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Patient stratification or disease subtyping is crucial for precision medicine and 

personalized treatment of complex diseases. The increasing availability of high-throughput 

molecular data provides a great opportunity for patient stratification. In particular, many 

clustering methods have been employed to tackle this problem in a purely data-driven 

manner. Yet, existing methods leveraging high-throughput molecular data often suffers 

from various limitations, e.g., noise, data heterogeneity, high dimensionality or poor 

interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) 

method that overcomes those limitations all together. Our ECC method employs an 

entropy-based utility function to fuse many basic partitions to a consensus one that agrees 
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with the basic ones as much as possible. Maximizing the utility function in ECC has a much 

more meaningful interpretation than any other consensus clustering methods. Moreover, 

we exactly map the complex utility maximization problem to the classic K-means clustering 

problem with a modified distance function, which can then be efficiently solved with linear 

time and space complexity. Our ECC method can also naturally integrate multiple 

molecular data types measured from the same set of subjects, and easily handle missing 

values without any imputation. We applied ECC to both synthetic and real data, including 

35 cancer gene expression benchmark datasets and 13 cancer types with four molecular 

data types from The Cancer Genome Atlas. We found that ECC shows superior 

performance against existing clustering methods. Our results clearly demonstrate the 

power of ECC in clinically relevant patient stratification. 

 

Introduction 

High-throughput technologies, such as next-generation sequencing, have enabled us to 

rapidly accumulate a wealth of various molecular data types, including genome, transcriptome, 

proteome, and epigenome (1-3). Those massive genomics studies offer us great opportunities to 

characterize human pathologies and disease subtypes, identify driver genes and pathways, and 

nominate drug targets for precision medicine (4, 5). In particular, development of novel 

computational approaches for patient stratification leveraging high-throughput molecular data 

would significantly facilitate precision medicine and personalized treatment, which target 
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discrete molecular subclasses of complex diseases with specific genetic or epigenetic profiles 

(4). 

Clustering, an unsupervised exploratory analysis, has been widely used for patient 

stratification or disease subtyping (6). However, traditional clustering algorithms, such as 

K-means, hierarchical clustering, and spectral clustering, suffer from noise, data heterogeneity 

and high dimensionality that are associated with high-throughput molecular data (7, 8). Ensemble 

clustering (a.k.a. consensus clustering) can merge some individually generated basic partitions, 

and ensure the final consensus partition maximally agrees with the basic ones (9). This 

significantly helps us generate more robust clustering results, find bizarre clusters, better handle 

noise, outliers and sample variations, and integrate solutions from multiple distributed data 

sources (9). However, existing consensus clustering algorithms based on co-association matrix 

(10) are computationally expensive and require a large storage space, preventing them to handle 

high-throughput molecular data. Moreover, their interpretation of the consensus partition is often 

obscure. 

Results 

Methodology overview of ECC 

Here we introduce a novel consensus clustering method, i.e. Entropy-based Consensus 

Clustering (ECC), for patient stratification. Consider an n m×  matrix of molecular data of n  

subjects (or experiments, conditions, samples; corresponding to n  rows) and m  features (such 

as mRNAs; corresponding to m  columns). Each subject can be represented by a point in the 
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m -dimensional feature space, with different shapes representing different clusters the subjects 

belong to (Fig. 1A). There are three steps in the ECC pipeline. Step-1: We generate r  basic 

partitions using K -means clustering with parameter K (i.e., the number of clusters) randomly 

chosen from 2 to n  (see Fig. 1B) (11). Hereafter we call this kind of basic partitions 

generation strategy Random Parameter Selection (RPS). Note that in this step we can use any 

basic clustering method. Here we just choose K -means for its simplicity and high efficiency. In 

this work we choose 100r =  and find that larger r  does not significantly improve the result. 

Step-2: We derive a binary matrix from each basic partition via 1-of-K  coding, where K  is 

the cluster number in this basic partition and only one element in each row is1, others are 0. We 

concatenate all those binary matrices into a large binary matrix (Fig. 1C). Step-3: We employ an 

entropy-based utility function to guide the fusion of all the r  basic partitions into a consensus 

one (Fig. 1D). This is achieved by conducting K -means clustering on the binary matrix with a 

modified distance function and a user-defined cluster number K . 

Our ECC method has three key features. First, it solves the consensus clustering problem in 

a utility way, which has more meaningful interpretation than any other consensus clustering 

methods. Here the utility function is applied to quantify the similarity between each of the r  

basic partitions and the consensus one. Maximizing the utility function requires us to find a 

single consensus partition that agrees with the basic ones as much as possible. Second, we 

uncover a remarkable equivalence relationship between an entropy-based utility function and a 

K -means distance function so that the complex utility maximization problem can be efficiently 
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solved by the classic K -means method with a modified distance function (see Supplementary 

Materials Sec. I.A). Consequently, both the time and space complexity of ECC are linear in n  

(see Supplementary Materials Sec. I.B). This dramatically improves the efficiency of ECC in 

real-world applications (11). Finally, ECC can naturally integrate multiple molecular data types 

measured from the same set of subjects, and easily handle missing values without any imputation 

(see Materials and Methods). This significantly increases the power of ECC in clinically 

relevant patient stratification. 

To demonstrate that ECC indeed outperforms existing clustering methods, we compared the 

performance of ECC with five traditional clustering methods: Agglomerative Hierarchical 

Clustering with Average Linkage (AL), Single-Linkage (SL) and Complete-Linkage (CL), K

-means Clustering (KM), and Spectral Clustering (SC); and two state-of-the-art consensus 

clustering methods: the Link-based Cluster Ensemble (LCE) and Approximate SimRank-based 

(ASRS) methods (12). 

 

Evaluation using synthetic data 

We first applied all those clustering methods to synthetic gene expression datasets with 

built-in cluster structure generated through a well-established dynamical gene regulation model 

(see Supplementary Materials Sec. II) (13). For fair comparison, we used two external indices 

of clustering validity: nR (Normalized Rand Index) and NMI (Normalized Mutual Information) 

to objectively evaluate the performance of different clustering methods (14). Both nR  and 
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NMI  are positive cluster validity indices that estimate the quality of clustering results with 

respect to the underlying cluster structure of the data (see Materials and Methods). We found 

that ECC generally outperforms other methods in terms of its robustness against noise (see 

Supplementary Materials Sec. IV.A). 

 

Evaluation using benchmark cancer gene expression data 

We thenevaluated ECC and other clustering methods on 35 widely usedbenchmark cancer gene 

expression datasets(15) (Supplementary Materials Sec. III.A). The detailed description of the 

35 datasets was provided in Supplementary Table S2. Fig. 2A shows the clustering 

performance of different algorithms measured by NMI . We found that for most datasets, the 

three consensus clustering methods (LCE, ASRS, and ECC) are superior to the five traditional 

clustering methods. Moreover, our ECC method achieves promising results on several datasets 

by a large margin, such as dataset-5 (Armstrong-2002-v2), dataset-9 (Yeoh-2001-v1), dataset-10 

(Chowdary-2006) and dataset-13 (Golub-1999-v1). Although LCE and ASRS yield reasonable 

performance on several datasets, they suffer from low robustness. For example, ASRS achieves 

100% accuracy on dataset-23 (Nutt-2003-v3), but it yields even worse results than that of random 

assignment on dataset-9 (Chen-2002). We emphasize that, for unsupervised tasks, robustness is 

much more important than performance in practice when dealing with highly heterogeneous 

molecular data types (such as mRNA expression)(16). Different from LCE and ASRS, ECC 

fuses the basic partitions in a utility way, which ensures highly meaningful interpretations with 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2016. ; https://doi.org/10.1101/073189doi: bioRxiv preprint 

https://doi.org/10.1101/073189


! 7!

high stability for the final consensus partition (Supplementary Materials Sec. I). To compare 

the overall performance of those clustering methods over the 35 benchmark datasets, we 

proposed an average performance score (see Materials and Methods) and found that ECC 

revealed significant advantages over all other methods in terms of average performance score. 

We notice that there are four specific datasets (Gordon-2002, Khan-2001, Ramaswamy-2001 and 

Shipp-2002) for which all clustering methods yield very poor performance, most likely due to the 

presence of irrelevant or noisy features. We pointed that this difficulty cannot be easily resolved 

by any existing clustering methods. Yet, it can be alleviated by a complementary basic partition 

generation strategy of RPS, i.e., the Random Feature Selection (RFS) strategy, within the 

framework of ECC. To achieve that, we generate different sub-datasets by randomly selecting 

certain percentage of features (e.g., mRNAs) and then apply traditional clustering (e.g., K

-means) to those sub-datasets to obtain basic partitions. Indeed, we find that for these four 

datasets, the performance of RFS exceeds RPS with all sampling ratios. This indicates that RFS 

helps us avoid noisy and irrelevant mRNA expressions (see Supplementary Materials Sec. IV 

for details). 

In addition, ECC has tremendous merits in terms of computational cost. Fig. 2B shows the 

execution time (in logarithmic scale) of the three consensus clustering methods (LCE, ASRS and 

ECC). The time complexity of ECC is ( )O InKr , where I  is the number of iterations, n  is 

the number of subjects, K  is the number of clusters and r  is the number of basic partitions. 

The space complexity of ECC is ( )O nr . For LCE and ASRS, the space complexities are both 
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2( )O n ; and the time complexities are 2( log )O n n  and 3( )O n , respectively. Naturally, ECC is 

more suitable for high-throughput molecular data analysis (Supplementary Materials Sec. IV). 

For example, on dataset-34 (Yeoh-2002-v1), ECC is 115 times and 1,600 times faster than LCE 

and ASRS, respectively. 

 

Translational applications of ECC 

The availability of massive and various molecular data types generated from large-scale and 

well-characterized cohorts across multiple cancer types provides an unprecedented opportunity 

for patient stratification. Here we demonstrated the translational applications of ECC based on13 

major cancer types from The Cancer Genome Atlas (TCGA) project with sufficient sample size 

and clinical profiles for four molecular data types: mRNA expression (RNA-seq V2), microRNA 

(miRNA) expression, protein expression, and somatic copy number alterations (SCNAs), as 

shown in Supplementary Table S3. For fair comparison, we collected the empirical number of 

clusters (subtypes) for the 13 TCGA cancer types from previous studies. Then we applied 

survival analysis to evaluate the performance of different clustering methods in terms of 

10log ( )P−  with P  the log-rank test P -value (Supplementary Materials Sec. V and 

Supplementary Tables S7-10).  

For each molecular data type (Protein, miRNA, mRNA, and SCNA), we calculated the 

clustering performance of ECC against other clustering methods across the 13 TCGA cancer 

types. We found that ECC outperformed other methods (in terms of the number of significant 
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survival analysis results across the 13 TCGA cancer types, as highlighted in dotted red rectangles 

in Fig. 3A-D) for any single molecular data type.  

By integrating the 4 different molecular data types, ECC generated significant clusters 

(cancer subtypes) for all the 13 TCGA cancer types (P < 0.05, log-rank test, Table. 1). Note that 

traditional clustering methods and existing consensus clustering methods cannot easily integrate 

multiple molecular data types, due to the presence of missing values for certain molecular data 

type of certain subjects. Yet, ECC can naturally resolve this issue by utility fusion, where 

missing values in basic partition provide no utility for the final fusion (Supplementary Fig. S9). 

Moreover, by integrating multiple molecular data types, ECC is effectively more robust to noise 

present in the data (partially because it has more data types to generate basic partitions). For 

example, in the case of uterine corpus endometrial carcinoma (UCEC), using any of the 4 

molecular data types, ECC cannot yield significant clusters (Fig. 4A). Yet, by integrating 

multiple molecular data types (pan-omics), ECC yielded 4 significant clusters (Fig. 4B) with 

distinct patient survival curves ( P  = 0.0043, Fig. 4C); while using any single molecular data 

type the clusters generated by ECC do not pass the significance test of survival analysis (P >0.05, 

Supplementary Tables S7-10). In addition, subtypes identified by ECC via integrating 4 

molecular data types were closely associated with the clinical subtypes on a histological basis in 

UCEC (Fig. 4D). For instance, subtype 2 with most aggressive uterine tumor shows poor 

survival than subtype 1 with the less aggressive uterine tumors. Similar trends are also observed 

in ovarian serous cystadenocarcinoma (OV, P = 7.79×10-4) and prostate adenocarcinoma 
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(PRAD, P = 5.27×10-4) (see Supplementary Table S11). Since TCGA clinical information 

may not be complete or rigorously annotated, future efforts of assessing the clinical utility of 

different subtypes on additional patient cohorts with more carefully annotated clinical variables 

are needed. 

 

Discussion 

In sum, we show that ECC owns significant advantages in terms of cluster validity, 

execution time and space complexity, and robustness compared with other clustering methods in 

patient stratification. We demonstrate that ECC with RFS strategy can alleviate the detriment 

effect of irrelevant and noisy features. Moreover, ECC displays superior performance on the 

pan-omics data by integrating multiple molecular data types than that of single molecular data 

type. We anticipate that integrating more types of both molecular and clinical data, such as 

somatic mutations, DNA methylation, functional genomic data generated from CRISPR/Cas9 

(17), proteogenomics (18), radiomics (19), and electronic medical records (20), will further 

improve patient stratification. Altogether, our ECC method paves the way to a much more 

refined representation and understanding of various molecular data types, facilitating the 

development of precision medicine. 
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Methods: 

Consensus clustering 

Here we introduce the basic ideas of consensus clustering in the context of omics data (e.g., 

gene expression) analysis. Consensus clustering was originally developed for fusing several 

existing partitions into a robust one (1), and has recently been applied to gene expression data 

analysis (2,3). For example, the link-based cluster ensemble (LCE) method first summarizes 

several basic partitions into a co-association matrix (that measures how often two instances 

simultaneously occur in the same cluster); then modifies the zero entries in the co-association 

matrix with the distance derived from the original data; and finally conducts spectral clustering 

to obtain the consensus partition (2). As a variant of the LCE method, the Approximate 

SimRank-based(ASRS) method employs very similar idea with slightly different modification on 

the zero entries in the co-association matrix (3). 

Different from the existing consensus clustering methods (LCE and ASRS), our ECC 

method employs an entropy-based utility function for the guidance of fusing all the basic 

partitions into a consensus one, which has a more meaningful interpretation than existing 

consensus clustering methods. LetX denote a gene expression dataset with n subjects and m

genes. A partition of X into K crisp clusters is represented as a collection of K subsets of 

instances in { | 1,..., }kC C k K= = , with Ck ∩Ck ' =∅,∀k ≠ k ' , and ∪k=1
KCk =X , or as a label 

vector π = (Lπ (x1),...,Lπ (xn ))
Twhere Lπ maps lx to some label in {1,2,..., }K , 1 l n≤ ≤ . 

Suppose we have r basic partitions denoted as{π (1) ,π (2) ,...,π (r )}generated by some traditional 
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clustering method (e.g., K -means) and there are vK clusters in ( )vπ , for 1 v r≤ ≤ . The goal of 

consensus clustering is to find a consensus partition π  by solving the following optimization 

problem: 

max
π

U (π ,π (v ) )
v=1

r

∑ ,                             (1) 

where U  is a utility function measuring the similarity at the partition-level between each basic 

partition and the consensus one. In other words, we expect to find an optimal partition that agrees 

with the basic ones as much as possible. Different utility functions measure the similarity of two 

partitions in different aspects, rendering different objective functions for consensus clustering. In 

this work, an entropy-based utility function is employed for its fast convergence and high quality 

(4). 

 

Entropy-based Utility Function 

The core of ECC is to fuse these basic partitions into a consensus one based on an 

entropy-based utility function, which assures the consensus clustering algorithm to be highly 

efficient and robust. As formulated in Eq. (1), a utility function is defined on two partitions π  

and ( )vπ  to measures their similarity at partition-level. We can employ the following 

contingency table to calculate the entropy-based utility function.  
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Here we have two partition π  and ( )vπ , which contain K  and vK  clusters, respectively. We 

assume π  is the ground truth, and ( )vπ is the clustering result generated by a specific clustering 

algorithm. Let ijn  denote the number of objects shared by cluster iC in π  and cluster '
jC in 

( )vπ . Define
1

vK

i ij
j

n n+
=

=∑ , and
1

K

j ij
i

n n+
=

=∑ , 1 i K≤ ≤ , 1 vj K≤ ≤ . 

Based on the contingency table, for π  and ( )vπ  we define two discrete distributions

( ) ( ) ( )
1( / ,..., / ),v v v

i i k iKv kP n n n n i+ += ∀ , and ( ) ( ) ( ) ( )
1( / ,..., / ,..., / ).v v v v

j KvP n n n n n n+ + += Then we have 

Definition 1 ( HU ). An entropy-based utility function HU  is defined as 

( ) ( ) ( )

1
( , ) ( ) ( )

K
v v vi

H i
i

nU H P H P
n

π π +

=

= − +∑ ,                 (2) 

whereH denotes the Shannon entropy. 

 

Since Shannon entropy is a concave function, according to the Jensen’s inequality, we can prove 

that ( ) ( ) ( )

1 1
( ) ( ) ( )

K K
v v vk k
k k

k k

n nH P H P H P
n n
+ +

= =

− ≥ − = −∑ ∑ , rendering that 0HU ≥ . A larger HU  

indicates the higher utility from the two partitions in greater similarity. Note that HU is 
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asymmetric, with ( ) ( )( , ) ( , ),v v
H HU Uπ π π π≠  if ( )vπ π≠ . 

 

Entropy-based Consensus Clustering 

Although it is crucial to design a utility function, how to optimize it in an efficient way is 

another challenge. Thanks to the general K -means based Consensus clustering (4), which has 

substantial advantage in terms of efficiency; we can transform the optimization problem in Eq. (1) 

into a modified K -means clustering problem as follows. 

Let B = (b1,...,bn )
T be a binary matrix derived from r basic partitions{π (1) ,π (2) ,...,π (r )} , with 

(1) ( ) ( )( ,..., ,..., ),1v r
l l l lb b b b l n= ≤ ≤ ,                        (3) 

 ( ) ( ) ( ) ( )
,1 , ,( ,..., ,..., )

v

v v v v
l l l j l Kb b b b= ,                           (4) 

 bl , j
(v ) =

1, L
π ( v )
(l) = j

0, otherwise

!
"
#

$#
 .                           (5) 

Apparently, B is a 
1

r

i
i

n K
=

×∑ binary matrix, with ( ) 1, , .i
lb l v= ∀

 
For the Entropy-based 

Consensus Clustering, aK -means clustering is directly conducted on B with the following 

modified distance function. 

( ) ( )

1
( , ) ( || )

r
v v

l k l k
v

f b m D b m
=

=∑ ,                        (6) 

where (1) ( ) ( ),..., ,...,v r
k k k km m m m=  with ( ) /

l k

v v
k l k

b C
m b C

∈

= ∑ , and ( ) ( )( || )v v
l kD b m  is the 

KL-divergence from ( )v
lb  to ( )v

km . 

By this means, the complex consensus clustering can be exactly mapped into a classic K
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-means clustering with a modified distance function, which has roughly linear time complexity 

and its convergence can also be guaranteed as well. The exactness of the mapping can be 

rigorously proved (see Supplementary Materials Sec. I.A for details). This mapping makes 

ECC very practical for large-scale molecular data analysis. Indeed only r elements are non-zero 

entries in each row of B, which leads the time complexity from 
1

( )
r

v
v

O IKn K
=
∑  to ( )O IKnr , 

where I  is the number of iterations. 

 

Handling missing values 

Missing values are quite common in practice due to data collection or device failure, 

especially for the pan-omics data of a large population (in computer science, this kind of data is 

called multi-view). Typically there are two ways to handle those missing values. One is to just 

remove the instances (i.e., subjects) that have missing values in any single molecular data type 

(or any single view). Apparently, this is of great waste because those instances (subjects) might 

have values for many other views (molecular data types). The other way is to replace these 

missing values by default or average values. This would harm the original data structure and 

degrade the clustering performance. We can naturally resolve this challenging issue within the 

framework of ECC. In particular, we consider that those missing values, which lead to missing 

labels in the basic partitions, do not provide any utility for the consensus fusion. If a basic 

partition has missing labels, we call it an incomplete basic partition (IBP). For IBP, we directly 
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denote ( )
,
v
l jb  as an all-zero vector, which will not be involved in the distance calculation and 

centroid update. The following is the distance function for IBP: 

f (bl ,mk ) = I (bl
(v ) ∈ π (v ) )D(bl

(v ) ||mk
(v ) )

v=1

r

∑ ,                     (7) 

and (1) ( ) ( ),..., ,...,v r
k k k km m m m=  with 

( )
( )

( )

v
l k

v
lb Cv

k v
k

b
m

C
π

π
∈ ∩=
∩

∑
.                              (8) 

 

Datasets 

In this work, we use 110 synthetic datasets to systematically evaluate the performance of 

ECC. The 110 synthetic datasets are generated by a well-established dynamical gene regulation 

model (5): 

dxi
dt

=mi ⋅ fi (y)−λi
mRNA ⋅ xi

dyi
dt

= ri ⋅ xi −λi
Prot ⋅ yi

,                        (9) 

where im
 
is the maximum transcription rate, ir  is the translation rate,λi

mRNA and λi
Prot  are the 

mRNA and protein degradation rates, and x and y are vectors of mRNA and protein 

concentration levels, respectively. if (Ŋ) computes the relative activation of gene. The topology of 

the gene regulatory network is encoded in the activation functions. 

Among the 110 synthetic datasets, 55 of them are based on an Erdős–Rényi random network 

with 500 nodes (genes), and the other 55 are based on a human transcriptional regulation 
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network of 2723 genes (6). Each dataset contains 200 subjects with its benchmark of 4 clusters 

(50 subjects in a cluster). Each dataset contains 200 subjects divided evenly into 4 groups 

(clusters). Each group has a specific set of knocked-out genes. A more detailed description of the 

synthetic datasets can be found in Supplementary Materials Sec. I. 

Besides the 110 synthetic datasets, 35 widely used cancer gene expression benchmark 

datasets (7) are employed to test the cluster validity of ECC. Also, 13 cancer types with four 

molecular data types from TCGA with survival information are used for practical evaluation of 

ECC (Supplementary Table S3). 

 

Evaluation metrics 

Since the true labels for synthetic and benchmark datasets are available, we can apply 

external measurements to objectively evaluate the performance of different clustering algorithms. 

Although there are many external measurements, some of them are biased. According to Wu et. 

al. (12), two normalized external measurements, NMI and nR  are unbiased and hence can be 

chosen for proper evaluation of clustering performance. Both can easily be calculated from the 

contingency table. 

Normalized Mutual Information (NMI ) measures the mutual information between resulted 

cluster labels and ground truth labels, followed by a normalization operation to assure NMI

ranges from 0 to 1. Mathematically, it is defined as: 
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NMI =
niji , j∑ log

n ⋅nij
ni+ ⋅n+ j
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Normalized Rand Index, denoted as nR  measures the similarity between two partitions in a 

statistical way, which is defined as: 
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Note that both NMI  and nR  are positive measurements, i.e. a better partition has a larger 

NMI  or nR  value. Although nR  is normalized, it can still be negative, which means that the 

partition is even worse than random label assignment.  

To compare the overall performance of those clustering algorithms over the 35 benchmark 

cancer expression datasets, we propose an average performance score as follows: 

 
1

( , )1
( )

max ( , )

d
j i

i
j i j i

V D A
Avg A

d V D A=

= ∑ ,                         (12) 

where ( , )j iV D A  denotes the performance (i.e., nR  or NMI ) of Algorithm iA  on dataset jD

and d  is the total number of benchmark datasets. 

Code availability 

The MATLAB code is freely available at http://scholar.harvard.edu/yyl/ecc. 
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Fig. 1. Schematic diagram of the ECC pipeline. (A) n  subjects are presented by n  points in 

the m -dimensional feature space. In this example, 11n = . The feature can be mRNA 

expression, Protein expression, or any other molecular data. Different shapes represent 

the subjects in different disease subtype (clusters). (B) K -means clustering is applied to 

the molecular data of the n  subjects to obtain r  basic partitions. For each basic 

partition, the cluster number K  is randomly chosen from 2 to n , and we highlight the 

K  clusters using dashed line, dotted line, solid line, etc. (C) Each basic partition is 

transformed into 1-of-K  coding, where K  is the cluster number in each basic partition 

and only one element in each row is 1, others are 0. Concatenating all the basic partitions 

in 1-of-K  coding form yields a large binary matrix B , which is a new representation of 

the original molecular data. (D) A K -means clustering with modified distance function 

(derived from an entropy-based utility function) is conducted on the binary matrix B  

for the final consensus clustering. In this step, for synthetic and benchmark cancer gene 

expression datasets we set K  to be the true cluster number. For the 13 TCGA cancer 

datasets, to fairly compare the ECC method and other clustering methods, we use the 

empirical number of clusters (subtypes) obtained from previous studies. For general 

molecular data when the empirical number of clusters is unknown, we can employ the 

cluster number estimation method in (33) to determine K  for the final step of ECC. 
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Fig. 2. The performance of ECC on 35 benchmark cancer gene expression datasets. (A), 

The performance of different clustering methods (five traditional clustering methods: 

Agglomerative Hierarchical Clustering with Average Linkage (AL), Single-Linkage (SL) 

and Complete-Linkage (CL), K -means Clustering (KM), and Spectral Clustering (SC); 

and two state-of-the-art consensus clustering methods: the Link-based Cluster Ensemble 

(LCE) and Approximate SimRank-based (ASRS) methods) is measured by the 

Normalized Mutual Information (NMI ). Overall, ECC outperforms the traditional 

clustering methods and state-of-the-art consensus clustering methods by a large margin. 

(B), The execution time T (in logarithmic scale) of different consensus clustering 

methods (ARSR, LCE, and ECC) as a function of the number of instances or the number 

of classes. 
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Fig. 3. Performance of 7 different clustering methods on 4 molecular data types across 13 

major cancer types from TCGA. Heatmaps show the survival analysis for 13 major 

cancer types using 7 different clustering methods based on four molecular data types: (A) 

protein expression (protein), (B) miRNA expression (miRNA), (C) mRNA expression 

(mRNA), and (D) somatic copy number alterations (SCNA), respectively. We use the 

log( )P−  to draw the heatmap and elements with dotted red rectangles have P <0.05. 

(E), This plot displays for each clustering method the times that it passes the significant 

tests of survival analysis, i.e. the number of dotted red rectangles in (A-D), over the 13 

cancer types and the 4 different molecular data types. 

 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2016. ; https://doi.org/10.1101/073189doi: bioRxiv preprint 

https://doi.org/10.1101/073189


! 29!

ECC Protein miRNA mRNA SCNA Integration 

BLCA 0.0212 0.0124 0.0187 0.1910 0.0027 

BRCA 0.0313 6.37E-08 0.0011 0.0375 0.0131 

COAD 3.32E-09 5.91E-04 7.77E-04 0.2340 8.69E-06 

HNSC 0.1820 0.0090 0.1160 0.3800 0.0323 

KIRC 0.0313 0.0223 0.0314 0.1730 9.78E-04 

LGG 0.0016 0.0751 0.0039 0.4130 0.0119 

LUAD 0.0245 0.0028 0.0028 0.0067 2.87E-05 

LUSC 0.1980 0.0442 0.0258 0.0425 0.0393 

OV 0.0021 0.0375 0.2210 0.0359 7.97E-04 

PRAD 0.0020 0.1840 8.59E-06 7.28E-04 5.72E-04 

SKCM 0.0035 0.0076 3.94E-06 0.0491 0.0131 

THCA 0.0138 3.75E-04 0.0024 0.1080 0.0035 

UCEC 0.1310 0.2680 0.1240 0.1260 0.0043 

 

Table. 1. Performance of ECC on 4 molecular data types and its integration across 13 

major cancer types from TCGA. The performance is quantified by the log-rank test P

-value of the survival analysis over the identified clusters (cancer subtypes). We highlight 

P <0.05 in red. With the integration of the 4 molecular data types, i.e., the pan-omics, 

ECC yields clusters that pass the significant test for all the 13 cancer types.  
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Fig. 4. Performance of ECC foruterine corpus endometrial carcinoma (UCEC) subjects 

from TCGA. The similarity matrices calculated from the 4 clusters generated by ECC 

using single molecular data type (A) and pan-omics data (B) of UCEC. The survival 

curves (C) and the composition of different clinical subtypes (D) for the 4 clusters 

generated by ECC using pan-omics data of UCEC.  
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This file is the supplementary information for our paper ”A Novel Clustering Algorithm for

Patient Stratification”, which contains the theoretical analysis of our ECC method, the generation

of synthetic datasets, the description of real datasets, and additional numerical results.

I. THEORETICAL ANALYSIS OF ECC

In this work, we map the complicated utility optimization problem in ECC to a classic K-

means clustering problem with a modified distance. Here we rigorously prove the correctness and

convergence of ECC. We summarize all the variables used in this section in Table SI.

A. Correctness of ECC

To prove the correctness of ECC, we consider the following contingency matrix.

⇡(v)

C 0
1

C 0
2

· · · C 0
Kv

P

C
1

n
11

n
12

· · · n
1Kv n

1+

⇡ C
2

n
21

n
22

· · · n
2Kv n

2+

· · · · · · · ·
CK nK1

nK2

· · · nKKv nK+

P
n
+1

n
+2

· · · n
+Kv n

Here we have two partition ⇡ and ⇡(v). We assume ⇡ is the ground truth, and ⇡(v) is the

clustering result returned by a certain clustering algorithm. Let nij denote the number of data

objects shared by both cluster C 0
j in ⇡(v) and cluster Ci in ⇡, ni+ =

PKv
j=1

nij , and n
+j =

PK
i=1

nij ,

1  i  K, 1  j  Kv.

Let B = (b
1

, · · · , bn)> be a binary matrix derived from r basic partitions ⇡(1), · · · ,⇡(r), with

bl = (b(1)l , · · · , b(v)l , · · · , b(r)l ), 1  l  n, (S1)

b(v)l = (b(v)l,1 , · · · , b(v)l,j , · · · , b(v)l,Kv
), (S2)

b(v)l,j =

8
<

:
1, if L⇡(v)(l) = j

0, otherwise
. (S3)

Apparently, B is a n ⇥ Pr
i=1

Ki binary matrix, with |b(i)l | = 1, 8 l, v. For the Entropy-based

Consensus Clustering, a K-means clustering is directly conducted on B with the modified distance

function defined as follows.
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Theorem 1. Assume ⇡ is a consensus partitioning of X , with K clusters C
1

, · · · , CK . Given r

basic partitions ⇡
1

, · · · ,⇡r, we have

max
⇡

rX

v=1

UH(⇡,⇡(v)) , min
⇡

KX

k=1

X

bl2Ck

rX

v=1

D(b(v)l km(v)
k ), (S4)

where mk = (m(1)

k , · · · ,m(v)
k , · · · ,m(r)

k ) with m(v)
k =

P
bl2Ck

b(v)l /|Ck|, D(b(v)l ||m(v)
k ) is the KL-

divergence from b(v)l to m(v)
k and UH is the entropy-based utility function, which can be calculated

as follow,

UH(⇡,⇡(v)) = �
KX

i=1

ni+

n
H(P (v)

i ) +H(P (v)), (S5)

where P (v)
i = (n(v)

i1 /nk+, · · · , n(v)
iKv/nk+), 8 i, and P (v) = (n(v)

+1

/n, · · · , n(v)
+j/n, · · · , n(v)

+Kv/n).

Proof. According to Bregmen Divergence[3], we have that D(xky) =
P

i xi log
xi
y1

= �H(x) +

H(y) + (x� y)>rH(y), where H(x) = �Pi xi log xi is the Shannon entropy. Hence we have

KX

k=1

X

bl2Ck

rX

v=1

D(b(v)l km(v)
k )

| {z }
(↵)

=
KX

k=1

X

bl2Ck

rX

v=1

(�H(b(v)l ) +H(m(v)
k )) +

KX

k=1

X

bl2Ck

rX

v=1

(b(v)l �m(v)
k )>rH(m(v)

k )

| {z }
(�)

.

(S6)

Since m(v)
k =

P
bl2Ck

b(v)l /|Ck|, we have
P

bl2Ck
(b(v)l � m(v)

k ) = 0, which indicates that the term

(�) = 0. We therefore have:

(↵) = �
KX

k=1

X

bl2Ck

rX

v=1

H(b(v)l ) +
KX

k=1

X

bl2Ck

rX

v=1

H(m(v)
k )

= �
rX

v=1

X

bl2B
H(b(i)l )

| {z }
(�)

+n
rX

v=1

KX

k=1

pk+H(m(v)
k ),

(S7)

where pk+ = nk+/n. Since the term (�) and n are constants, we have

min
⇡

(↵) , max
⇡

h
�

rX

i=1

KX

k=1

pk+H(m(v)
k )
i
. (S8)

Note that m(v)
k,j =

P
bl2Ck

b(v)l,j /|Ck| = |Ck
T
C(v)
j |/|Ck| = n(v)

kj /nk+, 8 j, which indicates that

m(v)
k =

 
n(v)
ki

nk+
, · · · , n

(v)
kKi

nk+

!
= P (v)

k , 8 k, i. (S9)
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If we substitute m(v)
k by P (v)

k in Eq. S8, and add the constant
Pr

v=1

H(P (v)) to the right-hand-side,

we finally have

KX

k=1

X

bl2Ck

rX

v=1

D(b(v)l km(v)
k ) , max

⇡

rX

v=1

(�
KX

k=1

pk+H(P (v)
k ) +H(P (v)))

, max
⇡

rX

v=1

UH(⇡,⇡(v)),

(S10)

and the theorem thus follows.

Remark 1. Theorem 1 gives a new insight of the objective function. ECC aims to find a partition

that agrees with the basic ones as much as possible and employs UH to measure the similarity of two

partitions. Theorem 1 ensures that we can calculate the distance of two partitions by KL-divergence

to achieve the same goal.

Remark 2. By Theorem 1, we can solve the consensus clustering problem by the classic K-means

clustering, which is the fastest clustering algorithm. Recall that only r elements are non-zero

entries in each row of B, thus the positions for these non-zero elements are needed, rendering

the time complexity O(IKnr), where I is the iteration number. Usually, I,K, r are smaller than

n. Therefore, the time complexity of ECC is roughly linear to the number of instances, which is

suitable for high-throughput molecular data analysis.

B. ECC Algorithm

The pseudo code of our ECC algorithm is shown in Algorithm 1. In essence, ECC is a variant of

K-means, which has the two-phase iteration: instance assignment and centroid update. The only

di↵erence between ECC and K-means is the distance function. In K-means, the squared Euclidian

distance is employed, while we use a summation of several KL-divergence in ECC.

ECC has tremendous merits in terms of e�ciency over the other methods. Fig. S8 shows the

execution time (in logarithmic scale) of three consensus clustering methods (LCE, ASRS and ECC).

The time complexity of ECC is O(InKr), where I is the iteration number, n is the subject number,

K is the class number and r is the number of basic partitions. The space complexity of ECC is

O(nr). For LCE and ASRS, the space complexities are both O(n2) and the time complexities are

O(n2 log n) and O(n3), respectively.
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Algorithm 1 The algorithm of Entropy-based Consensus Clustering
Input: X : data matrix, n⇥m;

K: number of clusters;

r: number of basic partitions.

Output: Partition ⇡;

1: Obtain the set of basic partitions ⇧ by some generation strategy;

2: Build the binary matrix B by Eq.(6-8) in the main paper;

3: Randomly select K instances from B as centroids;

4: repeat

5: Assign each instance to its closest centroid by the distance function in Eq.(9) in the main paper;

6: Update centroids by arithmetic mean;

7: until K centroids remain unchanged.

8: Return the partition ⇡.

C. Convergence of ECC

ECC is solved by the K-means clustering with a modified distance function. The convergence

of ECC is assured by the following theorem [4].

Theorem 2. For the objective function in Theorem 1, ECC is guaranteed to converge in finite

two-phase iterations of K-means clustering .

Proof. The K-means distance function can be generalized as the Bregman divergences[3],

f(x, y) = �(x)� �(y)� (x� y)>r�(y), (S11)

where �(·) is a convex function. By using Bregman divergences, the convergence of K-means is

guaranteed [3].

For the objective function in Theorem 1, we have

�(x) =
rX

v=1

H(x(v)), (S12)

which is the summation of the Shannon Entropy. Since H(·) is a convex function and the sum-

mation preserves the convex property, therefore the distance function in Theorem 1 is a Bregman

divergence, the convergence of ECC can then be guaranteed.

In handling IBPs, the convergence property of ECC still holds.
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II. SYNTHETIC DATASETS

The 110 synthetic gene expression datasets are generated through a well-known dynamical gene

regulation model[1]. To be self-contained, we summarize all the variables used in this section in

Table SII.

A. Dynamical Gene Regulation Model

This model is based on a gene regulatory network represented by a digraph G(V,E). Here V is

the set of nodes (genes) and E is the set of directed edges (gene regulations). Both transcription

and translation are modeled using a standard thermodynamic approach[1]. For each node vi,

i=1,2,...,n, the changing rate of mRNA concentration FmRNA

i and the changing rate of protein

concentration FProt

i are described by a set of coupled ordinary di↵erential equations (ODEs):

FmRNA

i (x,y) =
dxi
dt

= mi · fi(y)� �mRNA

i · xi, (S13a)

FProt

i (x,y) =
dyi
dt

= ri · xi � �Prot

i · yi, (S13b)

where mi is the maximum transcription rate, ri is the translation rate, �mRNA

i and �Prot

i are the

mRNA and protein degradation rates, x 2 Rn and y 2 Rn are vectors of mRNA and protein

concentration levels, respectively. fi(·) is the activation function of gene i , which is between 0

(gene i is turned o↵) and 1(gene i is maximally activated) given the protein concentrations y. The

network topology is encoded in the activation functions. A more detailed definition of fi(·) is as

follows.

We use a standard thermodynamics-based approach to model gene regulation[1]. The basic

assumption is that binding of transcription factors (TFs) to cis-regulatory sites on the DNA is in

quasiequilibrium because it is orders of magnitude faster than transcription and translation. In

the simplest cases, gene i is regulated by a single TF (e.g. TFj), then its promoter has only two

states: either the TFj is bound (state S
1

) or un-bound (state S
0

). The probability P(S
1

) that gene

i is in state S
1

at a certain time instant is given by the fractional saturation:

P (S
1

) =
vj

1 + vj
, (S14)

vj = (
yj
kij

)hij , (S15)

where yj is the concentration of TFj , kij is the dissociation constant, and hij the Hill coe�cient.

The bound TF activates or represses the expression of the gene. In state S
0

, the relative activation
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is ↵
0

; in state S
1

, the relative activation is ↵
1

. Given P(S
1

) and its complement P(S
0

) = 1�P(S
1

),

we can derive the function fi(yj), which computes the mean activation of the gene i as a function

of the TF concentration yj :

fi(yj) = ↵
0

P(S
0

)+ ↵
1

P(S
1

) =
↵
0

+ ↵
1

vj
1 + vj

. (S16)

We can also consider gene i has two regulatory inputs. The resulting expression would be:

fi(yj) =
↵
0

+ ↵
1

vj + ↵
2

vl + ↵
3

⇢vjvl
1 + vj + vl + ⇢vjvl

, vj = (
yj
kij

)hij , vl = (
yl
kil

)hil , (S17)

where ⇢ is the cooperativity factor, and ↵i are the relative activations when none of the TFs (↵
0

),

only the first (↵
1

), only the second (↵
2

) or both TFs are bound (↵
3

).

This approach can be used for an arbitrary number of regulatory inputs. If a gene is regulated by

N TFs, it will have 2N states: each of the TFs can be bound or un-bound. Thus, the function for

N regulators would be:

f(y) =
2

N�1X

t=0

↵tP(St). (S18)

Based on thermodynamics, we can compute the probability P(St) for every state t.

Assume now we have the gene regulatory network G(V,E) and the detailed dynamical model

parameters. The initial values of xi and yi are generated randomly from the interval [0.001, 1].

Then we can compute the time evolution of x and y until the system reaches a steady state.

B. Noise

The integration of the coupled ODEs (Eq.S1a and Eq.S1b) results in noiseless mRNA and

protein concentration levels. However, both molecular and measurement noise in gene expressions

are unavoidable in practice. In living cells, molecular noise originates from thermal fluctuations

and stochastic processes such as transcription and translation. Moreover, measurement noise of

gene expression depends on the experimental technology used to monitor the gene expression level.

1. Molecular Noise

Both FmRNA

i and FProt

i can be written as follows:

dXt

dt
= V (Xt)�D(Xt), (S19)
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where V (Xt) is the production term and D(Xt) is the degradation term of mRNA or protein.

To model molecular noise in the transcription and translation processes, we can use the following

chemical Langevin equation (CLE):

dXt

dt
= V (Xt)�D(Xt) + c

1

(
p

V (Xt)⌘v +
p

D(Xt)⌘d), (S20)

where ⌘v and ⌘d are independent Gaussian white-noise processes, c
1

is a constant to integrate two

equations to control the amplitude of the molecular noise.

To solve the CLE, we can use the Stratonovich scheme and the Milstein method. Stratonovich

Scheme is a technique used in stochastic integral, which is very similar to Ito integral. Suppose we

have a stochastic di↵erentiable equation:

dXt = f(Xt, t)dt+ g(Xt, t)dWt, (S21)

where Xt is the random variable, f is the drift coe�cient, g is the di↵usion coe�cient, and Wt is

the Wiener Process. Integrating both sides yields:

Xt = Xt0 +

Z t

t0

f(Xs, s)ds+

Z t

t0

g(Xs, s) � dWs, (S22)

where � is used here to distinguish Stratonovich from Ito.

We compute the integrals in Eq. S10 using the Milstein method. Milstein method has two

versions, namely a normal one and a derivative-free version. For simplicity, we use derivative-free

Milstein method:

Xn+1

= Xn + fnh+ gn�Wn +
1

2
p
h
[g(Xn)� gn](�Wn)

2, (S23)

where

h = tn+1

� tn, (S24)

Xn = Xn + fnh+ gn
p
h, (S25)

�Wn = [Wt+h �Wt] ⇠
p
hN (0, 1), (S26)

Then we update X until it reaches a steady state.

2. Measurement Noise

The measurement noise depends on the technology used to monitor level of gene expression and

hence is modeled independently of the molecular noise. In this work, we model the measurement
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noise as follows:

X̃t = Xt + c
2

· ⌘!, (S27)

where Xt is computed from Eq.S1, ⌘! represents independent Gaussian white-noise processes, and

c
2

is a constant quantifying the measurement noise level.

C. Synthetic Disease Subtypes

In order to generate synthetic disease subtypes, we first generate a random digraph G to repre-

sent the gene regulatory network. Considering the exponential time complexity of calculating the

activation function, we set the average in-degree k
in

= 2 in the digraph G. Regarding the model

parameters in Eq.S1, we choose mi and ri randomly from the interval [0, 1]. The Hill coe�cient

hij is sampled from a Gaussian distribution N (2, 4) bounded in the interval [1, 10]. An example

of the gene regulatory network of 20 genes is shown in Fig. S1a. The time evolution of mRNA

concentration levels xi(t) without noise, with only molecular noise, and with both molecular and

measurement noise, are shown in Fig. S1b, Fig. S1c, Fig. S1d, respectively. This serves as the

baseline model.

To simulate gene expression data for di↵erent disease subtypes, we assume that di↵erent disease

subtypes are associated with di↵erent sets of genes that are knocked out. For those knock-out genes,

we set their transcription rates mi to be zero. Suppose in total we have N subjects divided into

four groups (G
0

, G
1

, G
2

, G
3

) evenly: subjects in G
0

are generated from the baseline model, while

subjects in G
1

, G
2

and G
3

have di↵erent sets of knock-out genes (see Fig. S2). For each group

(disease subtype), di↵erent subjects are simulated from di↵erent initial conditions of x and y.
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III. REAL-WORLD DATASETS

We analysed 35 benchmark cancer gene expression datasets[2] with label (i.e. cluster structure)

information to fully evaluate the performance of ECC, as well as 13 real cancer gene expression

datasets with survival information available for practical evaluation. Some key characteristics of

these datasets are summarized in Table SIII and Table SIV.

A. Benchmark Gene Expression Datasets

For the 35 benchmark datasets in Table SIII, the numbers of subjects vary from 22 to 248,

the numbers of genes vary from 85 to 4,553 and the numbers of clusters vary from 2 to 14. Some

datasets are from the same source. For example, dataset 2 and 3 (Alizadeh-2000-v2, Alizadeh-

2000-v3 ) share the same gene expression data, but with di↵erent cluster numbers; dataset-4 and 5

(Armstrong-2002-v1, Armstrong-2002-v2 ) have the same subject number, but di↵erent dimensions

of gene expression; dataset-14 (Golub-1999-v2 ) splits one cluster in dataset-15 (Golub-1999-v1 ) into

two; dataset-32 (Tomlins-2006-v2 ) has one more cluster than the dataset-33 (Tomlins-2006-v2 ).

B. Molecular data from TCGA

Furthermore, we also analysed 13 molecular data from 13 major cancer types from The Cancer

Genome Atlas (TGCA, https://tcga-data.nci.nih.gov/tcga/, date: 4/16/2016) project with sur-

vival information available. These cancer types include bladder urothelial carcinoma (BLCA),

breast cancer carcinoma (BRCA), colon adenocarcinoma (COAD), head and neck squamous cell

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), acute myeloid leukemia (LAML),

brain lower grade glioma (LGG), lung adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin cuta-

neous melanoma (SKCM), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma

(UCEC). Each dataset contains 4 di↵erent types of molecular data, including protein expression,

microRNA (miRNA) expression, mRNA expression (RNA-seq V2) and somatic copy number al-

terations (SCNAs). Note that the numbers of subjects varies in di↵erent data types.
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IV. ADDITIONAL NUMERICAL RESULTS

In this section, we provide more numerical results on ECC in terms of synthetic datasets eval-

uation, the number of basic partitions and the basic partition generation strategy.

A. Performance of di↵erent clustering algorithms on synthetic data

Figure S3 and S4 show the performance of di↵erent clustering algorithms on the 110 synthetic

datasets with di↵erent settings. We find that for most datasets ECC achieves better performance

than both traditional and previous ensemble clustering methods. For the four cases when ECC is

not the best, the di↵erence between the best one and ECC is within a small margin.

B. Performance of di↵erent clustering algorithms on benchmark data sets

Table S Vand SVI show the performance of di↵erent clustering algorithms in terms of Rn and

NMI.

C. Impact of the basic partition number

To fully uncover the properties of ECC for practical use, we thoroughly explore some impact

factors of ECC. Fig. S5 shows the performance of ECC as a function of the number r. Generally

speaking, the performance goes up with larger r, and the variance becomes smaller. The number

of basic partitions determines the stability of ECC. We find that r = 100 is large enough for a

robust partition.

D. Comparison of di↵erent basic partition generation strategies

So far we employ Random Parameter Selection (RPS) strategy to generate basic partitions

by K-means with di↵erent cluster numbers. A complementary strategy is the so-called Random

Feature Selection (RFS) strategy. In RFS, we generate a subdata set by randomly selecting certain

percentage of features (e.g. gene expressions), where K-means with a fixed cluster number is

conducted to obtain the basic partitions. Fig. S6 demonstrates the performance of these two

generation strategies. For these four datasets (15, 16, 26 and 28), RFS has better performance

than RPS on all percentages of sampling ratio. For example, the improvements on dataset-15
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(Gordon-2002 ) are over 80% and 40% in terms of Rn and NMI. This indicates that only a

subset of features (genes) reflect the true cluster structure, the rest are irrelevant or noisy. Finding

discriminative features (genes) is a very challenging task, especially in unsupervised scenarios. Here

we employ the simple RFS strategy and fuse these basic partitions to obtain promising results.

Taking the e�ciency into account, 10% sampling ratio is good enough for a satisfactory partition.

Fig. S7 shows the comparison between the results derived from RPS and RFS (with 10% sampling

ratio). We find that indeed RFS is a complementary basic partition generation strategy of RPS.

E. Performance with missing values

We validate the performance of ECC in the presence of missing values, which result in incomplete

basic partitions (IBPs). Given a dataset, we randomly remove certain instances and call K-means

clustering algorithm on the rest instances with the user-defined cluster number. For these removed

instances, the labels are assigned to be 0 in the incomplete basic partitions. We repeat the above

process 100 times to obtain 100 IBPs and employ ECC to get the consensus one. Fig. S9 shows

the performance of ECC with di↵erent missing ratios on 4 datesets. We find that ECC can still

provide high quality and robust consensus partition even with high missing ratio.

V. SURVIVAL ANALYSIS

For real-world molecular data without label information (e.g. the 13 TCGA cancer types an-

alyzed in this work), we can employ survival analyses to evaluate the performance of di↵erent

clustering methods. Survival analysis considers the expected duration of time until one or more

events happen, such as death, disease occurrence, disease recurrence, recovery, or other experience

of interest[5]. The duration of time measures the time from the beginning of an observation period

(such as surgery or beginning treatment) to an event, or end of the study, or loss of contact or

withdrawal from the study. Censoring/Censored observation means that, if a subject does not

have an event during the observation time, they are described as censored. The subject is censored

in the sense that nothing is observed or known about that subject after the time of censoring. A

censored subject may or may not have an event after the end of observation time.
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A. Log-rank test

The log-rank test is a hypothesis test to compare the survival distributions of two or more

groups. The null hypothesis that every group has the same survival function. The expected number

of subjects surviving at each time point in each group is adjusted for the number of subjects at

risk in the groups at each event time. The log-rank test determines if the observed number of

events in each group is significantly di↵erent from the expected number. The formal test is based

on a chi-squared statistic. The log-rank statistic has a chi-squared distribution with one degree

of freedom, and the p-value is calculated using the chi-squared distribution. When the p-value is

smaller than 0.05, it typically indicates that those groups di↵er significantly in survival times.

B. Survival analysis on real-world data

Tables S7-10 display the log-rank p-values for survival analysis of 13 TCGA major cancer types

using di↵erent molecular data type: mRNA expression, microRNA expression, protein expression,

and somatic copy number alterations (SCNAs); and di↵erent clustering methods. The p-values

that are smaller than 0.05 are displayed in bold face. We found that for each single molecular data

type our ECC method yields more significant p-values than other clustering methods. Table S11

displays the log-rank p-values for survival analysis of 13 TCGA major cancer types using pan-omics

data (i.e. integrating mRNA expression, microRNA expression, protein expression, and SCNAs)

and our ECC method. (Note that the competitive clustering methods cannot handle missing values

or incomplete basic partitions, hence we only show the result of ECC on the pan-omics data.) We

find that for each cancer type the p-value is smaller than 0.05, suggesting that by integrating 4

di↵erent molecular data types ECC generated significant subtypes for all the 13 cancer types.
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TABLE SI. Notations for Supplementary Note 1

Symbol Domain Description

n Z the number of subjects

m Z the number of genes

r Z the number of basic partitions

X Rn⇥m the gene expression data matrix

⇡v {1, 2, · · · ,K}n the v-th basic partition

Kv Z the cluster number of ⇡v

⇡ {1, 2, · · · ,K}n the consensus partition

K Z the cluster number of ⇡

B 0, 1n⇥
Pr

v=1 Kv the binary matrix for clustering

mk R
Pr

v=1 Kv the k-th centroid matrix

TABLE SII. Notations for Supplementary Note 2

Symbol Domain Description

n Z the number of genes in the network

FmRNA

i R the changing rate of mRNA concentration

FProt

i R the changing rate of protein concentration

mi [0,1] the maximum transcription rate

ri [0,1] the translation rate

�mRNA

i R mRNA degradation rate

�Prot

i R protein degradation rate

fi(·) [0,1] the activation function of gene i

kij R the dissociation constant

hij [1,10] the Hill coe�cient

↵i R the relative activation in state S
0

⇢ R the cooperativity factor

⌘v, ⌘d, ⌘!i R independent Gaussian white-noise process

c
1

(0,1) molecular noise level

c
2

(0,1) measurement noise level

N Z the number of samples

p Z the number of knock-out genes
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TABLE SV. Performance of di↵erent clustering algorithms on benchmark datasets by Rn

No Dataset AL SL CL KM SC LCE ASRS ECC

1 Alizadeh-2000-v1 0.0047 0.0000 0.0047 0.1856 0.1633 0.4981 0.4306 0.5576

2 Alizadeh-2000-v2 0.8519 -0.0427 0.7483 0.5241 0.5059 0.4100 0.4091 0.4093

3 Alizadeh-2000-v3 0.4387 -0.0129 0.3848 0.3917 0.3892 0.3235 0.4615 0.4464

4 Armstrong-2002-v1 -0.0451 -0.0138 0.4753 0.2356 0.2680 0.2102 0.2384 0.2296

5 Armstrong-2002-v2 0.0009 0.0007 0.4620 0.5690 0.5876 0.7821 0.7747 0.8480

6 Bhattacharjee-2001 0.2606 0.0390 0.4662 0.2173 0.1962 0.2040 0.2441 0.2362

7 Bitter-2000 0.0000 0.0000 -0.0103 -0.0144 -0.0157 0.0179 0.0179 0.0429

8 Bredel-2005 0.0056 0.0056 0.3671 0.3606 0.2933 0.3270 0.5183 0.3766

9 Chen-2002 -0.0031 -0.0031 -0.0065 0.2571 -0.0065 0.5365 -0.006 0.6505

10 Chowdary-2006 0.0091 0.0091 0.0091 0.0657 0.0091 0.5273 0.0657 0.8857

11 Dyrskjot-2003 0.0534 0.0534 0.0534 0.5069 0.5563 0.5779 0.5077 0.6213

12 Garber-2001 -0.0161 -0.0161 0.1023 0.1766 0.1776 0.0722 0.1558 0.1084

13 Golub-1999-v1 0.2313 0.0243 0.5016 0.5646 0.6860 0.6347 0.5905 0.8473

14 Golub-1999-v2 0.1710 0.0138 0.2440 0.5456 0.5758 0.6709 0.8776 0.8127

15 Gordon-2002 -0.0086 -0.0086 -0.0882 -0.0618 -0.0168 -0.0583 -0.0948 -0.0126

16 Khan-2001 -0.0126 -0.0152 0.1848 0.2979 0.5388 0.2951 0.3394 0.4433

17 Laiho-2007 0.0838 0.1355 -0.1028 0.1964 0.1914 0.1914 0.1244 0.1284

18 Lapointe-2004-v1 0.0402 0.0402 0.0402 0.1770 0.1549 0.1037 0.1568 0.1295

19 Lapointe-2004-v2 0.0253 0.0130 0.0375 0.1196 0.0798 0.0968 0.1018 0.1386

20 Liang-2005 0.0497 -0.1529 0.1573 0.1551 0.1775 0.1937 0.1573 0.1573

21 Nutt-2003-v1 0.0008 0.0005 0.1232 0.3246 0.2956 0.2483 0.3562 0.3766

22 Nutt-2003-v2 0.0023 0.0000 0.1082 0.0314 0.0023 0.3055 0.0023 0.4176

23 Nutt-2003-v3 0.1020 0.1020 0.1020 0.6993 0.8153 0.8153 1.0000 0.8153

24 Pomeroy-2002-v1 -0.0645 -0.0366 -0.0459 -0.0513 -0.0459 -0.0459 -0.0459 -0.0468

25 Pomeroy-2002-v2 0.0975 0.1012 0.2549 0.4636 0.5353 0.4571 0.4748 0.4979

26 Ramaswamy-2001 -0.0021 -0.0029 0.0126 0.1241 0.2221 0.1782 0.1348 0.2285

27 Risinger-2003 -0.0272 -0.0108 -0.0640 0.1122 0.1088 0.1000 0.0989 0.1212

28 Shipp-2002 -0.0325 -0.0325 -0.0325 -0.0848 -0.0325 -0.0935 -0.1003 -0.0918

29 Singh-2002 0.0269 0.0008 0.0269 0.0259 0.0330 0.0047 0.0245 0.0044

30 Su-2001 0.1296 0.0337 0.1821 0.3831 0.4959 0.4007 0.4175 0.4532

31 Tomlins-2006-v1 0.0180 0.0122 0.0485 0.1643 0.1747 0.1911 0.1510 0.1305

32 Tomlins-2006-v2 0.0099 0.0099 0.3178 0.2845 0.2339 0.3369 0.4154 0.3726

33 West-2001 0.0001 -0.0016 0.0001 0.2834 0.0001 0.3875 0.3875 0.3875

34 Yeoh-2002-v1 -0.0063 -0.0063 -0.0063 0.3664 0.0846 0.8803 -0.0063 0.9344

35 Yeoh-2002-v2 -0.0011 -0.0011 -0.0011 0.1785 0.1933 0.1277 0.1866 0.2376

Average 0.0684 0.0068 0.1445 0.2507 0.2465 0.3117 0.2734 0.3684
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TABLE SVI. Performance of di↵erent clustering algorithms on benchmark datasets by NMI

No Dataset AL SL CL KM SC LCE ASRS ECC

1 Alizadeh-2000-v1 0.0939 0.0601 0.0939 0.1776 0.1369 0.4167 0.3516 0.4940

2 Alizadeh-2000-v2 0.8119 0.0342 0.6972 0.6454 0.6634 0.5672 0.5877 0.5832

3 Alizadeh-2000-v3 0.6421 0.0960 0.5665 0.5789 0.5930 0.5300 0.6441 0.6340

4 Armstrong-2002-v1 0.0631 0.0263 0.4389 0.3606 0.3793 0.3459 0.3622 0.3571

5 Armstrong-2002-v2 0.1311 0.0780 0.5536 0.6133 0.6243 0.7654 0.7460 0.8154

6 Bhattacharjee-2001 0.4039 0.1014 0.5032 0.4252 0.4504 0.4186 0.4941 0.4585

7 Bitter-2000 0.0640 0.0640 0.0000 0.0127 0.0083 0.0323 0.0323 0.0502

8 Bredel-2005 0.0848 0.0848 0.3685 0.3809 0.2916 0.3688 0.4769 0.3712

9 Chen-2002 0.0199 0.0199 0.0008 0.2058 0.0008 0.4980 0.0010 0.6273

10 Chowdary-2006 0.0459 0.0459 0.0459 0.1424 0.0459 0.4739 0.1424 0.8098

11 Dyrskjot-2003 0.1613 0.1613 0.1613 0.5124 0.5082 0.5743 0.5158 0.5584

12 Garber-2001 0.0734 0.0734 0.0999 0.1801 0.1689 0.1647 0.1294 0.2025

13 Golub-1999-v1 0.2764 0.0684 0.4837 0.5358 0.5809 0.6085 0.5536 0.8149

14 Golub-1999-v2 0.2868 0.0803 0.3496 0.5762 0.5429 0.6870 0.8453 0.7737

15 Gordon-2002 0.0083 0.0083 0.1168 0.1385 0.1684 0.1411 0.1099 0.1479

16 Khan-2001 0.0966 0.0941 0.4857 0.5149 0.6718 0.5109 0.5644 0.6221

17 Laiho-2007 0.0340 0.1680 0.0664 0.1479 0.1959 0.1959 0.0749 0.0768

18 Lapointe-2004-v1 0.0466 0.0466 0.0466 0.1956 0.1269 0.1101 0.1826 0.1281

19 Lapointe-2004-v2 0.0513 0.0406 0.0419 0.1620 0.1173 0.1357 0.1379 0.1652

20 Liang-2005 0.3002 0.1181 0.3545 0.3811 0.3597 0.3772 0.3545 0.3545

21 Nutt-2003-v1 0.1293 0.1296 0.2900 0.4742 0.4233 0.3844 0.5083 0.4994

22 Nutt-2003-v2 0.0406 0.0778 0.2513 0.0589 0.0406 0.3988 0.0406 0.4021

23 Nutt-2003-v3 0.1600 0.1600 0.1600 0.6545 0.7523 0.7523 1.0000 0.7523

24 Pomeroy-2002-v1 0.0521 0.0332 0.0079 0.0453 0.0079 0.0079 0.0079 0.0092

25 Pomeroy-2002-v2 0.4150 0.4177 0.5396 0.5935 0.6401 0.6032 0.5937 0.6171

26 Ramaswamy-2001 0.2176 0.1608 0.3376 0.5203 0.5172 0.5126 0.5560 0.5277

27 Risinger-2003 0.1349 0.1203 0.1877 0.2867 0.2744 0.2784 0.2709 0.2911

28 Shipp-2002 0.0288 0.0288 0.0288 0.0747 0.0288 0.1235 0.1124 0.1280

29 Singh-2002 0.0675 0.0360 0.0675 0.0475 0.0562 0.0101 0.0342 0.0100

30 Su-2001 0.4919 0.2874 0.5088 0.6018 0.6614 0.6122 0.6422 0.6276

31 Tomlins-2006-v1 0.1281 0.1058 0.1574 0.2849 0.2533 0.3257 0.3065 0.2558

32 Tomlins-2006-v2 0.1158 0.1158 0.4676 0.4653 0.3586 0.5050 0.5815 0.5266

33 West-2001 0.0823 0.0530 0.0823 0.2603 0.0823 0.3125 0.3125 0.3125

34 Yeoh-2002-v1 0.0070 0.0070 0.0070 0.3342 0.0366 0.7968 0.0070 0.8564

35 Yeoh-2002-v2 0.0691 0.0691 0.0691 0.3760 0.3309 0.2768 0.4175 0.3815

Average 0.1667 0.0935 0.2468 0.3419 0.3171 0.3949 0.3628 0.4355
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TABLE SVII. Survival analysis of di↵erent clustering algorithms on protein expression data.

Dataset #cluster AL SL CL KM SC LCE ASRS ECC

BLCA 4 0.8400 0.6230 0.3210 0.0241 0.0005 0.0881 0.1030 0.0212

BRCA 4 0.2660 0.0008 0.0988 0.0997 0.1130 0.3060 0.1460 0.0313

COAD 4 0.8750 0.9530 0.8430 0.0157 0.0738 1.20E-8 4.82E-5 3.32E-9

HNSC 4 0.7540 0.0050 0.5520 0.7340 0.5110 0.9840 0.5960 0.1820

KIRC 4 0.7640 0.9140 0.2460 0.4120 0.6560 0.1680 0.7590 0.0313

LGG 3 0.0182 0.0305 0.0002 0.0563 0.0198 0.0094 0.1780 0.0016

LUAD 3 0.3730 0.8350 0.3220 0.4790 0.3990 0.0293 0.5070 0.0245

LUSC 4 0.9050 0.9290 0.9340 0.6670 0.6050 0.6550 0.5420 0.1980

OV 4 0.8090 0.5450 0.1900 0.0275 0.0446 0.0485 0.0327 0.0021

PRAD 7 1.19E-6 9.78E-7 3.16E-6 0.0011 0.0918 0.8140 0.0124 0.0020

SCKM 4 0.0848 0.2860 0.0100 0.0929 0.0411 0.0381 0.0059 0.0035

THCA 5 0.2380 0.0255 0.3470 0.1910 0.1480 0.0799 0.1370 0.0138

UCEC 4 0.4530 3.00E-8 0.9860 0.9860 0.4550 0.8450 0.3700 0.1310

#Significance 2 6 3 4 3 5 4 10

Note: the values in the table represent the p-value of log-rank test.

TABLE SVIII. Survival analysis of di↵erent clustering algorithms on miRNA expression data.

Dataset #cluster AL SL CL KM SC LCE ASRS ECC

BLCA 4 0.2780 0.5880 0.5940 0.0616 0.5620 0.3410 0.2400 0.0124

BRCA 4 0.3110 0.6350 0.5410 1.53E-5 0.0717 3.97E-6 1.12E-7 6.37E-8

COAD 4 0.3290 0.6430 0.2070 0.2290 0.1960 8.88E-4 0.0246 5.91E-4

HNSC 4 0.8900 0.8820 0.7650 0.5760 0.6770 0.0605 4.45E-5 0.0090

KIRC 4 0.7970 0.6420 0.0692 0.2180 0.0093 0.0180 0.1090 0.0223

LGG 3 0.8820 0.9640 0.8940 0.9850 0.9000 0.7450 0.0640 0.0751

LUAD 3 0.8350 0.1200 0.7410 0.2870 0.3580 0.0038 0.8260 0.0028

LUSC 4 0.1060 0.3450 0.0565 0.0152 0.0394 0.1310 0.3120 0.0442

OV 4 0.5540 0.0007 0.2410 0.6290 0.4190 0.2340 0.2340 0.0375

PRAD 7 0.4570 0.4250 0.6500 0.3330 0.3200 0.8720 0.6270 0.1840

SCKM 4 0.0619 0.6870 0.4920 0.6390 0.6940 0.0663 0.0575 0.0076

THCA 5 0.4660 0.0064 0.0053 0.0892 0.1100 0.0119 0.0157 3.75E-4

UCEC 4 0.5280 0.4570 0.6290 0.6870 0.6080 0.5530 0.3520 0.2680

#Significance 0 2 1 2 2 5 4 10

Note: the values in the table represent the p-value of log-rank test.
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TABLE SIX. Survival analysis of di↵erent clustering algorithms on mRNA expression data.

Dataset #cluster AL SL CL KM SC LCE ASRS ECC

BLCA 4 1.06E-7 8.88E-8 1.06E-7 0.0258 0.6860 0.1280 0.0938 0.0187

BRCA 4 5.35E-3 0.1740 0.0401 0.1760 0.0840 0.5980 0.0155 0.0011

COAD 4 0.8930 0.8960 0.8720 0.0163 0.0296 0.0048 0.0743 0.0008

HNSC 4 0.2950 8.53E-5 0.1350 0.7470 0.5440 0.6290 0.1440 0.1160

KIRC 4 0.0025 0.0012 0.0036 0.0612 0.1450 0.2420 0.1550 0.0314

LGG 3 0.0156 0.0156 0.0155 0.1270 0.1230 0.2650 0.0023 0.0039

LUAD 3 0.0109 0.8290 0.3190 0.0429 0.0034 0.0189 0.0157 0.0028

LUSC 4 0.0990 0.2100 0.0241 0.0355 0.4740 0.0769 0.1360 0.0258

OV 4 0.2210 4.92E-10 0.1700 0.6360 0.3780 0.8720 0.7660 0.2210

PRAD 7 4.29E-9 4.49E-9 5.88E-9 7.29E-11 4.10E-9 0.0070 6.75E-13 8.59E-6

SCKM 4 0.0012 0.0012 0.0015 0.5230 0.0006 0.1350 5.91E-10 3.94E-6

THCA 5 0.0147 0.5650 0.0713 0.0244 0.0561 0.2380 0.0710 0.0024

UCEC 4 0.5790 0.0594 0.1930 0.1850 0.2460 0.3670 0.4890 0.1240

#Significance 8 7 7 6 4 3 5 10

Note: the values in the table represent the p-value of log-rank test.

TABLE SX. Survival analysis of di↵erent clustering algorithms on SCNA data.

Dataset #cluster AL SL CL KM SC LCE ASRS ECC

BLCA 4 0.3710 0.3710 0.3810 0.6340 0.3580 0.4340 0.3800 0.1910

BRCA 4 0.6540 0.6540 0.1160 0.0090 0.4790 0.0798 0.3520 0.0375

COAD 4 0.9320 0.9320 0.9010 0.1600 0.7920 0.7670 0.4660 0.2340

HNSC 4 0.0003 0.0003 0.0380 0.5280 0.5730 0.8280 0.7710 0.3800

KIRC 4 0.6580 0.7510 0.0929 0.4390 0.1060 0.2690 0.3710 0.1730

LGG 3 0.8800 0.9950 0.6430 0.5710 0.6130 0.8750 0.9740 0.4130

LUAD 3 0.5420 0.5420 0.5880 0.0763 0.2390 0.0121 0.0080 0.0067

LUSC 4 0.8900 0.8190 0.3870 0.3560 0.3810 0.1710 0.5540 0.0425

OV 4 0.7500 0.7500 0.1270 0.1710 0.0904 0.1730 0.1380 0.0359

PRAD 7 0.8410 2.40E-7 0.5060 0.2640 0.0008 0.0160 0.0046 0.0007

SCKM 4 0.8730 0.8140 0.6790 0.5660 0.1970 0.2210 0.2040 0.0491

THCA 5 0.1530 0.5180 0.1440 0.2670 0.1960 0.1360 0.5440 0.1080

UCEC 4 0.1100 0.1100 0.2310 0.0484 0.0673 0.4860 0.3450 0.1260

#Significance 1 2 1 2 1 2 2 6

Note: the values in the table represent the p-value of log-rank test.
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TABLE SXI. Survival analysis of ECC on pan-omics data.

Dataset #cluster ECC Dataset #cluster ECC Dataset #cluster ECC

BLCA 4 0.0027 BRCA 4 0.0131 COAD 4 8.69E-6

HNSC 4 0.0323 KIRC 4 0.0010 LGG 3 0.0119

LUAD 3 2.87E-5 LUSC 4 0.0393 OV 4 0.0008

PRAD 7 0.0006 SCKM 4 0.0131 THCA 5 0.0035

UCEC 4 0.0043

Note: the values in the table represent the p-value of log-rank test.
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a b

dc

Figure S1. The random regulatory network of 20 genes and the time evolutions of mRNA concentration

level. a represents the gene regulatory network of 20 genes, which is generated randomly with the mean

in-degree of 2. b depicts the time evolution of mRNA concentration level without noise. The initial states

are randomly generated. Each curve represents the time evolution of mRNA concentration level of a certain

gene node. c depicts the time evolution of mRNA concentration level with molecular noise level = 0.01.

d depicts the time evolution of mRNA concentration level with molecular noise level = 0.01, measurement

noise level = 0.012. Each line represents the time evolution of mRNA concentration level of a gene node. It

is easy to find that the time evolution curve without noise is smooth, while the time evolution with noise as

a stochastic process is rough.
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a b

c d

Figure S2. Normal gene regulatory network and three subtypes. a illustrates the normal gene regulatory

network of 20 genes. b illustrates subtype 1 with two randomly knock-out genes. c illustrates subtype 2

with two randomly knock-out genes. d illustrates subtype 3 with two randomly knock-out genes.
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Figure S3. Performance of di↵erent clustering algorithms on the 55 synthetic datasets (based on an Erdös-

Rėnyi random gene regulatory network of 500 genes). ECC has substantial advantages over other methods

on the datasets marked by blue pentagram lines.
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Figure S4. Performance of di↵erent clustering algorithms on the 55 synthetic datasets (based on a real human

transcriptional regulation network of 2723 genes). ECC has substantial advantages over other methods on

the datasets marked by blue pentagram lines.
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Figure S5. Impact of di↵erent numbers of basic partitions on ECC. The x-axis denotes the number of basic

partitions. For each scenario, ECC runs 100 times for the boxplot. As the increase of basic partitions, the

performance goes up and the variance becomes narrower and narrower.
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Figure S6. Random feature selection (RFS) strategies with di↵erent sampling ratios on ECC. On these four

datasets, the performance of RFS exceeds those of RPS with all sampling ratios, which indicates that RFS

can help to avoid noisy and irrelevant genes. Although it is di�cult to select discriminative genes for cluster

analysis, ECC can fuse the partial knowledge from RFS to achieve promising results.
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Figure S7. Comparison of di↵erent basic partition generation strategies on ECC. In RPS strategy, we apply

K-means with the cluster number varying from 2 to
p
n. In RFS strategy, we apply K-means to 10%

sampling ratio of the genes. RPS is suitable for the datasets which contain some potential sub-clusters,

while RFS is suitable for the datasets containing noisy and irrelevant genes.
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Figure S8. Execution time of three di↵erent consensus clustering methods. a shows the logarithm of the

execution time in terms of the number of subjects and b shows the the logarithm of the execution time in

terms of the cluster number. From these figures, ECC shows dramatically merits over two other consensus

clustering methods (LCE and ASRS) in terms of e�ciency. From the scope of these scatter plots, we can

see that the time complexity of ECC is linear the number of subjects and the cluster number, while LCE

and ASRS su↵er from O(n2 log n) and O(n3), respectively. This indicates ECC is suitable for large-scale

gene expression data analysis.
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Figure S9. Performance of ECC with di↵erent missing ratios on 4 datesets. To generate incomplete basic

partitions, we randomly remove some instances and employ K-means to assign the rest instances from 1 to

K, where K is the user-defined cluster number. For these unsampled instances, the labels are assigned to be

0. The above process are repeated r = 100 times and we employ ECC to fuse these IBPs into a consensus

one.
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