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Abstract 

In modern-day metagenomics, there is an increasing need for robust taxonomic annotation of long DNA 

sequences from unknown micro-organisms. Long metagenomic sequences may be derived from 

assembly of short-read metagenomes, or from long-read single molecule sequencing. Here we introduce 

CAT, a pipeline for robust taxonomic classification of long DNA sequences. We show that CAT correctly 

classifies contigs at different taxonomic levels, even in simulated metagenomic datasets that are very  

distantly related from the sequences in the database. CAT is implemented in Python and the required 

scripts can be freely downloaded from Github. 

 

Introduction 

Metagenomics involves direct sequencing of DNA from microbial communities in natural, clinical,  or 

biotechnological systems. Limitations including the short length of DNA sequencing reads and the 

diversity of microbial communities made read mapping the ideal approach to answer the classical 

questions in metagenomics (Handelsman, 2004)⁠  i.e. "Who is there?" and "What are they doing?". Read 

mapping considers each read as an independent observation, whose taxonomic origin and functional 

class can be estimated by identifying the closest match in a reference database, and tallying these 

annotations across the full metagenomic dataset results in a taxonomic or functional profile of the 

microbial community (Wilke et al., 2016; Huson et al., 2016)⁠ . Although this approach provides a high-

resolution overview of the taxa and/or functions in a sample, the growing data volumes increasingly 

require heuristic sequence alignment tools. Together with the possibility that short reads may be 

ambiguously mapped to the reference sequences in the database, this may not always result in the most 

sensitive annotation. As a result, a persistent caveat of read mapping approaches is an abundance of 

"unknowns": sequences that do not yield a significant match in the reference database and are not 

reported (Dutilh, 2014)⁠. 

 

In recent years, it has become increasingly clear that reference-based annotation of short-read 

metagenomes may miss an important fraction of the microbial and viral biodiversity in the environment 

(Dutilh et al., 2014; Brown et al., 2015)⁠⁠. With increases in DNA sequencing volumes, metagenomics 
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has moved from read mapping to sequence assembly, the additional coverage making it possible to 

assemble high-quality contiguous sequences from the metagenome. Moreover, with the advent of single 

molecule DNA sequencing platforms (third generation sequencing) such as Single Molecule Real Time 

(SMRT) sequencing (Eid et al., 2009)⁠ and Nanopore (Schneider & Dekker, 2012), long read lengths are 

becoming an attractive opportunity to complement short-read based metagenomes, albeit at a lower 

ecological resolution due to the smaller number of individual reads obtained with these platforms. 

 

Longer sequences allow a less ambiguous annotation of the unknown queries, while the lower number 

of sequences to be annotated allow more sensitive, but computationally more demanding annota tion 

tools to be used. Typically, a single metagenome may consist of millions to hundreds of millions of 100 -

250 base pair sequences when using second-generation sequencing, versus just thousands to tens of 

thousands of 1,000-100,000 base pair assembled contigs or long-read sequences derived from 

metagenome assembly or from third-generation sequencing. These long sequences are often annotated 

with a best BLAST hit approach. While this approach tends to work well if the strains present in the 

microbial community have sequenced representatives in the database, we show here that this approach 

quickly breaks down as the metagenome contains sequences from more unknown organisms, i.e. 

organisms that are distantly related to the ones in the reference database.  

 

Here we present the Contig Annotation Tool (CAT), designed to provide robust taxonomic classification 

of long sequences from unknown organisms, such as those found in a metagenome. We test CAT using 

simulated long metagenomic sequences with decreasing genomic similarity to the sequences in the 

reference database, showing that CAT outperforms the commonly used best BLAST hit approach. CAT 

is implemented in Python and the source code is freely available on Github.  

 

 

Figure 1. Outline of the CAT pipeline. For details see text. 
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Methods 

The Contig Annotation Tool (CAT) is a pipeline for robust and accurate taxonomic classification of long 

metagenomic sequences. The CAT pipeline is implemented in Python, and it uses third party programs 

for several steps. The source code and installation instructions are available at: 

https://github.com/DiegoCambuy/CAT. 

 

Figure 1 displays the whole pipeline. CAT takes a set of DNA sequences as input, and first identifies open 

reading frames (ORFs) with Prodigal using default parameters (Hyatt et al., 2010)⁠. Second, protein 

translations of the predicted ORFs are queried against the NCBI non-redundant (nr) protein database 

(NCBI Resource Coordinators, 2016)⁠  to identify the top hits. Here, CAT takes into account all hits with 

a bitscore ≥90% of the highest bitscore for that ORF (all the parameter values are default values that can 

be adjusted by the user). The nr database is constantly updated, so we recommend using the latest 

version. Homology searches are performed with DIAMOND using default parameters  (Buchfink, Xie & 

Huson, 2014)⁠. In order to derive a conservative taxonomic classification of an individual ORF, the 

taxonomic annotations of the top hits are compared, and their last common ancestor (LCA) determined 

according to NCBI Taxonomy. For each ORF, CAT records the taxon of their LCA (T) as well as the 

average of their bitscore values (B). 

 

By adjusting the cutoff value for how close the bitscore of the considered hits should be to the top hit 

(default: 90%), the user can tune the conservativeness of in the taxonomic classification of individual 

ORFs. As a result of this approach, ORFs that are highly conserved in taxonomically diverse species will 

receive a less specific taxonomic classification, i.e. they will be classif ied at a higher taxonomic levels 

(e.g. phylum, class, order). In contrast, ORFs that are very particular to one clade will receive a more 

specific classification, i.e. they will be classified at a lower taxonomic levels (species, genus, family). 

Finally, in order to address non-specific taxonomic annotations that are often present in the database, 

CAT has the default behavior to ignore hits if their taxonomic annotations are a parent of the taxonomic 

annotation of other hits of the same ORF. 

 

Third, the individual taxonomic classifications are integrated across all ORFs to derive a robust 

classification of the full DNA sequence. To do this, the B values of all ORFs assigned to the same taxon 

are summed for each taxon (ΣBtaxon), where the taxonomic annotations of T and all of its parents in the 

taxonomic lineage are considered. For example, if the top hits of a given ORF share a LCA T at the 

taxonomic level of family, then their average bitscore value B would also be considered in the ΣBtaxon score 

of all ancestor nodes of T at the levels of order, class, and phylum. At the same time, CAT also calculates 

the maximum achievable ΣB value, ΣBmax, by summing the B values of all ORFs on the entire sequence. 

Finally, CAT assesses the ΣBtaxon values of all the identified taxa, and assigns the contig to that taxon if 

the value of ΣBtaxon is ≥0.5 times ΣBmax. At this default bitscore cutoff factor, a given sequence can be 

assigned to at most one taxon at each level (phylum, class, order, family, genus, and species). Howe ver, 

if the cutoff is lowered below 0.5 by one of the user options, it is theoretically possible that more than one 

taxon reaches the bitscore threshold. In this case, the query sequence is assigned to the taxon with the 

higher ΣBtaxon value. 
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Testing data 

We tested the performance of CAT by using a testing dataset with DNA sequences of varying length, 

whose taxonomic annotation was known. To create this benchmarking dataset, we randomly selected 

from the Genbank database(NCBI Resource Coordinators, 2016)⁠ 689 complete bacterial genomes, 

each from a distinct genus. These genome sequences were fragmented into 13,311 non -overlapping 

subsequences ranging from 175 to 399,980 base pairs in length. Prodigal identified 2,308,934 ORFs on 

these sequences. 

 

Since the genomes used to create the benchmarking dataset were derived from the database, a 

straightforward CAT annotation according to the pipeline outlined above will easily identify the correct 

taxonomic annotation (see Results section). This is equivalent to a situation where a strain that is found 

in the metagenome has been sequenced, and its annotated sequence is present in the reference 

database. However, CAT was designed to also classify metagenomic sequences that are only distantly 

related to those in the database. Thus, to test the performance of CAT with increasingly unknown 

sequences by using our in silico dataset, we devised an approach where the top DIAMOND hits were 

increasingly ignored after the database search step. Specifically, hits were ignored if the sequence identity 

to the query in the aligned region exceeded a cutoff of 98% (well -studied metagenome), 78% 

(intermediate), or 58% (highly unknown sequences). 

 

Best BLAST hit 

To determine the annotation of sequences in the benchmarking dataset by using the best BLAST hit 

approach, sequences were queried against the nr database with blastn (Altschul et al., 1990)⁠. 

Sequences were assigned to the taxonomic annotation of the best non-self hit. Self hits were removed 

based on the sequence identifier, i.e. not based on sequence identity as above, so that closely related 

organisms could be retained among the blastn hits. 

 

 

Figure 2. Illustrative fictional example of sequence classification by CAT. For details see text.  
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Results 

To illustrate how CAT classifies a given DNA sequence, we describe one fictional but illustrative example 

in detail. In the example shown in Figure 2, the DIAMOND homology searches of the protein translations 

of five ORFs identified on the DNA sequence yielded four, zero, three, four, and four hits, respectively. 

For the first ORF, the top DIAMOND hit is present in Escherichia coli and the hit had a bitscore of 239. 

The same homology search yielded two other hits with bitscores ≥90% of that value: Vibrio cholerae 

(bitscore: 224) and Klebsiella pneumoniae (bitscore: 218). The bitscore of the fourth hit in Bacteroides 

fragilis was below the 90% threshold and this hit is ignored. Thus, CAT assigns to the first ORF an average 

bitscore value B = 227, and lists T = Gammaproteobacteria as its taxonomic classification, i.e. the LCA 

of E. coli, V. cholerae, and K. pneumoniae. The second ORF has no hits, and therefore does not 

contribute to the classfication of the sequence. For the third ORF, the LCA of the two hits T is reported as 

Nitrospira marina, because Nitrospirae is within the parental lineage of N. marina, and is thus ignored. 

This default behavior of CAT is implemented to address inspecific database annotations, and it can be 

optionally turned off. The fourth and fifth ORFs are assigned to the LCA of the taxa identified among the 

protein hits within 90% of their highest bitscore, similarly to the first ORF.  

 

Next, the cutoff for reliable assignment of the contig to a given taxon is set at 0.5 times ΣBmax where ΣBmax 

is the sum of the B values of all ORFs and 0.5 is the default bitscore cutoff factor. In the example in Figure 

2, ΣBmax=1,758 and the cutoff is 879. CAT then assesses ΣBtaxon for taxa at all taxonomic levels, and in 

the example above the contig is assigned to Bacteria (ΣBBacteria=1,758), Proteobacteria 

(ΣBProteobacteria=1,143), Gammaproteobacteria (ΣBGammaproteobacteria=1,143), Enterobacteriales 

(ΣBEnterobacteriales=916), and Enterobacteriaceae (ΣBEnterobacteriaceae=916), but not to Nitrospirae (ΣBNitrospirae=615) 

or any of the levels below, or to Escherichia (ΣBEscherichia=482) or E. coli. Note that in the example in Figure 

2, a best BLAST hit approach might have selected Nitrospira marina as the annotation for the contig, 

while the CAT pipeline provides a more robust annotation. 
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Figure 3. Classification of 13,311 sequences in the benchmarking dataset by using the best BLAST hit 

approach (left bars, self hits excluded) and CAT with six different bitscore cutoff factors (remaining 

stacked bars). The results are organized in four sets of six bars, representing increasingly unknown 

sequences (see Methods), where self hits were allowed, or removed at sequence identity (ID) >98% 

(well-known sequences), >78% (intermediate), or >58% (highly unknown sequences). For each 

taxonomic level, incorrectly assigned sequences are indicated as a red bar above that level. Unclassified 

sequences, i.e. those where no ΣBtaxon was higher than the bitscore cutoff, are indicated in black.  

 

Performance 

Next, we assessed the performance of CAT on a benchmarking dataset of more than 13 thousand long 

DNA sequences with a known taxonomic origin. These sequences varied widely in length, and were 

sampled from complete genomes from 689 distinct genera. We benchmarked the performance by 

recording the accuracy and specificity of the classifications at each taxonomic level. 

 

First, we tested the taxonomic annotation of the sequences by using the best BLAST hit approach, that 

is commonly used to classify unknown sequences. Interestingly, even after conservative ly removing self 

hits, still about 80% of the sequences were wrongly classified by this approach at the species and genus 

levels (Figure 3, left bars). This not only reflects the sparse sampling of many genera, but also the fact 

that local alignment can result in a small region of the query being aligned (Figure 4).  

 

 

Figure 4. Length of the best non-self blastn hit for 13,311 DNA sequences in the benchmarking dataset. 

The accuracy of taxonomic classifications according to this approach is shown in Figure 3 (left bars). 

 

In contrast to the best BLAST hit approach outlined above, CAT does not classify sequences based on a 

single best hit. Rather, CAT first determines the most likely taxonomic annotation of every individual ORF 
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found on the sequence, and then assigns the full sequence to a taxon if this taxon is identified in enough 

of the ORFs, leading to a robust classification for the whole sequence. As expected, there were virtually 

no incorrectly classified sequences if self hits were not removed from the DIAMOND output (Figure 3), 

reflecting the case where the strain that is present in the microbial community has been sequenced, and 

is present in the database. The bitscore cutoff factor did not have a large influence on the level of 

taxonomic annotation. More than 40% of the sequences could not be annotated to the species level, 

indicating that for ORFs on these sequences, a substantial portion of the DIAMOND hits consisted of 

close homologs (here, ≥90% identity) in other taxonomic groups. As we discuss below, this conservative 

approach leads to a highly robust classification of metagenomic sequences derived from less well -studied 

environments, i.e. where the query is more distantly related to the sequences in the database.  

 

Next, we filtered the most similar sequences from the DIAMOND hits, ignoring hits with >98%, >78%, 

and >58% identity in the aligned region. This reflects cases where the strains that are present in the 

microbial community are increasingly distantly related to those present in the database. As a result, CAT 

classifies the query sequences at increasingly lower taxonomic resolution. Since highly similar sequences 

from, e.g. the same species are no longer present among the hits, the contig can only be assigned to the 

next taxonomic level, e.g. genus or higher. Importantly, because excluding highly similar DIAMOND hits 

results in classification at a higher taxonomic level, the overall fraction of correctly annotated sequences 

increases from 93.1% to 98.3% (at bitscore cutoff factor 0.5). This is consistent with previous reports that 

higher taxonomic levels can be annotated more accurately (Randle-Boggis et al., 2016)⁠. The fraction of 

sequences that were not classified, i.e. when no ΣBtaxon reached the reliable assignment cutoff, increased 

from 1.7% to 3.2% with increasingly unknown query sequences (bitscore cutoff factor 0.5).  

 

Conclusions 

We presented CAT, a bioinformatic pipeline to taxonomically classify long DNA sequences. CAT exploits 

homology information of all encoded proteins, leading to a robust classification for a long query sequence. 

We showed that thanks to this feature, CAT outperforms the frequently used best BLAST hit approach, 

that often misclassifies a sequence due to short, spuriously high scoring hits. Although annotations 

become less taxonomically resolved, we argue that this is realistically the case in many microbial 

communities, where the microbes that are found in a metagenome are only distantly related to the 

sequences in the database, and can thus only be reliably assigned to higher level taxa. When longer 

query sequences are available, such as contigs in the case of metagenome assemblies, or long 

sequencing reads from recent single-molecule sequencing platforms, CAT is a robust solution for 

taxonomic annotation. 
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