structures such as present under a “feature-binding” connectiv-
ity rule. Simultaneous whole-cell recordings are typically possible from only a
small numbers of neurons, thus sparsely testing connectivity within a small
cohort. Even if simultaneous recordings of up to  neurons are used [], identi-
fying and quantifying higher-order statistics in the local connectivity pattern is
limited by the low probability of finding connected excitatory neurons in cortex.

In addition, our results highlight that small changes in the statistics of local con-
nectivity can have drastic effects on computation and visual coding. Introducing a
small degree of specificity, such that a minority of synapses are made within an
excitatory subnetwork, is sufficient to induce strong specific amplification and
strong competition to the network, even though a majority of the synapses are
made randomly (Fig.a–c). Under our “feature-binding” model % of synapses
are made randomly; approximately % are made under a “like-to-like” rule and
the remaining % are used to bind visual features. Clearly, detecting the small
proportion of synapses required to implement feature binding in V will be diffi-
cult, using random anatomical sampling techniques.
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A recent study functionally characterised the presynaptic inputs to single superfi-
cial-layer neurons in mouse V, using a novel pre-synaptic labelling technique
[]. Consistent with our results for preferred orientation (Fig.f, g), they found
that presynaptic inputs were similarly tuned as target neurons but over a wide
bandwidth. The majority of synaptically connected networks were tuned for mul-
tiple orientation preferences across cortical layers, similar to the feature-binding
networks in our study.

We implemented an alternative approach, by inferring the presence of higher-
order connectivity statistics from population responses in cortex. This technique
could be expanded experimentally, by presenting a parameterised battery of simple
and complex stimuli. Stimuli close to the configuration of local connectivity rules
would lead to maximal facilitation and competition within the cortical network.
Importantly, our results strongly suggest that simple stimuli alone are insufficient
to accurately characterise neuronal response properties in visual cortex.

Building plaid responses from convergence of simple feedforward 
inputs

Could the complexity of plaid texture responses in mouse V be explained by con-
vergence of differently tuned feedforward inputs from layer  onto single layer /
neurons, similar to the proposed generation of pattern-selective responses in
primate MT [,]? Building plaid responses in this way would imply that layer
/ neurons would respond to multiple grating orientations, since they would
receive approximately equal inputs from at least two oriented components. How-
ever, layer  and layer / neurons are similarly tuned to orientation in rodent V
[,], in conflict with this feedforward hypothesis.

In addition, if responses to complex stimuli were built by feedforward combina-
tion of simple grating components, then the response of a neuron to the set of
grating stimuli would directly predict the plaid response of that neuron. This
would then imply that two neurons with similar responses to plaid stimuli must
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have similar responses to grating stimuli. However we found this not to be the
case; two neurons with similar responses to grating components often respond
differently to plaid textures or to natural scenes (Fig.d; Fig.a,b; []).

Computational role of inhibitory connectivity and physiology

Non-specific connectivity between excitatory and inhibitory neurons, as assumed
in our simulation models, is consistent with the concept that inhibitory neurons
simply integrate neuronal responses in the surrounding population [], and is
also consistent with experimental observations of weakly tuned or untuned inhib-
ition in rodent visual cortex [,,-]. Although specific E↔I connectivity has
been observed in rodent cortex [,], the majority of E↔I synapses are likely to
be made functionally non-specifically in line with the high convergence of E→I
and I→E connections observed in cortex [,,].

In our models, shared inhibition is crucial to mediate competition between excit-
atory subnetworks (Fig.); inhibition is untuned because excitatory inputs to the
inhibitory population are pooled across subnetworks. Poorly tuned inhibition, as
expressed by the dominant class of cortical inhibitory neurons (parvalbumin
expressing neurons), therefore plays an important computational role and is not
merely a stabilising force in cortex.

Other inhibitory neuron classes in cortex (e.g. somatostatin or vaso-intestinal
peptide expressing neurons) have been shown to exhibit feature-selective
responses [,,]. Recent computational work examined the influence of mul-
tiple inhibitory neuron classes with different physiological and anatomical tuning
properties in a model for rodent cortex [].They examined the role of inhibitory
connectivity on divisive and subtractive normalisation of network activity in a net-
work with specific, orientation-tuned inhibitory connectivity. They found that
specific inhibitory feedback could lead to divisive normalisation of network activ-
ity, while non-specific inhibitory feedback could lead to subtractive normalisation.
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However, the computational role of specific inhibition is likely to rest on the pre-
cise rules for connectivity expressed between excitatory and inhibitory neurons. If
the rules for E↔E and E↔I connections align, then a specific inhibitory popula-
tion could act as a break on excitation within a subnetwork, and could allow more
specific anatomical connectivity to persist while maintaining the balance between
excitation and inhibition in cortex. The functional profile of this balancing pool
would be highly tuned, and be similar to that of the excitatory neurons in the sub-
network, suggesting a physiological signature of specific inhibitory feedback that
could be sought experimentally. Alternatively, if E↔I connection rules result in
counter-tuned specificity, these connections would act to strengthen competition
between subnetworks.

Feature binding to detect higher-order visual statistics

In visual cortex of primates, carnivores and rodents, orientation tuning develops
before postnatal eye opening and in the absence of visual experience [,].
Local recurrent connections develop after the onset of visual experience and
maintain their plasticity into adulthood [,-]. Statistical correlations in nat-
ural scenes might therefore lead to wiring of subnetworks under an activity-
dependent mechanism such as spike-time dependent plasticity (STDP) [-].
Along these lines, examinations of the development of specific excitatory connec-
tions after eye opening found that similarities in feedforward input were progress-
ively encoded in specific excitatory connections [].

We expect that, as the specificity of lateral connections forms during develop-
ment, the emergence of compound feature selectivity will gradually occur after the
onset of sensory experience. This hypothesis is consistent with experience-
dependent development of modulatory effects due to natural visual stimulation
outside of the classical receptive field, as has been observed in mouse V [].
While a complete factorial combination of all possible features occurring in nat-
ural vision is clearly not possible, presumably the most prominent statistical fea-
tures of cortical activity patterns would be prioritised for embedding through
recurrent excitatory connectivity. At the same time, competition induced by non-
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specific shared inhibition will encourage the separation of neurons into subnet-
works. In our interpretation, single subnetworks would embed learned relation-
ships between external stimulus features into functional ensembles in cortex, such
that they could be recovered by the competitive mechanisms we have detailed. 

In pre-frontal cortex, compound or mixed selectivity of single neurons to com-
binations of task-related responses, facilitating efficient decoding of arbitrary
decision-related variables, has been found in several studies [,]. Binding feed-
forward cortical inputs into compound representations, as occurs in our “feature-
binding” model, is therefore a useful computational process with general applicab-
ility. We propose that specific local excitatory connectivity is a general circuit
mechanism for shaping information processing in cortical networks.
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Materials and Methods

In-vivo calcium imaging

Experimental procedures followed institutional guidelines and were approved by
the Cantonal Veterinary Office in Zürich or the UK Home Office. Procedures for
urethane anaesthesia, craniotomies, bulk loading of the calcium indicator, as well
as for in vivo two-photon calcium imaging and in vitro recording of synaptic con-
nection strength were the same as described previously [,,,].

Preparation and imaging with OGB Male and female three-month old wild
type CBL/ mice were sedated with chlorprothixene (mg/ml in Ringer solu-
tion; .ml per g by weight) then anaesthetised with urethane (% in iso-
tonic saline; initial dose .ml per g by weight; supplemented as required to
maintain anaesthesia). The body temperature of anaesthetised animals was mon-
itored and controlled using a heating pad and rectal thermometer. Atropine was
given to reduce secretions (.ml per g by weight). Intrinsic optical imaging
was used to locate primary visual cortex, and a craniotomy was made over V.

We performed bulk loading of the synthetic calcium indicator Oregon Green-
BAPTA– (OGB–; Invitrogen). Several acute injections of OGB––AM were
made under visual guidance into the visual cortex []. Sulforhodamine (SR–;
Invitrogen) was applied topically to the pial surface, to provide labelling of the
astrocytic network []. Time-series stacks recording activity in layer / cortical
neurons were acquired at a –Hz frame rate with a custom-built microscope
equipped with a × objective (LUMPlanFl/IR, NA .; Olympus) and an
MHz pulsed Ti:Sapphire excitation laser (MaiTai HP; Spectra Physics, New-
port). Acquisition of calcium transients was performed using custom-written
software in LabView (National Instruments), and analysis was performed using
the open-source FocusStack toolbox [].

Preparation and imaging with GCaMP Adult male mice (P–P) were ini-
tially anaesthetized with –% isoflurane in O2 and maintained on .–% during
the surgical procedure.The primary visual cortex (V) was localized using intrinsic
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imaging. Briefly, the skull above the estimated location of V was thinned and we
illuminated the cortical surface with nm LED light, presented drifting grat-
ings for  s, and collected reflectance images through a × objective with a CCD
camera (Toshiba TELI CSDCL).

A craniotomy of –mm was opened above the region of strongest intrinsic signal
response, which we assumed to be centred over V. We then injected the genetic-
ally encoded calcium indicator GCaMPm []
(AAV.Syn.GCaMPm.WPRE.SV; UPenn) around µm below the cortical
surface to target superficial layer neurons. – injections were made in a single
animal and a volume of approximately nl was injected at each location. The
craniotomy was sealed with a glass window and a metal post for head fixation was
implanted on the skull with dental acrylic, contralateral to the cranial window.

For imaging, animals were anaesthetised with isoflurane at % for induction, then
head fixed. Isoflurane concentration was lowered to .–.% during the experi-
ment. We maintained the animal’s body temperature at ºC using a rectal ther-
mometer probe and a heating pad placed under the animal. Silicon oil was applied
to the eyes to keep them moist.

In vivo / in vitro characterisation of function and connectivity Methods for
obtaining visual responses in vivo and measuring synaptic connectivity in vitro are
described in []. Briefly, young C/BL mice (P–) were anaesthetised
(fentanyl, midazolam and medetomidine) and injected with OGB calcium indic-
ators, lightly anaesthetised with isoflurane (.–.%) and head fixed. Two-
photon imaging of calcium responses was used to record the response of neurons
to a sequence of natural images ( individual images). After in vivo imaging
experiments, simultaneous whole-cell recordings of up to six neurons at a time
were performed in vitro. Evoked spikes and recorded EPSPs were used to identify
synaptically connected pairs of neurons.
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Visual stimulation

Visual stimuli for receptive field characterisation, drifting gratings and plaids and
masked natural movies were provided by an LCD monitor (.×. cm; BenQ)
placed – cm from the eye of the animal and covering approximately ×
visual degrees (v.d.).The monitor was calibrated to have a linear intensity response
curve. Contrast-oscillating grating and plaid stimuli were presented on an LCD
monitor (.×. cm; Xenarc) placed  cm from the eye of the animal and cover-
ing ×v.d.The same screen was used for stimulus presentation during intrinsic
imaging to locate visual cortex and during two-photon imaging.The open-source
StimServer toolbox was used to generate and present visual stimuli via the
Psychtoolbox package [,].

Stimuli for receptive field characterisation comprised a × array of masked high
contrast drifting gratings (v.d. wide; overlapping by %; v.d. per cycle; Hz
drift rate; .Hz rotation rate) presented for  s each in random order, separated
by a blank screen of  s duration, with % luminance (example calcium response
shown in Fig.a). Full-field high-contrast drifting gratings (.v.d. per cycle;
Hz drift rate) were presented drifting in one of  directions for  s each in
random order, separated by a  s period of blank screen with % luminance
(example calcium response shown in Fig.b). Full-field % contrast drifting
gratings (v.d. per cycle; Hz drift rate) were presented drifting in one of  dir-
ections for  s each in random order (calcium responses shown in Fig.). Full-field
drifting plaid stimuli were constructed additively from % contrast grating com-
ponents (v.d. per cycle; Hz drift rate;  s duration; Fig.). Full-field natural
movies consisted of a  s continuous sequence with three segments (example cal-
cium response shown in Fig.c). Full-field contrast-oscillating gratings and plaid
stimuli were composed of bars of v.d. width which oscillated at Hz between
black and white on a % grey background, and with a spatial frequency of
v.d./cycle (example calcium response shown in Fig.a). On each subsequent
oscillation cycle the bars locations shifted phase by º. Static gratings were used
to avoid introducing a movement component into the stimulus. A base orienta-
tion for the gratings of either horizontal or vertical was chosen, and five orienta-
tions spanning ±deg. around the base orientation were used. Contrast-oscillat-
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ing plaids were composed of every possible combination of the five oscillating
grating stimuli, giving  grating and  plaid stimuli for each experiment. A single
trial consisted of a blank period (% luminance screen) presented for  s, as well
as presentations of each of the gratings and plaids for  s each, preceded by  s of a
blank % luminance screen, all presented in random order.

Analysis of calcium transients

Analysis of two-photon calcium imaging data was conducted in Matlab using the
open-source FocusStack toolbox [86]. During acquisition, individual two-photon
imaging trials were visually inspected for Z-axis shifts of the focal plane. Affected
trials were discarded, and the focal plane was manually shifted to align with previ-
ous trials before acquisition continued. Frames recorded from a single region were
composed into stacks, and spatially registered with the first frame in the stack to
correct lateral shifts caused by movement of the animal. Only pixels for which
data was available for every frame in the stack were included for analysis. A back-
ground fluorescence region was selected in the imaged area, such as the interior of
a blood vessel, and the spatial average of this region was subtracted from each
frame in the stack.The baseline fluorescence distribution for each pixel was estim-
ated by finding the mean and standard deviation of pixel values during the  s
blank periods, separately for each trial. Regions of interest (ROIs) were selected
either manually, or by performing low-pass filtering of the OGB (green) and
sulforhodamine (red) channels, subtracting red from green and finding the local
peaks of the resulting image.

A general threshold for responsivity was computed to ensure that ROIs con-
sidered responsive were not simply due to neuropil activity. The responses of all
pixels outside any ROI were collected (defined as “neuropil”), and the Z-scores of
the mean &F/F0 responses during single visual stimulus presentations were com-
puted per pixel, against the  s baseline period. A threshold for single-trial
responses to be deemed significant (ztrial) was set by finding the Z-score which
would include only % of neuropil responses ('= %). A similar threshold was set
for comparison against the strongest response of an ROI, averaged over all trials
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(zmax). These thresholds always exceeded , implying that single-trial responses
included for further analysis were at least  standard deviations higher than the
neuropil response. Note that this approach does not attempt to subtract neuropil
activity, but ensures that any ROI used for analysis responds to visual stimuli with
calcium transients that can not be explained by neuropil contamination alone.

The response of a ROI to a stimulus was found on a trial-by-trial basis by first
computing the spatial average of the pixels in a ROI for each frame.The mean of
the frames during the blank period preceding each trial was subtracted and used
to normalise responses (&F/F0), and the mean &F/F0 of the frames during the
trial was computed. The standard deviation for the baseline of a neuron was
estimated over all &F/F0 frames from the long baseline period and the pre-trial
blank periods. ROIs were included for further analysis if the ROI was visually
responsive according to trial Z-scores (maximum response> zmax) and reliable
(trial response> ztrial for more than half of the trials).The response of a neuron to a
stimulus was taken as the average of all single-trial &F/F0 responses.

Receptive fields of neurons recorded under natural movie and drifting grating
stimulation were characterised by presenting small, masked high-contrast drifting
gratings from a × array, in random order (see above; Fig.a). A receptive field
for each neuron was estimated by a Gaussian mixture model, composed of circu-
larly symmetric Gaussian fields ("= .v.d.) placed at each stimulus location and
weighted by the response of the neuron to the grating stimulus at that location.
The centre of the receptive field was taken as the peak of the final Gaussian mix-
ture. Neurons were included for further analysis if the centre of their receptive
field lay within a .v.d. circle placed at the centre of the natural movie visual
stimulus. Example single-trial and trial-averaged calcium responses to natural
movie stimuli are shown in Fig.c.

Response similarity measures and response metrics

The similarity in response between two neurons was measured independently for
grating and plaid stimuli.The set of grating responses for each neuron were com-
posed into vectors R1g and R2 g . Similarity in grating response was then given
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by the Pearson’s correlation coefficient between R1g and R2 g :
ρg=corr R1g ,R2 g( ) (see Fig.b, inset).The similarity in response to plaid stimuli
was computed analogously over the sets of plaid responses R1 p and R2 p :
ρ p=corr R1 p ,R2 p( ) (see Fig.a, inset). Similarity was only measured between
neurons recorded in the same imaging site.

The similarity between neurons in their responses to movie stimuli ("m) was
measured by computing the signal correlation as follows. The calcium response
traces for a pair of neurons were averaged over trials.The initial  s segment of the
traces following the onset of a movie segment were excluded from analysis, to
reduce the effect of transient signals in response to visual stimulus onset on ana-
lysed responses. The Pearson’s correlation coefficient was then calculated between
the resulting pair of traces ("m; see Fig.c, inset). Note that correlations intro-
duced through neuropil contamination were not corrected for, with the result that
the mean signal correlation is positive rather than zero. For this reason we used
thresholds for “high” correlations based on percentiles of the correlation distribu-
tion, rather than an absolute correlation value.

The similarity between neurons in their responses to flashed natural stimuli ("Ca;
Fig.f ) was measured as the linear correlation between the vector of responses of
a single neuron to a set of  natural stimuli [].

The Orientation Selectivity Index (OSI) of a neuron was estimated using the for-
mula OSI= max Rg( )−min Rg( )⎡

⎣⎢
⎤
⎦⎥ sum Rg( ) , where Rg is the set of responses of a

single neuron to the set of grating stimuli.

The Plaid Selectivity Index (PSI) of a neuron, describing how selective a neuron is
over a set of plaid stimuli, was calculated using the formula
PSI=1−−1+ Rp, j max Rp( )j∑⎡

⎣⎢
⎤
⎦⎥ # Rp( )−1⎡
⎣⎢

⎤
⎦⎥ , where # Rp( ) is the number of

stimuli in Rp []. The PSI of a neuron ranges from  to , where a value of 
indicates a highly selective response, where a neuron responds to only a single
stimulus; a value of  indicates equal, nonselective responses to all stimuli.
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A plaid Modulation Index (MI), describing the degree of facilitation or suppres-
sion of a neuron in response to plaid stimuli, was calculated using the formula
MI= max Rp( )−max Rg( )⎡

⎣⎢
⎤
⎦⎥ max Rp( )+max Rg( )⎡
⎣⎢

⎤
⎦⎥ , where Rp is the set of

responses of a single neuron to the set of plaid stimuli []. The MI of a neuron
ranges from – to . Values of MI < indicate stronger responses to grating stimuli
compared with plaid stimuli; values of MI > indicate stronger responses to plaid
stimuli. A value of MI =– indicates that a neuron responds only to grating stim-
uli; a value of MI =  indicates that a neuron responses to only plaid stimuli.

The proportion of facilitating and suppressing neurons was compared between
mouse V and model responses using two-tailed Fisher’s exact tests. The popula-
tion of responsive neurons was divided into three groups: facilitating (MI >.);
suppressing (MI<–.); and non-modulated (–.<= MI <=.). These cat-
egories were arranged into three × contingency tables, with each table tested to
compare facilitation and suppression between mouse V and one model.

Generation of V1 control responses

We used single-cell, single-trial responses to oscillating contrast grating stimuli to
explore whether we could distinguish between correlated and decorrelated
responses to plaid stimuli, given experimental variability and noise. For each cell
in the experimentally-recorded data set, we used the set of grating responses Rg to
generate plaid responses Rp for the same cell, under the assumption that the
response to a plaid was linearly related to the sum of the responses to the two
grating components. For each plaid, we randomly selected a single-trial response
for each of the grating components of the plaid. The predicted single-trial plaid
response was the sum of the two grating responses. We generated  bootstrap
samples for each experimental population, with each sample consisting of the
same number of trials and neurons as the experimental population. We then
quantified the relationship between grating and plaid responses as described for
the experimental data.
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Models of mouse V1

We designed a model of the superficial layers of mouse primary visual cortex, to
explore the effect of different connectivity rules on information processing within
the cortex. A simple version of this model, comprising only five neurons with
mean-field connectivity, was used for analytical exploration (“analytical model”;
Fig., Fig.S, Fig. ). A large-scale version, comprising , neurons with
sparse connectivity, was used for direct comparison with experimental results
(Fig.–). A full list of parameters for both models is given in Table .

Common model dynamics Individual excitatory neurons (approximating layer /
pyramidal cells) and inhibitory neurons (approximating layer / basket cells)
were modelled as linear-threshold units, with equal time constants and thresholds
set to zero.The dynamics of each rate-coded neuron in the large- and small-scale
models was governed by the differential equation

τi⋅ !xi=−xi+ wi , j
j

NN

∑ x j−β j⎡
⎣

⎤
⎦
+
+I i t( )+σi⋅ζi t( ) , ()

where τi is the time constant of neuron i; xi is the instantaneous current being
injected into neuron i; [ ]+ denotes the linear-threshold transfer function
x[ ]+=max x,0( ); β j is the activation threshold of neuron j; I i t( ) is the stimulus

input current provided to neuron i at time t; σi⋅ζi t( ) is a white noise process
included to approximate the barrage of spontaneous E- and I-PSPs experienced
by cortical neurons; and NN is the total number of neurons in the model. The
total directed connection strength between two neurons j and i is given in Eq. ()
by wi , j=g j ⋅ni , j ⋅α j , where g j is the charge injected by a synapse from neuron j to
neuron i and ni , j is the number of synapses made by neuron j onto neuron i; α j

is the gain of neuron j.

Synaptic input Synapses were modelled as constant current sources that injected
an amount of charge per second related to the average firing rate of the presyn-
aptic neuron, modulated by the synaptic release probability. Single excitatory syn-
apses were assigned a weight of . pC/spike / synapse; single inhibitory syn-
apses were considered to be  times stronger []. Excitatory and inhibitory
neurons were assigned output gains of . spikes /pC [].
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Analytical model To explore the basic stability and computational consequences
of non-random excitatory connectivity, we built a small five-node model (four
excitatory and one inhibitory neuron; Fig.). Connections within this model were
defined to approximate the average expected connectivity between populations of
neurons in layers / of mouse V. Excitatory neurons were grouped into two sub-
networks, and a proportion s of synapses from each excitatory neurons was
reserved to be made within the same subnetwork. When s =, E↔E synapses
were considered to be made randomly, such that each connection in the small
model approximated the average total connection strength expected in mouse V.
When s = , all E↔E synapses were considered to be specific within the same sub-
network, such that no synapses were made between excitatory neurons in different
subnetworks. Connections to and from the inhibitory node were considered to be
made randomly in every case. The resulting weight matrix for this network is
therefore given by

W=

a a b b −wie

a a b b −wie

b b a a −wie

b b a a −wie

wei wei wei wei −wI ⋅ f I

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, where ()

a=wS /2+wN /4 is the excitatory weight between neurons in the same subnet-
work; b=wN /4 is the excitatory weight between neurons in different subnet-
works; wie=wI ⋅ 1− f I( )/4 is the nonspecific inhibitory to excitatory feedback
weight; wei=wE ⋅ f I is the nonspecific excitatory to inhibitory weight;
wS=wE ⋅ 1− f I( )⋅s is the specific weight component, wN=wE ⋅ 1− f I( )⋅ 1−s( ) is
the nonspecific weight component, wE is the total synaptic weight from a single
excitatory neuron, wI is the total synaptic weight from a single inhibitory neuron
and f I=1/5 is the proportion of inhibitory neurons. Preferred orientations for
each excitatory neuron are indicated in Fig.. When a stimulus matched the pre-
ferred orientation of a neuron, a constant input current was injected ( I i t( )=ι );
when a stimulus did not match the preferred orientation, no input current was
provided to that neuron ( I i t( )=0 ). When simulating the analytical model, the
input current ι=1 .
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Measuring stability and competition To determine network stability in the ana-
lytical model, we performed an eigenvalue analysis of the system Jacobian, given
by J= (W–I)./T, where W is the system weight matrix as given above, I is the
identity matrix, T is the matrix composed of time constants for each post-synaptic
neuron corresponding to elements in W and A./B indicates element-wise division
between matrices A and B. The network was considered stable if all eigenvalues
of J as well as the trace of the Jacobian Tr( J) were non-positive. The non-linear
dynamical system was linearised about the fixed point where all neurons are
active; if this fixed point is unstable then the system operates in either a hard
winner-take-all mode if a different partition is stable, or is globally unstable
[,]. Either of these modes is undesirable for cortex.

For a network to be in an ISN regime, the excitatory portion of the network must
be unstable in the absence of inhibition, and inhibition must be strong enough in
the full network to balance excitation. To determine whether the parameter
regimes place the network in an inhibition-stabilised (ISN) regime, we therefore
performed an eigenvalue analysis of the system in which all inhibitory connec-
tions were removed (i.e. wI=0 ). Either one eigenvalue of the corresponding Jac-
obian JE of the excitatory-only network or the system trace Tr( JE) was required to
be positive, but the system including inhibitory feedback was required to be
stable.

The presence and strength of competition in Fig. was determined by injecting
current into a single excitatory neuron and recording the net current received by
an excitatory neuron in the opposite subnetwork at the network fixed point (see
Fig.a). Negative net currents correspond to competition between the stimulated
and recorded excitatory neurons (shown as shading in Fig.S).

Large-scale model To construct the large-scale simulation model of mouse V,
, linear-threshold neurons were each assigned a random location ui∈T2

where T defines the surface of a virtual torus of size .×.mm. Excitatory and
inhibitory neurons were placed with relative densities appropriate for layers 
and  of mouse cortex [].
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To determine patterns of synaptic connectivity, we calculated for each neuron the
probability distribution of forming a synaptic connection with all other neurons
in the model. A fixed number of synapses was drawn from this distribution; the
number was chosen as an estimate of the number of synapses formed with other
superficial layer neurons in rodent cortex ( from each excitatory and 
from each inhibitory neuron; [,]). Since a simulation with the full density of
cortical neurons was computationally infeasible, the size of the simulations was
scaled to % of estimated cortical density. The sparsity of local synaptic con-
nectivity was maintained by also scaling the number of synapses made by each
neuron, while maintaining the total synaptic conductance formed by each neuron.

Axonal and dendritic densities for each neuron were described by a two-dimen-
sional Gaussian field

G v,ui ,ρi( )=exp − v,ui
2

2ρi 2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
, ()

where ρi is a field dispersion parameter associated with neuron i and v,u is the
Euclidean distance between v and u, computed over the surface of a D torus. In
our models, each neuron had a Gaussian dendritic field of "d = µm (correspond-
ing to an approximate width of "=µm; []); and axonal field of
"a,e =µm for excitatory neurons (width µm; [-]) and "a,i = µm for
inhibitory neurons (width µm; []).

Anatomical connectivity rule Our default rule for forming synapses was based
on Peters’ Rule, in that the probability of forming a synapse was proportional to
the overlap between axonal and dendritic fields [,].This was estimated by com-
puting the integrated product of axonal and dendritic fields over a torus T :

pPeters= G v,ui ,ρd ,i( )G v,u j ,ρa , j( )dv
T∫∫

!
"#

$
%&, ()

where pPeters is the probability of forming a single synapse between neurons i
and j, and the notation   indicates that the expression between the double
brackets is normalised to form a probability density function, such that if summed
across all possible target neurons the total will be equal to .
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Like-to-like connectivity rule We investigated two rules for anatomical
specificity in intra-cortical excitatory recurrent connections. The first such rule
corresponds to the case where local recurrent connectivity is aligned with match-
ing feedforward visual properties (preferred orientation, in our case). We therefore
assumed that the probability of forming a synapse is modulated by the similarity
in preferred orientation between two excitatory neurons (“Like-to-Like” rule; see
Fig.a). The probability of connection between two neurons was proportional to

pconn∝ pPeters s1 pori! "+ 1−s1( )( ) , where ()
pori=vonmises θi ,θ j ,κ( ); pPeters is the connection probability under non-specific

Peters’ rule connectivity, defined above; and s1 is the proportional strength of
specificity s1∈ 0,1[ ] . If s1 = then Eq. () becomes equivalent to Peters’ rule. When
s1 =  then the probability of connecting orthogonally tuned neurons is zero.

Feature-binding connectivity rule The second rule for anatomical connection
specificity corresponds to the case where local recurrent connectivity is not
aligned with feedforward visual properties. Instead, it was designed to explore
binding of simple visual features (“Feature-Binding” specificity; see Fig.e). Under
this rule, a subnetwork combined neurons with a number , of different orienta-
tion preferences. The preferred orientations used to compose a subnetwork in the
Feature-Binding specificity model were chosen from periodic filtered noise fields.

Each noise field Zk ,q was built by generating a unit-magnitude complex number
z j=exp −iζ j( ) for each neuron in the model, with uniformly-distributed orienta-
tions ζ j∈−π,π[ ) . Here “i” represents the complex number −1 ; k∈ 1,NS[ ] ,
where NS is the number of subnetworks in the model; q∈ 1,ϑ[ ] , where ϑ is the
number of preferred orientations per subnetworks. In our models described in this
paper, NS = and ϑ =.

A field Zk ,q was defined by placing each z j at the location u j of the correspond-
ing neuron. Each complex field Zk ,q was spatially filtered by convolving with a
Gaussian field Gρ on a torus, with a spatial std.dev. of ρ =µm (width µm).
The angles from the resulting field of complex numbers was used as one orienta-
tion component for one subnetwork, at each point in simulated space. The com-
position of each subnetwork therefore changed smoothly across cortical space, so
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that nearby neurons in the same subnetwork had similar functional selectivity.
Therefore, ∠ Z!Gρ( ) defines a NS×ϑ matrix of numbers where each element
determines one preferred orientation component of the corresponding
subnetwork.

Neurons were assigned to one of NS subnetworks, according to the maximum
similarity between a neuron’s preferred orientation and the orientation composi-
tion of the set of subnetworks at the location of the neuron’s soma.The similarity
between a neuron’s preferred orientation and a subnetwork orientation was com-
puted using a von Mises function with width parameter -2, such that the mem-
bership probability was proportional to

pm k,θi( )∝ max vonmises θi ,θk ,1 ,κ2( ), vonmises θi ,θk ,2 ,κ2( )⎡
⎣

⎤
⎦

 , ()
where k is the index of an SSN consisting of preferred orientations θk ,1 and θk ,2 ;
θi is the preferred orientation of a neuron under consideration; and the expression
within the double brackets   was normalised to be a valid probability density
function over k. A neuron was assigned membership of an SSN according to the
formula

M i( )=argmax
k

pm k,θi( )( ), ()

where M i( )  gives the index of the SSN of which neuron i is a member.

The probability of connection between two neurons under the feature-binding
model is therefore given by

pconn∝(1−s2 ) pPeters s1⋅ pori! "+1−s1( )+s2 bSSN ⋅pPeters! ", ()
where parameter s1 determines the relative contribution of Non-Specific versus
orientation-tuned Like-to-Like specificity as in Eq. (); s2 determines the relative
contribution of Feature-Binding specificity; pori=vonmises θi ,θ j ,κ1( ) as in Eq. ();
and bSSN is a value equal to  when the two neurons fall within the same subnet-
work; that is

bSSN=
1iff M i( )=M j( )

0 otherwise
⎧
⎨
⎪⎪

⎩
⎪⎪

()

Network input Input was provided to the network as a simulation of orienta-
tion-tuned projections from layer  to layers / [,]. Each excitatory neuron
was assigned an orientation tuning curve based on a von Mises function (a circu-
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lar, Gaussian-like function), with a randomly chosen preferred orientation θi and
a common input tuning curve width -=. vonmises ⋅( ) is the non-normalised
von Mises function with vonmises ⋅( )∈ 0,1[ ], given by

vonmises t ,θ,κ( )=exp κcos2 t−θ( )[ ] . ()
Current was injected into each simulated neuron proportional to the orientation
tuning curve of that neuron, according to the orientation content of the stimulus:

I i t( )∝A t( )
NN

vonmises θg t( ),θi ,κi( ), ()

where A t( ) is the amplitude of the stimulus at time t; θg t( ) is the orientation of
a grating stimulus at time t; θi is the preferred orientation of neuron i; κi is the
tuning curve width of neuron i; NN is the total number of neurons in the net-
work. The input to the network is normalised such that the total current injected
into the network is equal to A t( ) . For a simulated plaid stimulus composed of
the two component orientations θg1 and θg 2 , input to a neuron was the linear
average of input associated with each grating component, given by

I i t( )∝ A t( )
2NN

vonmises θg1,θi ,κi( )+vonmises θg 2 ,θi ,κi( )( ). ()

Both grating and plaid stimuli were considered to cover the full visual field. Tuned
input currents were injected only into excitatory neurons, because we wanted to
investigate the effect of excitatory recurrence on cortical information processing.
Providing untuned feedforward input to inhibitory neurons can produce the illu-
sion of competition between excitatory neurons, merely due to the thresholding
effect of feedforward inhibitory input shared between those neurons.

Inclusion of experimental response variability We simulated large-scale networks
as described above, and obtained responses to simulated visual stimuli. In order to
mimic the response variability due to experimental conditions, such as recording
noise and intrinsic neuronal response variability, we introduced a random com-
ponent to the model responses.

For each presented stimulus i (e.g. a grating of a given orientation), we obtained a
set Si of single-trial responses ri,j for a single neuron such that ri , j∈Si , and the
trial-averaged response ri= ri , j Tj=1..T∑ , where T is the number of trials collec-
ted for that stimulus. Over the full set of stimuli for a given neuron, we determ-
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ined the maximum trial-averaged response rmax=max
i

ri . We then measured the
standard deviation σ over the collection of all single-trial responses over all stim-
uli for a given neuron normalised by rmax , such that σ=std Si /rmax

i
∪
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ . The

estimated experimental variability σ̂ was defined as the median σ over all recor-
ded neurons.

A similar procedure in reverse was applied to model-simulated visual responses, to
mimic experimental variability. Activity of single neurons in response to a simu-
lated stimulus i was interpreted as the mean response ri , with rmax defined as
above. Single-trial model responses were then generated as ri , j=ri+N 0,σ̂⋅rmax( ) ,
where N µ,σ( ) generates a single normally-distributed random variate with
mean µ and standard deviation σ . Twelve trials were generated for each stimulus
(i.e. T=), and single-trial responses were then analysed as described for experi-
mentally recorded responses.

Estimation of parameters for connection rules Ko and colleagues characterised
functional specificity in mouse primary visual cortex, by recording in slice from
pairs of neurons that were functionally characterised in vivo []. We fit our func-
tion pconn (Eq. ()) to their measurements of the probability of connection between
neurons tuned for orientation, giving estimates for both -1 and s1 ( κ̂1 =.;
ŝ1 =.). These parameters correspond to fairly weak functional specificity. We
found that in the Like-to-Like specificity model, in order to have an appreciable
network effect we had to increase the strength of functional specificity to s1 =.
(with -1 =.). The connectivity measurements of Yoshimura and colleagues sug-
gest that on the order of N =– subnetworks exist in layers / of rodent cortex
[]. For the Feature-Binding specificity model, we took the parameters s1 =.,
s2 =., -1 =., -2 =, N =, ,=.

Statistical methods

We used a sample size commensurate with those used in the field, and sufficient
for statistical analysis of our observations. No explicit sample size computation
was performed.
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Two-sided, non-parametric statistical tests were used unless stated otherwise in
the text.
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Tables

Table 1: Summary of nominal model parameters and model variables. Abbreviations: Exc:

Excitatory; Inh: Inhibitory; Prop: proportion.
Parameter Description Nominal value

τi Lumped neuron time constant for neuron i 10ms

g j
Nominal charge injected by synapses from 
neuron j

Exc.: 0.01 pC/ spike / synapse
Inh.:10×0.01 pC/ spike / synapse

α j
Nominal output gain of neuron j 0.066 spikes /pC

ni , j
Number of synapses made from neuron j to neuron i

β j
Threshold of neuron j Zero

σi⋅ζi t( ) Noise current injected into neuron i. Wiener 
process with std. dev. σi  after 1 sec.

σi =5 mA

NN
Number of neurons in simulation 80,000 (10% of cortical density)

Prop. inh. Proportion of inhibitory neurons 18%
Dimensions of simulated torus space 2.2×2.2mm

Si
Nominal number of synapses made by neuron 
i (within superficial layers only)

Exc.: 8142 Inh.: 8566

σd ,i Std. Dev. of Gaussian dendritic field of neuron
i

75µm (approx. width 300µm)

σa ,i Std. dev. of Gaussian axonal field of neuron i Exc.: 290µm (approx. width 1100µm)
Inh.: 100µm (approx. width 400µm)

κi Input orientation tuning width parameter for 
neuron i

4

s1 Degree of like-to-like modulation of anatomical connection probability

s2 Degree of feature-binding modulation of connection probability

κ1 Orientation tuning of like-to-like connection probability

κ2 Orientation tuning of subnetwork membership probability

NS
Number of subnetworks that exist at a point in cortex

ϑ Number of preferred orientations bound in an subnetwork

Table 2: Parameter values used to specify large-scale network models.
Network configuration Parameter values

Random connectivity model s1 =0, s2 =0
Like-to-like specificity model s1 =0.8, s2 =0, κ1 =0.5
Feature-binding specificity model s1 =0.1, s2 =0.25, κ1 =0.5, κ2 =4, NS =6, ϑ =2
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Figure captions

Figure 1: Like-to-like and feature-binding rules for local recurrent connectivity. a Con-

nectivity scheme where local recurrent excitatory connections (between neurons grouped

by dashed ovals) are matched to the feedforward visual preferences of the connected neur-

ons (“like-to-like” over orientation preference, indicated by grating icons). b Connectivity

scheme where local recurrent excitatory connections are different from the feedforward

visual preferences of connected neurons (“feature-binding”). Exc.: excitatory.

Figure 2: Plaid responses are facilitatory and selective in mouse V1. (a, b) Two-photon cal-

cium imaging of visual responses in mouse V1. (b) Average of 6 imaging frames. (c) Trial-

averaged responses (7 trials) of a single neuron in mouse V1 to grating and (d–f) plaid stim-

uli of varying relative component orientations. g–h Response tuning of the same neuron in

c–f. Neurons can be highly tuned to oriented gratings, and also highly selective for particu-

lar combinations of grating components. i When three sets of plaid stimuli with varying rel-

ative component angles are presented, the majority of neurons have facilitating responses

to plaids (64% with MI>0.05). In response to 90º plaids alone however, neurons are more

evenly split between facilitation and suppression (39% with MI>0.05; dashed). j Responses

to combined plaid sets are significantly more selective than responses to 90º plaids alone,

and significantly more selective than predicted plaid responses under a component

response model [86]. *** p<1⨉10–10, Wilcoxon rank-sum test. OSI: orientation selectivity

index; DSI: direction selectivity index; PSI: plaid selectivity index; MI: modulation index;

facil.: facilitating; supp.: suppressing; prop.: proportion.

Figure 3: Connected neurons span a wide range of preferred orientations in mouse V1. a

Characterisation of receptive field location using sparse drifting/rotating grating stimuli.

Single-trial OGB calcium responses (black); presentation time of optimal stimulus and sub-

optimal stimulus indicated (black and grey bars). Right inset: estimated RF location for the

same neuron. b Single-trial OGB calcium response to drifting grating stimuli (black); present-

ation of optimal stimulus orientation indicated above, all stimulus presentation times indic-

ated below. Right inset: calculation of grating response similarity "g between two neurons. c

Single-trial (grey) and trial-averaged OGB calcium response (black) to natural movie stimuli.

Vertical lines indicate timing of movie sequence onset. Right inset: calculation of movie

response similarity ("m), using signal correlations over trial-averaged responses from two

neurons. d Pairs of neurons with high signal correlations to natural movies ("m), which pre-

dicts a high probability of connection [21], can have similar or dissimilar grating responses.

Pairs of neurons with similar orientation preference are not more likely to have high "m (e)

or high signal correlation to flashed natural scenes "Ca (f) than pairs with dissimilar orienta-

tion preference. g Connected pairs are slightly more likely to share similar orientation pref-

erences than unconnected pairs [21,24], but nevertheless span almost arbitrary orientation

differences (≈20% of pairs with close to orthogonal orientation preference). d–e: in vivo
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two-photon calcium imaging; f–g: in vivo calcium imaging coupled with in vitro simultan-

eous patching to detect connected pairs; data from [24]. e–f: Kruskal-Wallis tests; g: Ansari-

Bradley test. n.s.: p>0.05. Strong connections: strongest 50% of connected pairs, measured

by EPSP amplitude. Corr: correlation; conn.: connection.

Figure 4: Rules for excitatory connectivity influence stimulus representations, and under-

lie amplification and competition. a In a simple model for random connectivity in

mouse V1, injecting current into a single neuron (black outline) leads to non-specific activa-

tion of other excitatory (triangle) and inhibitory neurons (circle). Traces show the instantan-

eous firing rate of each neuron. b When the model is partitioned into subnetworks (SN1&2;

dashed ovals), injecting current into a single neuron gives rise to an amplified response

within the same subnetwork and suppresses activity in the non-driven subnetwork. c The

degree of amplification and suppression depends directly on the proportion of excitatory

synapses s restricted to be made within a subnetwork (see Fig.S1). Values of s used in pan-

els a–b indicated on plot. d When local recurrent excitatory connections match the feedfor-

ward visual properties of connected neurons (“like-to-like”), grating responses (top) and

plaid responses (bottom) are highly similar (high "g &"p). e In contrast, when local recurrent

connections are different from the feedforward visual properties—in this case, grouping

two different preferred orientations (“feature-binding”)—then neurons with similar grating

responses (top, high "g) can have dissimilar plaid responses (bottom, low "p), reflecting

decorrelation of these responses caused by competition. Black outlines: stimulated neurons.

Grating labels: preferred orientation of that neuron. Dashed ovals: neurons grouped by

specific excitatory connectivity. a.u.: arbitrary units; prop.: proportion; syns.: synapses.

Other conventions as in Fig.1.

Figure 5: Rules for excitatory connectivity determine response correlation and decorrela-

tion in a model of mouse V1. a–b In a large-scale network simulation incorporating like-to-

like selective excitatory connectivity (connectivity rule and network schematic shown at

left), responses of pairs of neurons to grating and plaid stimuli are always similar (b; similar

"g &"p, high R2). Traces: instantaneous firing rates for single example excitatory (black) and

inhibitory (blue) neurons. Responses to grating stimuli are highly predictive of plaid

responses; distribution of "g versus"p is therefore clustered around the diagonal (black line

in b; high R2). c–d When in addition to like-to-like connectivity, subnetworks also group

neurons with several preferred orientations, then pairs of neurons with similar preferred ori-

entations can respond differently to plaid stimuli, and vice versa (see response traces). d

Competition due to feature-binding connectivity leads to decorrelation of the population

response (low R2). The distribution of "g versus"p is broad (black line in d), indicating poor

predictability between grating and plaid responses. Inhibitory responses are broadly tuned

in both models (blue traces in a&b). Pips in connectivity diagram in c indicate example

preferred orientations of a single subnetwork. Conventions as in Fig.1. Stim.: stimuli; a.u.:

arbitrary units; corr.: correlation; feat. bind.: feature binding.
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Figure 6: Responses to contrast-oscillating plaid and grating stimuli in mouse V1 suggest

feature-binding connection rules. a Single-trial OGB calcium response to contrast-oscillat-

ing grating and plaid stimuli; presentation time of stimuli evoking strong responses indic-

ated above trace. Right inset: measurement of plaid response similarity "p between two

neurons. b Trial-averaged responses (8 trials) of a pair of neurons from a single imaging site,

with similar preferred orientations (polar plots at left; high "g) but with dissimilar responses

to plaid stimuli (low "p). c Responses to grating and plaid stimuli are poorly related in ori-

entation-tuned neurons in mouse V1 (Broad distribution of "g versus "p residuals—black

line, low R2). d Control data that includes experimental noise and response variability,

obtained by resampling experimental responses and assuming a like-to-like connectivity

rule (inset; see Methods), predicts a strong relationship between grating and plaid repres-

entations (high R2) and is easily distinguished from observed V1 responses in c. e Decorrela-

tion in mouse V1 is similar to the “feature-binding” model (F.B.), and much broader than the

“like-to-like” model (L-to-L). f Responses to plaid stimuli in V1 are split between facilitating

and suppressing (45% MI>0.05; 42% MI<–0.05). g The distribution of facilitating (Facil.;

MI>0.05) and suppressing (Supp., MI<–0.05) responses is similar between mouse V1 and

the “feature-binding” model (F.B.; p=0.17, Fisher’s exact test). The “like-to-like” and ran-

dom non-specific (Rnd) connectivity models produced predominately suppressing

responses. ***p<0.001. nV1 =313; nF.B. =804; nL-to-L =729; nRnd =729; significantly responsive

neurons with OSI>0.3. Stim: stimuli; corr.: correlation; decorr.: decorrelation.

Figure 7: Non-random connectivity supports autoassociative behaviour. In a simple model

with two subnetworks (a), presenting a linear graduated mixture between the ideal stimuli

for the two subnetworks (b) results in competition and switching between network repres-

entations. When the stimulus is ideal for one subnetwork (mixture=0% or 100%), then

strong amplification of the network response occurs (compare with response of SN1 to a

single grating component; arrowheads at right of b). When an approximately even mixture

is presented (above and below 50%), the network switches rapidly from one representation

to the other. Proportion of specific excitatory synapses s=25%. Dashed ovals: neurons

grouped by specific excitatory connectivity. Other conventions as in Fig.1. a.u.: arbitrary

units.

Supplementary Figure 1: Estimated parameters for cortex place it in an Inhibition-Stabil-

ised Network (ISN) regime, with competition provided by specific excitatory connectivity.

a The network stability regimes in the parameter space defined by total inhibitory weight

gI∙nI and total excitatory weight gE∙nE for a random network (proportion of specific synapses

s=0%). Nominal parameter estimates for rodent cortex (cross) place the network in a

regime that requires inhibitory feedback for stability (an ISN; [39]), but which does not lead


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to competition between excitatory neurons. Inhibition must be unrealistically strengthened

to obtain competition (100× and 200× estimates for rodent cortex; top of panel; shading

indicates competition). However, overly-strong inhibition leads to inhibition-driven oscilla-

tions (IO). b When the proportion of specific synapses s is raised to 20%, nominal paramet-

ers for rodent cortex permit competition (shading indicates strength of competition; see

Methods). Note that the maximum excitatory strength permitted while maintaining network

stability is reduced. c When s=40%, nominal parameters for rodent cortex become unst-

able (cross is just outside stable region). d Network stability regimes for the parameter

space defined by s and gE∙nE, with nominal value chosen for gI∙nI (crosses in a–c). Nominal

value for gE∙nE is indicated by a dashed line. Both excitatory strength gE∙nE and the propor-

tion of specific synapses s affect network stability and the strength of competition. Abbrevi-

ations: gI,E: Synaptic strength per inhibitory or excitatory synapse; nI,E: Number of synapses

made by each inhibitory or excitatory neuron; AS: Intrinsically stable network, stable in the

absence of inhibition; ISN: Inhibition-Stabilised Network, requiring inhibitory feedback for

stability; Exp: Runaway activity due to exponentially divergent unstable fixed point;

IO: Oscillatory activity due to strong inhibition. a.u.: arbitrary units.

Supplementary Figure 2: Grating and plaid responses are highly correlated in a model

with random connectivity. a Under the non-specific connectivity model, synapses

between pairs of neurons are formed without regard to functional response similarity of the

neurons. Neurons form synapses stochastically, according to spatial proximity. Two

example pairs of neurons are shown, and their responses to a set of grating and plaid stim-

uli. b Neurons with similar responses to grating stimuli (high "g) always have similar

responses to plaid stimuli (high "p), and vice versa. Conn.: connectivity; stim.: stimuli.
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