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ABSTRACT	18	
Background	19	
Strategies	for	containing	an	emerging	infectious	disease	outbreak	must	be	non-20	
pharmaceutical	when	drugs	or	vaccines	for	the	pathogens	do	not	yet	exist	or	are	21	
unavailable.	However,	little	work	exists	to	guide	decisions	between	competing	non-22	
pharmaceutical	strategies,	as	exemplified	by	the	confusion	about	whether	to	employ	23	
quarantine	or	symptom	monitoring	during	the	recent	Ebola	epidemic	in	West	Africa.		24	
	25	
Methods	26	
We	compared	the	effectiveness	of	quarantine	and	symptom	monitoring	in	controlling	27	
epidemics	using	an	agent-based	branching	model	that	accommodates	non-pharmaceutical	28	
interventions.	We	used	Sequential	Monte	Carlo	particle	filtering	methods	to	parameterize	29	
disease	dynamics	of	symptoms	and	infectiousness	for	seven	case	study	diseases	with	30	
diverse	natural	histories	including	Ebola,	Influenza	A,	and	Severe	Acute	Respiratory	31	
Syndrome	(SARS).	We	quantify	the	key	characteristics	of	an	emerging	disease	that	are	most	32	
influential	for	determining	the	optimal	intervention,	given	varying	feasibility	of	its	33	
implementation.			34	
	35	
Findings	36	
The	comparative	effectiveness	of	symptom	monitoring	and	quarantine	depends	critically	37	
on	the	natural	history	of	the	infectious	disease,	its	inherent	transmissibility,	and	the	38	
intervention	feasibility	in	the	particular	healthcare	setting.	The	benefit	of	quarantine	over	39	
symptom	monitoring	is	generally	maximized	for	fast-course	diseases,	or	when	there	is	a	40	
long	delay	between	symptom	onset	and	isolation.	We	find	that	symptom	monitoring	could	41	
effectively	control	an	outbreak	of	a	new	Ebola-like	disease,	even	when	infectiousness	42	
precedes	symptoms	and	interventions	are	not	perfectly	implemented.	43	
	44	
Interpretation	45	
We	establish	a	quantitative	framework	for	guiding	policy-makers	in	their	decisions	about	46	
how	best	to	use	non-pharmacological	interventions	to	contain	emerging	outbreaks.	Our	47	
method	also	provides	guidelines	for	prioritizing	research	during	an	outbreak	of	a	novel	48	
pathogen,	by	highlighting	which	aspects	of	the	disease	determine	the	epidemic	potential	of	49	
emerging	pathogens.	50	
	51	
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INTRODUCTION	55	

The	global	burden	of	emerging	infectious	diseases	is	growing	and	prompts	the	need	56	

for	effective	containment	policies1–3.	In	many	cases,	strategies	must	be	non-pharmaceutical,	57	

as	targeted	drugs	or	vaccines	for	the	pathogens	are	unavailable.	Among	the	various	58	

containment	strategies,	isolation	of	ill	and	potentially	infectious	patients	is	one	of	the	most	59	

obvious,	and	relies	on	targeting	individuals	by	tracing	the	contacts	of	those	infected.	60	

Contacts	with	symptoms	can	then	be	hospitalized	or	isolated,	but	policy	makers	must	also	61	

decide	how	best	to	handle	contacts	who	do	not	meet	the	case	definition	for	infection.	Two	62	

strategies	have	historically	been	used	in	the	case	of	a	potentially	infected	but	healthy	63	

contact:	quarantine	and	symptom	monitoring.	Precise	definitions	of	these	interventions	64	

can	be	found	in	Panel	1.		65	

The	recent	Ebola	epidemic	in	West	Africa	highlighted	the	confusion	about	whether	66	

quarantine	or	symptom	monitoring	should	be	employed	and	under	what	circumstances	4.	67	

For	example,	the	US	Centers	for	Disease	Control	and	Prevention	(CDC)	recommendations	68	

differed	between	its	international	response,	where	quarantine	was	prioritized	5,	and	its	69	

domestic	response,	where	symptom	monitoring	was	prioritized	6,7.	Similar	confusion	was	70	

recorded	during	the	Severe	Acute	Respiratory	(SARS)	epidemic,	where	broad	quarantine	71	

interventions	were	applied	in	Taiwan	and	subsequently	abandoned	8.	These	recent	72	

epidemics	highlight	the	urgent	need	for	evidence-based	guidelines	on	how	to	decide	73	

whether	quarantine	of	an	infectious	disease	is,	according	to	Gates	et	al,	at	worst	74	

"counterproductive"	or	at	best	"one	of	the	few	tactics	that	can	reduce	its	spread"	9.	75	

Quarantine	of	potentially	infected	contacts	is	a	highly	conservative	approach	to	76	

epidemic	containment.	However,	there	are	substantial	costs	associated	with	quarantine	77	
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policies,	ranging	from	direct	costs,	like	implementation	expenses	and	the	restriction	of	78	

personal	liberties,	to	indirect	costs,	including	stigmatization	of	health	workers	and	79	

sometimes	interruption	of	financial	and	trade	markets	4,10–13.	A	less	conservative	but	80	

substantially	cheaper	and	more	socially	palatable	approach	is	active	symptom	monitoring	81	

of	contacts.	In	this	strategy,	health	workers	check	on	contacts	one	or	two	times	a	day,	82	

moving	the	contacts	to	isolation	if	symptoms	occur	(see	Panel	1).	Given	the	importance	of	83	

rapid	decision	making	in	the	event	of	novel	emerging	pathogens	such	as	Ebola,	and	the	84	

potentially	devastating	consequences	of	poor	containment	strategies,	quantitative	85	

guidelines	are	urgently	needed.	86	

Here,	we	develop	a	mathematical	model	to	compare	the	performance	of	symptom	87	

monitoring	and	quarantine	of	traced	contacts	in	containing	an	emerging	infectious	disease.	88	

We	consider	case	studies	of	seven	known	pathogens	with	a	wide	range	of	natural	histories	89	

that	have	the	potential	for	causing	sudden,	severe	epidemics.	We	use	these	case	studies	to	90	

examine	the	impact	of	isolation	policies	for	diseases	with	diverse	known	epidemiological	91	

characteristics,	and	to	provide	a	generalizable	approach	to	decision	making	in	the	event	of	92	

future	epidemics.	We	identify	which	disease	characteristics	and	intervention	attributes	are	93	

most	critical	in	deciding	between	quarantine	and	symptom	monitoring,	and	provide	a	clear,	94	

general	framework	for	understanding	the	consequences	of	isolation	policies	during	an	95	

epidemic.	 	96	
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METHODS	97	

Model	Structure	98	

We	developed	an	agent-based	branching	model,	which	accommodates	dynamics	of	99	

symptoms	and	infectiousness.		Specifically,	we	considered	the	epidemiological	100	

characteristics	of	infections	including	Ebola,	hepatitis	A,	influenza	A,	Middle	East	101	

Respiratory	Syndrome	(MERS),	pertussis,	SARS,	and	smallpox.	Individuals	in	our	branching	102	

model	progressed	through	a	Susceptible-Exposed-Infectious-Recovered	(SEIR)	disease	103	

process.	We	focused	our	analysis	on	the	early	epidemic	phase	of	an	emerging	infectious	104	

disease,	assuming	no	changes	to	herd	immunity	within	the	first	few	generations	of	105	

transmission.		106	

	107	

Model	Inputs	108	

Following	infection,	the	number	of	days	before	onset	of	infectiousness	and	onset	of	109	

symptoms	are	the	latent	period	and	incubation	period,	respectively	(Fig	1).	Because	110	

clinical	symptoms,	pathogen	concentration,	and	behavior	of	the	patient	can	change	111	

throughout	the	course	of	disease	20,	we	allowed	relative	infectiousness	to	vary	with	time	τ	112	

since	onset	of	infectiousness	(𝛽!).	The	basic	reproductive	number	(R0)	is	defined	as	the	113	

average	number	of	infections	caused	by	one	infectious	individual	who	is	not	isolated	over	114	

the	course	of	disease	in	a	susceptible	population.	To	incorporate	the	idea	that	symptomatic	115	

individuals	are	likely	to	seek	care,	regardless	of	contact	tracing	policies	in	place,	we	116	

included	a	“health	seeking	behavior”		(HSB)	intervention	condition	(Panel	1),	where	117	

individuals	were	assumed	to	seek	care	at	a	random	time	while	symptomatic.	The	effective	118	
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reproductive	number	in	the	presence	of	health	seeking	behavior,	symptom	monitoring,	and	119	

quarantine	are	respectively	RHSB,	RS,	and	RQ.	120	

The	definitions	of	the	five	key	intervention	policy	performance	metrics	are	found	in	121	

Table	1.	The	recent	SARS	and	Ebola	epidemics	highlighted	that	hospital	isolation	does	not	122	

always	contain	transmission,	and	we	therefore	allowed	isolation	effectiveness	(γ)	to	vary	to	123	

reflect	different	settings	21–23.	The	fraction	of	contacts	traced	(PCT)	can	be	less	than	1,	124	

encompassing	symptomatic	infectors	who	fail	to	recall	contacts,	asymptomatic	“silent”	125	

infection	events,	or	reluctance	to	report	contacts.	Imperfections	in	risk	profiling	can	reduce	126	

the	fraction	of	traced	contacts	that	are	truly	infected	(PINF).	For	example,	only	2	Ebola	127	

infections	were	recorded	among	179	contacts	traced	in	the	United	States	7.	Delays	in	128	

tracing	a	contact	(DCT)	can	arise	for	numerous	reasons,	including	intractable	roads,	low	129	

mobile	phone	penetration,	and	personnel	limitations.	The	delay	between	symptom	onset	130	

and	isolation	(DSM)	applies	only	to	individuals	under	symptom	monitoring	and	is	influenced	131	

by	the	frequency	of	monitoring	and	delays	in	prompt	isolation	upon	symptom	detection.		132	

	133	

Simulation	134	

We	drew	disease	characteristics	for	each	simulated	individual	from	disease-specific	135	

input	distributions.	During	each	hour	τ	of	infectiousness,	an	individual	infected	a	number	of	136	

new	individuals	drawn	from	a	Poisson	distribution	(or,	if	super-spreading	factor	𝜅 ≠ 1,	a	137	

negative	binomial	distribution24)	with	mean	equal	to	the	product	of	the	expected	number	138	

of	onward	infections	for	the	individual	(𝑅!)	and	the	relative	infectiousness	𝛽!	where	139	

𝛽! !!"#
!!! 	=	1.	We	assumed	time-varying	relative	infectiousness	follows	a	triangular	140	
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distribution	with	time	of	peak	infectiousness	(𝜏!)	occurring	anywhere	between	the	onset	141	

and	end	of	infectiousness,	inclusively.	142	

We	recorded	both	the	day	of	transmission	and	the	infector	for	each	new	143	

transmission	event,	and	drew	disease	characteristics	for	each	newly	infected	individual.	An	144	

individual	was	identified	by	contact	tracing	with	probability	PCT	at	the	earliest	time	of	the	145	

following:	(a)	their	infector	was	isolated;	(b)	their	infector	recovered/died	from	disease;	or	146	

(c)	at	the	time	of	infection	if	the	infector	was	isolated	when	the	transmission	event	147	

occurred.	After	an	operational	lag	time	of	DCT	days,	a	contact	was	placed	under	quarantine,	148	

symptom	monitoring	or,	if	already	symptomatic,	isolation.	An	individual	in	isolation	or	149	

quarantine	had	their	infectiousness	reduced	by	a	factor	γ	for	the	remainder	of	their	150	

disease.	An	individual	under	symptom	monitoring	was	isolated	DSM	days	after	symptom	151	

onset.	A	full	description	of	the	model	process	can	be	found	in	S1	Appendix.	Fig	2	shows	152	

sample	outputs	for	five	simulated	generations	of	transmission.	153	

	154	

Parameterization	155	

There	is	a	general	lack	of	published	data	on	key	characteristics	including	latent	156	

period,	relative	infectiousness,	and	duration	of	infectiousness,	while	some	other	157	

characteristics,	including	the	incubation	period	and	serial	interval,	are	generally	estimable	158	

25.	Therefore,	we	used	a	Sequential	Monte	Carlo	particle	filtering	algorithm	26,27	to	create	a	159	

joint	probability	space	of	the	time	offset	between	the	latent	period	and	incubation	period	160	

(𝑇!""#$% = 𝑇!"# − 𝑇!"#),	time	of	peak	infectiousness	(𝜏!),	and	duration	of	infectiousness	161	

(𝑑!"#).	From	an	uninformative	prior	distribution	of	each	parameter	bounded	by	published	162	

observations,	we	simulated	five	infection	generations	of	500	initial	individuals	and	163	
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recorded	the	simulated	serial	interval	(i.e.,	the	time	between	symptom	onset	in	infector-164	

infectee	pairs).	Parameter	sets	were	resampled	with	importance	weights	determined	by	165	

the	degree	to	which	the	distribution	of	simulated	serial	intervals	matched	published	serial	166	

interval	distributions,	using	the	Kolmogorov-Smirnov	test	of	the	difference	between	167	

cumulative	distribution	functions	(Table	2)	28,29.	After	perturbation,	the	process	was	168	

repeated	until	convergence,	which	we	defined	to	be	when	the	median	Kolmogorov-Smirnov	169	

statistic	was	within	10%	of	the	previous	two	iterations.	This	cutoff	criterion	was	chosen	to	170	

balance	the	objectives	of	finding	a	stationary	posterior	set	of	particles	while	preserving	171	

some	of	the	heterogeneity	in	input	parameters.		172	

	 Holding	the	incubation	period	distribution	constant,	we	fit	an	offset	for	the	latent	173	

period	(𝑇!""#$%)	for	several	reasons,	including	consistency	with	CDC	methods	for	disease	174	

characterization	30,	the	biological	expectation	of	these	timings	both	being	linked	to	175	

pathogen	load,	and	to	parsimoniously	limit	each	characteristic	to	one	interpretable	176	

parameter.	For	the	duration	of	infectiousness	(𝑑!"#),	we	fit	the	upper	bound	of	a	uniform	177	

distribution	with	a	lower	bound	of	1	day.	To	allow	for	variable	infectiousness	during	this	178	

duration,	we	assume	a	triangular	distribution	of	relative	infectiousness	𝛽!	and	fit	the	time	179	

of	peak	infectiousness	(𝜏!).	A	full	description	of	the	model	parameterization	can	be	found	180	

in	the	S2	Appendix.	181	

	182	

Analysis	183	

Partial	rank	correlation	coefficients	were	calculated	to	identify	the	most	influential	184	

disease	characteristics	(e.g.	duration	of	infectiousness)	and	intervention	performance	185	

metrics	(e.g.	isolation	effectiveness).	In	order	to	remove	dependence	between	the	186	
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parameters	jointly	fit	through	the	particle	filtering	method	above,	we	used	Latin	Hypercube	187	

Sampling	to	draw	5,000	sets	from	each	marginal	posterior	parameter	distribution	188	

independently.	To	maximize	coverage	of	the	parameter	space	we	allowed	fractional	189	

parameters	(γ,	PCT,	PINF,	𝑘)	to	range	from	0	to	1,	delays	(DCT,	DSM)	to	range	from	0	to	7	days,	190	

𝑅! to	range	from	1	to	5,	and	the	incubation	period	(𝑇!"#)	to	be	shrunk	by	up	to	50%	or	191	

stretched	by	up	to	150%.		192	

Using	1,000	samples	drawn	from	the	joint-parameter	space	from	the	particle	193	

filtering	method,	we	measured	R0,	RQ,	RS,	and	RHSB	for	each	disease.	We	compared	the	194	

effectiveness	of	symptom	monitoring	and	quarantine	by	the	absolute	difference	𝑅! − 𝑅! 	195	

and	the	relative	difference	!!!!!
!!

.	We	calculated	the	number	of	days	an	infected	individual	196	

was	in	quarantine	but	not	yet	infectious	(𝑑!)	as	surrogate	for	the	marginal	cost	of	197	

quarantine	over	symptom	monitoring.	As	surrogates	for	cost-effectiveness,	we	calculate	the	198	

absolute	difference	per	quarantine	day	 𝑅! − 𝑅! 𝑑! 	and	relative	difference	per	199	

quarantine	day	 !!!!!
!!

𝑑! .		200	

When	risk	profiling	was	imperfect	(i.e.	PINF	<	1),	individuals	who	were	not	infected	201	

may	have	been	mistakenly	traced	as	contacts	and	placed	under	symptom	monitoring	or	202	

quarantine.	We	assumed	that	non-infected	contacts	were	followed	for	a	length	of	time	set	203	

up	the	95th	percentile	incubation	period	(𝑇!"#!" ),	at	which	point	health	authorities	may	204	

conclude	the	contact	was	not	infected	after	all.	This	would	change	the	number	of	days	in	205	

quarantine	to	𝑑! = 𝑑! + 𝑇!"#!" 1
𝑃!"# − 1 .		206	

	207	

Role	of	the	Funding	Source	208	
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The	funders	had	no	role	in	study	design,	data	collection	and	analysis,	decision	to	publish,	or	209	

preparation	of	the	manuscript.	All	authors	had	access	to	the	data	and	the	corresponding	210	

author	had	final	responsibility	to	submit	for	publication.	211	

212	
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RESULTS	213	

The	effectiveness	of	symptom	monitoring	and	quarantine	in	controlling	a	disease	in	214	

a	particular	setting	depends	critically	on	its	transmissibility	(𝑅!)	and	on	its	biological	215	

dynamics	(e.g.	latent	and	infectious	periods)	(Fig	3a).	By	holding	transmissibility	constant	216	

(𝑅!	arbitrarily	set	to	2·75±0·25),	Fig	3b	shows	how	biological	dynamics	alone	strongly	217	

influence	the	effectiveness	of	quarantine	and	especially	symptom	monitoring,	as	seen	by	218	

the	wide	spread	in	𝑅!.	219	

When	intervention	performance	is	“high”	(see	Table	1),	diseases	such	as	MERS	and	220	

Ebola	can	be	controlled	with	either	quarantine	or	symptom	monitoring;	diseases	such	as	221	

hepatitis	A	with	only	quarantine;	and	diseases	such	as	pertussis	require	additional	222	

interventions,	e.g.	vaccination	(Fig	3c).	The	absolute	comparative	effectiveness	(𝑅! − 𝑅!)	223	

varies	widely	by	disease,	as	demonstrated	by	the	line	length	in	Fig	3c.	The	relative	224	

comparative	effectiveness	(!!!!!
!!

)	also	varies	widely,	with	quarantine	reducing	RS	by	over	225	

65%	for	influenza	A	and	hepatitis	A	and	by	less	than	10%	for	pertussis	(Fig	S1).	The	reader	226	

can	explore	results	from	landscapes	with	different	intervention	performance	settings	and	227	

disease	transmissibility	in	the	interactive	supplement	228	

(https://coreypeak.shinyapps.io/InteractiveQuarantine).	229	

When	choosing	between	symptom	monitoring	and	quarantine,	one	must	consider	230	

the	effective	reproductive	numbers	under	each	intervention	and	choose	an	appropriate	231	

metric	to	compare	these	two	values.	We	categorized	intervention	response	heterogeneity	232	

into	four	control	quadrants	(Fig	3a).	In	quadrant	I,	where	neither	intervention	is	sufficient	233	

to	prevent	epidemic	growth,	the	relative	difference	!!!!!
!!

	can	distinguish	whether	234	
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quarantine	is	merited	or	could	be	paired	with	other	strategies	to	achieve	control.		Because	235	

quarantine	is	by	definition	the	more	conservative	intervention,	simulation	results	in	236	

quadrant	II	occur	only	stochastically.	In	quadrant	III,	where	both	interventions	are	237	

sufficient	and	the	number	of	prevented	cases	can	be	more	directly	estimated,	the	238	

distinguishing	metric	was	the	absolute	difference	𝑅! − 𝑅! 	and	its	inverse	(
!

!!!!!
),	which	239	

can	be	interpreted	as	the	number	of	contacts	that	must	be	quarantined	in	order	to	prevent	240	

one	additional	case	over	symptom	monitoring	(an	analog	of	“number	needed	to	treat”).	For	241	

the	example	of	SARS,	Day	et	al.	propose	that	mass	quarantine	may	be	unnecessary	because	242	

effective	symptomatic	isolation	alone	would	sufficiently	control	the	disease	(hence	placing	243	

the	disease	in	quadrant	III)	13.	In	quadrant	IV,	where	quarantine	but	not	symptom	244	

monitoring	can	control	the	disease,	quarantine	would	be	strongly	considered	as	the	245	

minimum	sufficient	strategy	to	prevent	exponential	epidemic	growth.		246	

The	following	two	sections	aim	to	identify	which	disease	characteristics	and	247	

intervention	performance	metrics	most	strongly	influence	these	differences	in	response	to	248	

quarantine	and	symptom	monitoring.		249	

	250	

Influential	Disease	Characteristics	251	

The	comparative	effectiveness	of	quarantine	and	symptom	monitoring	is	strongly	252	

influenced	by	differences	in	the	components	of	the	infection’s	natural	history.	We	examined	253	

which	biological	characteristics	in	particular	are	most	influential.	As	demonstrated	by	254	

strongly	negative	partial	rank	correlation	coefficients	in	Fig	4,	increasing	the	duration	of	255	

infectiousness	(𝑑!"#)	and	elongating	the	latent	period	(𝑇!""#$%)	reduced	the	differences	256	

between	quarantine	and	symptom	monitoring,	thereby	making	the	interventions	more	257	
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similar.	Other	factors,	such	as	overdispersed	heterogeneity	of	the	basic	reproductive	258	

number	(𝜅),	did	not	influence	the	average	effect	of	symptom	monitoring	and	quarantine,	as	259	

reflected	by	a	partial	rank	correlation	coefficient	of	nearly	zero.	Longer	incubation	periods	260	

(TINC)	increased	the	preference	for	quarantine,	as	seen	by	the	positive	partial	rank	261	

correlation	coefficient	for	both	absolute	and	relative	comparative	effectiveness.	However,	262	

the	length	of	the	incubation	period	does	not	generally	influence	comparative	cost-263	

effectiveness	because	the	number	of	days	in	quarantine	(𝑑!)	increases	as	the	incubation	264	

period	lengthens	(Fig	S2).	 	265	

Frequently,	the	most	pressing	concerns	are	whether	control	(i.e.	𝑅! < 1)	is	266	

achievable	and	what	would	be	the	least	invasive	intervention	to	achieve	control.	Fig	5	267	

shows	frontiers	where	control	of	an	Ebola-like	disease	requires	increasingly	invasive	268	

interventions,	namely	health-seeking	behavior	(teal),	symptom	monitoring	(gold),	or	269	

quarantine	(blue).	Fig	5a	shows	how	this	frontier	is	influenced	by	the	inherent	270	

transmissibility	(𝑅!)	and	timing	of	the	latent	period	relative	to	the	incubation	period	271	

(𝑇!""#$%),	with	all	other	characteristics	similar	to	Ebola.	When	R0	is	large	and	symptoms	272	

emerge	long	after	infectiousness	(e.g.,	𝑇!""#$% > 0),	even	quarantine	is	insufficient	to	273	

control	the	disease	with	optimal	intervention	performance	[see	Table	1].	However,	we	274	

observe	that	when	transmissibility	is	relatively	low	(e.g.,	𝑅! < 2 · 5),	control	of	this	275	

hypothetical	disease	can	be	achieved	even	if	infectiousness	precedes	symptoms	by	several	276	

days	(Fig	5a)	or	if	a	substantial	fraction	of	transmission	events	occur	before	symptom	277	

onset	(adapting	the	framework	of	22)	(Fig	5b).		278	

	279	

Intervention	Performance	Metrics	280	
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Policy	makers	facing	an	epidemic	must	also	consider	the	expected	performance	of	281	

interventions,	since	the	effectiveness	of	targeted	control	policies	will	depend	on	their	282	

feasibility	within	a	particular	healthcare	system.	Generally,	we	found	the	benefit	of	283	

quarantine	over	symptom	monitoring	increases	with	better	intervention	performance	(i.e.	284	

larger	fraction	of	contacts	traced	(𝑃!"),	better	isolation	effectiveness	(𝛾),	and	shorter	delays	285	

in	tracing	a	contact	(𝐷!")	(Fig	4).	However,	the	effectiveness	of	symptom	monitoring	286	

approached	that	of	quarantine	when	the	delay	between	symptom	onset	and	isolation	(𝐷!")	287	

is	shortened,	due	either	to	more	frequent	symptom	monitoring	or	more	sensitive	detection	288	

of	symptoms	followed	by	prompt	isolation.	289	

While	these	patterns	were	highly	consistent	across	the	case	study	diseases,	some	290	

intervention	performance	metrics	were	particularly	influential	in	the	presence	of	certain	291	

disease	characteristics.	For	example,	diseases	with	short	incubation	periods	(𝑇!"#)	such	as	292	

influenza	A	were	strongly	influenced	by	delays	in	tracing	a	contact	(𝐷!")	(Fig	S2).		 	293	
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DISCUSSION		294	

A	key	strategy	to	controlling	the	spread	of	infectious	diseases	focuses	on	tracing	the	295	

contacts	of	infected	individuals,	with	the	goal	of	limiting	subsequent	spread	should	those	296	

contacts	become	infected	and	infectious.	Here	we	present	the	first	study	comparing	the	297	

effectiveness	of	the	two	primary	non-pharmacological	interventions	for	a	directly-298	

transmitted	infection,	symptom	monitoring	and	quarantine.	We	show	that	the	299	

interventions	are	not	equivalent	and	that	the	choice	of	which	intervention	to	implement	to	300	

achieve	optimal	control	depends	on	the	natural	history	of	the	infectious	disease,	its	301	

inherent	transmissibility,	and	the	intervention	feasibility	in	the	particular	healthcare	302	

setting.		303	

Our	results	show	that	the	benefit	of	quarantine	over	symptom	monitoring	is	304	

maximized	for	fast-course	diseases	(short	duration	of	infectiousness	and	a	short	latent	305	

period	compared	to	the	incubation	period),	and	in	settings	where	isolation	is	highly	306	

effective,	a	large	fraction	of	contacts	are	traced,	or	when	there	is	a	long	delay	between	307	

symptom	onset	and	isolation.	This	delay	(DSM)	not	only	captures	ineffective	symptom	308	

monitoring,	but	also	the	potential	for	symptoms	to	be	masked	for	a	period	of	time	through	309	

biological	(e.g.,	natural	disease	progression	or	self-medication	with	anti-pyretics)	or	310	

behavioral	(e.g.,	avoidance)	mechanisms.	In	contrast,	the	widely-discussed	“super	311	

spreading”	disease	characteristic	did	not	impact	the	comparative	effectiveness	of	312	

interventions,	although	this	characteristic	could	remain	important	to	understand	disease	313	

control	during	early,	highly	stochastic	stages	of	emergence	24.	Our	findings	are	consistent	314	

with	Fraser,	Riley,	et	al.	22	that	both	inherent	transmissibility	and	the	proportion	of	315	
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transmission	from	asymptomatically	infected	individuals	are	key	epidemiological	316	

parameters	for	the	feasibility	of	control	via	quarantine.	317	

Our	results	uniquely	identify	parameter	spaces	where	symptom	monitoring,	not	just	318	

quarantine,	is	sufficient	for	containment	of	an	emerging	epidemic.	Given	the	high	costs	and	319	

poor	scalability	of	quarantine,	symptom	monitoring	is	likely	to	be	a	key	intervention	for	320	

future	epidemic	containment.	Our	results	suggest	that	symptom	monitoring	could	321	

effectively	control	an	outbreak	of	a	new	Ebola-like	disease,	even	when	infectiousness	322	

precedes	symptoms	and	interventions	are	not	perfectly	implemented.	Because	perfect	323	

interventions	are	not	always	necessary,	these	results	support	the	conclusion	of	Cetron	et	al.	324	

31	that	the	optimal	containment	strategy	may	allow	“partial	or	leaky	quarantine”	in	order	to	325	

increase	the	fraction	of	contacts	who	participate.		326	

We	do	not	consider	mass	quarantines	or	other	non-pharmaceutical	interventions	327	

done	on	a	population	level.	For	mass	interventions,	such	as	targeting	all	airplane	328	

passengers	returning	from	an	affected	region,	the	time	at	which	symptom	monitoring	or	329	

quarantine	are	initiated	is	not	necessarily	linked	to	the	timing	of	their	infector,	so	does	not	330	

require	the	correlation	structure	of	our	branching	model.	The	effectiveness	and	efficiency	331	

of	quarantine,	like	any	intervention,	improves	with	better	targeting,	hence	the	case	for	332	

mass	quarantine	would	require	additional	considerations	for	multisectoral	cost-333	

effectiveness	10.	334	

We	propose	that	the	most	influential	parameters	should	be	prioritized	for	early	335	

characterization	during	an	outbreak	and	should	be	modeled	with	conservative	336	

consideration	of	parameter	uncertainty,	including	both	real	diversity	and	measurement	337	

error.	Our	framework	identifies	the	key	infection-related	parameters	to	define	and	can	338	
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form	the	basis	of	cost-benefit	analyses.	Such	data-driven	decision-making	will	be	critical	to	339	

determining	the	optimal	public	health	strategies	for	the	inevitable	next	epidemic.		340	

	341	
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Panel	1:	Definitions	of	interventions	350	
	351	
Contact	Tracing	is	the	process	of	identifying	and	assessing	people	who	have	been	exposed	352	
to	a	disease	33.	Contacts	who	are	symptomatic	when	traced	are	immediately	placed	in	353	
isolation;	those	who	are	not	symptomatic	are	placed	under	either	quarantine	or	354	
symptom	monitoring.	Here,	we	model	“forward”	contact	tracing	whereby	an	infected	355	
individual	names	contacts	they	may	have	infected	34.	356	
	357	
Isolation	is	the	separation	of	a	symptomatic	individual	believed	to	be	infected	33.	By	358	
reducing	the	number	of	risky	contact	events,	isolation	reduces	disease	transmission	when	359	
infectiousness	coincides	at	least	partly	with	symptoms.		360	

	361	
Quarantine	is	the	separation	of	an	individual	who	is	believed	to	be	exposed,	but	is	362	
currently	not	ill	33.	As	soon	as	an	individual	is	placed	in	quarantine,	we	assume	they	have	363	
the	same	reduction	in	risky	contacts	as	in	isolation.	If	an	individual	becomes	symptomatic,	364	
they	will	be	isolated	and	receive	healthcare.	365	
	366	
Symptom	Monitoring	is	the	assessment	of	symptoms	at	regular	intervals	of	an	individual	367	
believed	to	be	exposed,	but	not	ill.	If	symptoms	are	detected,	the	individual	is	placed	in	368	
isolation	33.	Although	they	may	be	encouraged	to	avoid	mass-gatherings	or	other	specific	369	
events,	an	individual	under	symptom	monitoring	is	not	separated	from	others	and	370	
therefore	does	not	experience	a	reduction	in	risky	contacts	until	symptoms	are	detected.	371	
	372	
Health	Seeking	Behavior	is	the	act	of	seeking	healthcare	during	the	presentation	of	373	
symptoms,	leading	to	isolation.	Practically,	this	intervention	could	be	a	communications	374	
campaign	that	prompts	individuals	to	self-identify	their	illness	and	seek	effective	isolation.	375	
This	intervention,	which	accelerates	isolation	in	a	manner	separate	from	contract	tracing,	376	
provides	a	comparative	care	standard	for	our	analysis.	377	
	 	378	
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Panel	2.	Research	in	context	379	
	380	
Evidence	before	this	study	381	
We	searched	PubMed	and	Google	Scholar	on	July	17,	2016,	with	the	terms	“quarantine”	and	382	
“symptom	monitoring”	and	“contact	tracing”.	We	did	not	find	any	studies	that	compare	the	383	
impact	on	disease	spread	of	quarantine	and	symptom	monitoring	of	contacts.	However,	384	
previous	work	has	demonstrated	how	disease	characteristics	can	strongly	influence	the	385	
effectiveness	of	non-pharmaceutical	interventions	such	as	isolation	and	quarantine	13,22,35	386	
and	traveler	screening	36.	387	
	388	
Added	value	of	this	study	389	
We	provide	a	formal	mathematical	framework	for	comparing	the	relative	merits	of	390	
quarantine	and	symptom	monitoring	targeted	by	contact	tracing.	We	use	this	framework	391	
and	a	range	of	case	study	diseases	to	show	how	the	natural	history	of	the	infectious	392	
disease,	its	inherent	transmissibility,	and	the	intervention	feasibility	in	the	particular	393	
healthcare	setting	all	influence	the	comparative	effectiveness	of	quarantine	and	symptom	394	
monitoring.		395	
	396	
Implications	of	all	available	evidence	397	
In	certain	circumstances,	quarantine	and/or	symptom	monitoring	can	be	powerful	non-398	
pharmaceutical	interventions	for	epidemic	control.	When	choosing	between	these	399	
interventions,	some	aspects	of	the	disease	and	setting	are	more	influential	than	others	and	400	
should	therefore	be	prioritized	when	studying	an	emerging	disease	and	modeled	with	a	401	
range	of	uncertainty	for	re-emerging	diseases.	402	
	 	403	
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Table	1.	Intervention	Parameters	404	

	 Variable	 Definition	
Example	Intervention	

Performance	
Optimal	 High	

Isolation	
Effectiveness	 γ	

Proportion	of	infections	prevented	by	
isolation	as	compared	to	an	individual	

never	in	isolation	(R0)	
1	 0·9	

Fraction	of	
contacts	traced	 PCT	 Proportion	of	infected	contacts	

identified	by	infector	 1	 0·9	

Fraction	of	
traced	contacts	
who	are	truly	
infected	

PINF	

Proportion	of	individuals	under	
quarantine	or	symptom	monitoring	
who	were	truly	infected	before	they	

were	traced	

1	 0·5	

Delay	in	tracing	
a	named	contact	 DCT	

Number	of	days	between	nomination	
of	a	contact	and	monitoring	or	

quarantine		

0·25	days	
±	0·25	

0·5	days	
±	0·5	

Delay	from	
symptom	onset	
to	isolation	

DSM	
Number	of	days	between	symptom	
onset	and	isolation	of	an	individual	

being	symptom	monitored	

0.25	days	
±	0.25	

0.5	days	
±	0.5	

	

	 	405	
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Table	2.	Disease	parameters	406	

Median	(95%	CI)	407	
*	Assumed	408	
**	Sequential	Monte-Carlo	boundary	condition	reached	409	

	 	410	

	 Inputs	 Parameters	fit	via	Sequential	Monte-Carlo	method	
	 Basic	

Reproductive	
Number	
R0 

Serial	Interval		
(days) 

Incubation	
Period 
𝑇!"# 	
(days)	

Latent	period	
offset 
𝑇!""#$%

= 𝑇!"# − 𝑇!"# 	
(days)	

Mean	duration	of	
infectiousness 
(1 + 𝑑!"#) 2	

(days)	

Time	of	peak	
Infectiousness 

𝜏! 	

Ebola	 1·83	
(1·72,	1·94)	
37	

13·36	
(2·66,	38·8)	
38	

7·87	
(0·93,	28·2)	
37	

0·33	
(0**,	1·01)	

6·53		
(1·28,	13·7)	

0·10	
(0,	0·37)	

Hepatitis	A	 2·25	
(2,	2·5)	
*	

26·72	
(20·7,	33·8)	
39,40	

29·11	
(24·6,	34·1)	
41	

-5·33	
(-7·57,	-3·26)	

6·23	
(1·22,	15·8)	

0·35	
(0,	0·98)	

Influenza	A	 1·54		
(1·28,	1·80)	
42	

2·20	
(0·63,	3·76)	
39,43	

1·40	
(0·63,	3·10)	
44	

-0·23	
(-0·76,	0·29)	

1·88	
(1·04,	3·84)	

0·49		
(0·02,	0·98)	

MERS	 0·95	
(0·6,	1·3)	
45	

7·62	
(2·48,	23·3)	
46	

5·20	
(1·83,	14·7)	
46	

-1·55	
(-3·14,	0·02)	

8·35	
(1·37,	19·9)	

0·37	
(0·01	,	0·96)	

Pertussis	 4·75	
(4·5,	5)	
*	

19·26	
(3·61,	57·2)	
47	

7·00	
(4·00,	10·0)	
30	

-2·14	
(-5·39,	0·78)	

34·38	
(2·67,	76·7)	

0·45	
(0·11,	0·88)	

SARS	 2·9	
(2·2,	3·6)	
15	

8·32		
(1·59,	19·2)	
15	

4·01	
(1·25,	12·8)	
44	

0·16	
(0**,	0·67)	

10·94	
(1·50,	23·0)	

0·10		
(0,	0·46)	

Smallpox	 4·75	
(4·5,	5)	
*	

15·54	
(9.98,	24.2)	
48	

11.83	
(8.47,	16.5)	
48	

0.03	
(-1.80,	1.68)	

8.45		
(1.37,	20.0)	

0.32		
(0,	0·97)	
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	411	

Fig	1.	Schematic	of	the	natural	history	of	disease	and	the	timing	of	interventions.		412	

Beginning	on	the	left	with	the	infection	event,	one	progress	through	a	latent	period	(TLAT)	413	

before	becoming	infectious	for	dINF	days	with	a	varying	degree	of	infectiousness	𝛽!.	For	414	

diseases	A,	B,	and	C,	symptoms	are	respectively	shown	to	emerge	before,	concurrent	with,	415	

and	after	onset	of	infectiousness.	We	show	here	an	individual	who	is	traced	shortly	after	416	

infection	and	is	placed	under	symptom	monitoring	or	quarantine	after	a	short	delay	DCT.	417	

418	
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	419	

Fig	2.	Model	dynamics	and	output	for	two	exemplar	diseases:	Ebola	and	Influenza	A.		420	

Each	line	in	the	panels	(A)	and	(B)	designates	one	model	run	initiated	with	100	infectious	421	

individuals	in	Generation	1	and	submitted	to	either	no	intervention	(red),	health	seeking	422	

behavior	(teal),	symptom	monitoring	every	day	(gold),	or	quarantine	(blue)	at	Generation	423	

3.	Each	point	in	panels	C	and	D	designates	the	simulated	effective	reproductive	number	424	

from	one	model	run	with	input	reproductive	number	(x-axis)	between	1	and	5,	with	the	425	

asterisk	denoting	the	input	R	for	panels	(A)	and	(B)	(1·83	and	1·46,	respectively).	Loess	426	

curves	are	shown	as	heavier	lines.	Here,	symptom	monitoring	performs	similarly	to	427	

quarantine	for	Ebola	control,	but	not	for	influenza	A.	Note	the	independent	y-axes.	428	

	429	
	430	
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	431	
Fig	3.	Infection	control	performance	depends	on	disease	biological	dynamics	and	432	

inherent	transmissibility	(R0).		433	

(A)	The	effective	reproductive	number	under	symptom	monitoring	(x-axis)	and	quarantine	434	

(y-axis)	for	100	simulations	of	each	disease	when	the	basic	reproductive	number	is	set	to	435	

published	values	[See	Panel	C,	diamonds].	Quadrants	indicate	regions	of	control	with	(I)	436	

neither	quarantine	nor	symptom	monitoring,	(II)	only	symptom	monitoring,	(III)	either	437	

quarantine	or	symptom	monitoring,	and	(IV)	only	quarantine.	(B)	As	in	(A),	but	the	basic	438	

reproductive	number	(𝑅!)	is	set	to	for	all	diseases	to	2·75	(+/-	0·25)	to	isolate	inherent	439	

differences	in	biological	dynamics.	(C)	Disease-specific	mean	basic	reproductive	number	440	

(diamond)	and	the	mean	effective	reproductive	numbers	under	symptom	monitoring	441	

(triangle)	and	quarantine	(circle).	The	length	of	the	horizontal	line	therefore	equals	the	442	

absolute	comparative	effectiveness	𝑅! − 𝑅! .	443	
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	444	
Fig	4.	Influence	of	disease	characteristics	and	intervention	performance	metrics.		445	

Partial	rank	correlation	coefficients	(x-axis)	measuring	the	influence	of	disease	446	

characteristics	and	intervention	performance	metric	(rows)	on	the	absolute	(red)	and	447	

relative	(green)	comparative	effectiveness	of	quarantine	and	symptom	monitoring,	pooled	448	

for	all	case	study	diseases.	The	95%	confidence	intervals	from	100	bootstrapped	samples	449	

are	represented	by	error	bars.	450	

	451	
	 	452	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072652doi: bioRxiv preprint 

https://doi.org/10.1101/072652
http://creativecommons.org/licenses/by-nd/4.0/


	453	

Fig	5.	Minimally	invasive	interventions	sufficient	to	control	a	hypothetical	disease.	454	

(A)	Disease	characteristics	drawn	from	Ebola	except	symptoms	are	assumed	to	either:	455	

precede	infectiousness	by	up	to	10	days	(X	=	-10	days);	coincide	with	infectiousness	onset	456	

(X	=	0	days);	or	emerge	up	to	10	days	after	infectiousness	onset		(X	=	+10	days).	Points	457	

represent	simulations	where	health-seeking	behavior	(teal),	symptom	monitoring	(gold),	458	

or	quarantine	(blue)	were	the	minimally	sufficient	intervention	to	bring	𝑅! 	below	1.	(B)	As	459	

in	(A),	but	the	x-axis	is	transformed	to	represent	the	proportion	of	infections	that	occur	460	

prior	to	symptoms	in	a	analogous	way	to	Fraser,	Riley,	et	al	2004	22.	Interventions	are	in	461	

the	“optimal”	setting	with	all	contacts	being	traced	immediately,	no	infections	occur	during	462	

isolation,	and	symptom	monitoring	is	performed	twice	per	day.	463	

	 	464	
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SUPPORTING	INFORMATION	579	
	580	

581	
Fig	S1.	Relative	comparative	effectiveness	and	cost-effectiveness.	The	relative	582	

comparative	effectiveness	varies	widely	by	disease,	with	quarantine	reducing	𝑅!	by	>65%	583	

for	influenza	A	and	hepatitis	A	and	by	<10%	for	pertussis.	However,	due	to	a	much	shorter	584	

incubation	period	of	influenza	A	versus	hepatitis	A	(Table	2),	the	relative	cost-585	

effectiveness	(outlined	bars)	is	substantially	higher	for	influenza	A	than	hepatitis	A.		586	

	587	
	 	588	
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589	
Fig	S2.	Partial	rank	correlation	coefficients	for	all	outcomes.	Partial	rank	correlation	590	

coefficients	(x-axis)	measuring	the	influence	of	disease	characteristics	and	intervention	591	

performance	metrics	(rows)	on	the	impact,	comparative	effectiveness,	and	comparative	592	

cost-effectiveness	of	the	interventions	under	study.	Disease-specific	estimates	are	shown	593	

with	colored	bars	and	pooled	estimates	with	grey	bars.	Note	that	pooled	estimates	for	594	

comparative	cost-effectiveness	are	not	available	due	to	non-monotonic	relationships	across	595	

diseases.	596	

	597	
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S1	Appendix.	Disease	model	599	
	600	

The	model	simulates	a	branching	network	of	infected	individuals	only.	An	individual	601	
𝑖	is	assigned	characteristics	sampled	from	distributions	defined	for	each	disease.	The	602	
incubation	period	(𝑇!"#),	i.e.	the	time	from	infection	to	symptom	onset,	is	drawn	from	603	
published	distributions	(Table	2).	The	duration	of	infectiousness	(𝑑!"#),	time	of	peak	604	
infectiousness	(𝜏!),	and	time	offset	between	the	latent	and	incubation	periods	(𝑇!""#$%)	are	605	
drawn	from	the	joint	posterior	distribution	generated	by	the	sequential	Monte-Carlo	(SMC)	606	
particle	filtering	method	described	in	S2	Appendix.	For	clarity,	we	describe	the	method	for	607	
an	individual	𝑖,	but	the	following	process	is	repeated	for	an	initial	population	of	1,000	608	
individuals	who	initiate	distinct	trees.	609	

The	expected	number	of	onward	infections	by	𝑖,	𝑅!! ,	is	distributed	over	each	hour	𝜏	610	
of	disease	𝑅!! = 𝛽!!𝑅!! ,	where	𝛽!! 	is	the	relative	infectiousness	of	𝑖	on	hour	𝜏	such	that	611	

𝛽! = 1!!"#
!!! .	For	parsimony	and	ease	of	interpretation,	we	assume	𝛽!	follows	a	triangle	612	

distribution	with	a	peak	value	at	time	𝜏! 	drawn	from	the	SMC	posterior.	613	

𝛽!! =
𝑢 𝑑!"#  𝜏!                             ,    𝑖𝑓 𝑢 <

𝜏!
𝑑!"#   

𝑑!"# − (1− 𝑢)(𝑑!"# − 𝜏!)(𝑑!"#)   ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
	

where	𝑢~𝑢𝑛𝑖𝑓(0,1)	614	
The	number	of	infections	(𝑁!!)	generated	by	individual	𝑖	at	hour 𝜏	is	drawn	from	a	615	

negative	binomial	distribution	with	mean	equal	to	𝑅!! 	and	dispersion	factor	𝜅	to	capture	616	
super	spreading	tendencies.	If	𝜅 = 1,	the	negative	binomial	distribution	reduces	to	a	617	
Poisson	distribution	with	rate	𝜆 = 𝑅!! .	618	

Each	individual	i	then	has	a	vector	of	 𝑁!! ,𝑁!! ,… ,𝑁!!"#! 		of	onward	infections	that	619	
occur	during	each	hour	𝜏 𝜖 0,1,… ,𝑑!"#! .	A	new	individual	𝑗	is	generated	for	each	onward	620	
infection	𝑁!! ≥ 1.	Disease	characteristics	for	𝑗	are	drawn	as	above,	adding	the	time	of	621	
infection	to	the	latent	and	incubation	periods	for	𝑗.	622	

Contact	𝑗	of	infector	𝑖	will	be	traced	with	probability	𝑃!" .	If	traced,	𝑗	is	placed	under	623	
symptom	monitoring	or	quarantine	with	an	operational	lag	time	of	𝐷!" 	days.	The	lag	time	624	
occurs	after	the	earlier	of	isolation	or	removal	from	the	disease	system	upon	recovery	or	625	
death	for	individual	i.	We	assume	all	contacts	of	an	individual	in	hospital	isolation	are	626	
documented,	so	an	individual	𝑗	who	was	infected	by	an	isolated	individual	𝑖	will	be	traced	627	
from	the	time	of	the	transmission	event.	628	
	 Next	we	determine	the	time	of	isolation	for	𝑗.	If	time	of	symptom	onset	for	𝑗	occurs	629	
before	𝑗	is	traced,	𝑗	is	immediately	isolated	(Panel	1).	Otherwise,	time	of	isolation	for	𝑗	630	
depends	on	whether	symptom	monitoring	or	quarantine	is	used.	Under	symptom	631	
monitoring,	isolation	of	𝑗	occurs	a	delay	𝐷!" 	days	after	symptom	onset.	Note	that	for	632	
contacts	checked	twice-daily,	𝐷!"~unif(0, 0.5).	Upon	isolation,	the	hourly	expected	number	633	
of	onward	infections	is	reduced	to	𝑅!! = (1− 𝛾)𝛽!!𝑅!! 	where	𝛾	is	effectiveness	of	isolation	634	
with	support	 0, 1 .	If	𝑗	is	under	quarantine,	then	𝑅!! 	is	reduced	by	(1− 𝛾)	beginning	at	the	635	
time	𝑗	is	traced.	636	
	637	
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S2	Appendix.	Parameterization	via	Sequential	Monte	Carlo	638	
	639	

The	following	parameterization	method	was	repeated	for	each	case	study	disease.	640	
Data-informed	incubation	period	and	serial	interval	distributions	were	collected	through	a	641	
literature	review.	Sequential	Monte-Carlo	(also	known	as	particle	filtering)	methods	were	642	
used	to	estimate	the	joint	distribution	of	three	disease	parameters	(𝑇!""#$% ,	𝑑!"# ,	and	𝜏!)	643	
using	knowledge	of	the	incubation	period	and	serial	interval	distributions	[28,29].	644	

Here	we	assume	that	the	latent	period	for	an	individual	is	some	time	(𝑇!""#$%)	645	
before	(TOFFSET	<	0)	or	after	(TOFFSET	>	0)	the	onset	of	symptoms.	Therefore,	𝑇!""#$% 	is	a	646	
translation	of	the	incubation	period	distribution.	We	assume	a	uniform	distribution	of	647	
duration	of	infectiousness	from	1	day	to	𝑑!"# ,	allowing	for	partial	days	as	well.	We	assume	648	
the	distribution	of	relative	infectiousness	to	follow	a	triangle	distribution	with	a	max	at	649	
time	𝜏! ,	which	ranges	from	0,	indicating	infectiousness	is	linearly	decreasing,	to	1,	650	
indicating	infectiousness	is	linearly	increasing.	651	

The	steps	are	as	follows:	652	
	653	

i. Draw	initial	parameter	set	Θ	consisting	of	𝑇!""#$% ,	𝑑!"# ,	and	𝜏! 	from	a	654	
Latin	Hypercube	sample	bounded	by	the	range	of	parameter	values	655	
found	in	the	literature	(Note:	𝑑!"# 	is	loosely	bounded	by	symptom	656	
observations).	657	

ii. Run	the	branching	epidemic	model	under	a	situation	with	no	658	
interventions	and	measure	the	simulated	serial	intervals.	659	

iii. Compare	the	simulated	serial	intervals	to	the	published	serial	660	
interval(s)	in	the	literature	using	the	Kolmogorov-Smirnov	test	statistic	661	
(KS).	662	

iv. Draw	a	bootstrapped	sample	of	Θcandidate	from	Θ	weighted	by	the	KS	663	
statistic	and	restricted	by	an	adaptive	Θ	threshold	of	(max	KS	in	664	
trial)*0.80	665	

v. Perturb	each	Θcandidate	by	up	to	2%	of	the	initial	parameter	value	range	666	
vi. Repeat	steps	(ii)-(v)	until	the	median	KS	is	within	10%	of	each	of	the	667	

previous	two	rounds.		668	
vii. Generate	an	unweighted	sample	from	final	Θ	joint	probability	space	669	

with	replacement	as	the	input	parameter	set	for	the	case	studies.		670	
viii. To	calculate	partial	rank	correlation	coefficients	generate	an	671	

unweighted	sample	with	replacement	from	the	parameter	space	of	each	672	
of	for	𝑇!""#$% ,	𝑑!"# ,	and	𝜏! 	independent	distributions	from	Θ.	673	

	674	
	675	
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