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Abstract: When a cell encounters a new environment, its transcriptional response can be 
constrained by its history. For example, yeast cells in galactose induce GAL genes with a speed 
and unanimity that depends on previous nutrient conditions. To investigate how cell-level gene 
expression dynamics produce population-level phenotypes, we built living vector fields from 
thousands of single-cell timecourses of the inducers Gal3p and Gal1p as cells switched to 
galactose from various nutrient histories. We show that, after sustained glucose exposure, the 
lack of GAL inducers leads to induction delays that are long but also variable; that cellular 
resources constrain induction; and that bimodally distributed expression levels arise from lineage 
selection - a subpopulation of cells induces more quickly and outcompetes the rest. Our results 
illuminate cellular memory in this important model system and illustrate how resources and 
randomness interact to shape the response of a population to a new environment.  

 
One Sentence Summary: Single-cell galactose induction timecourses reveal that cellular 
resources and stochastic events determine which yeast cells outcompete their peers. 
Main Text:  

Budding yeast cells (Saccharomyces cerevisiae) can metabolize galactose by inducing a 
network of regulatory and metabolic genes, collectively known as the GAL genes (Fig. S1). 
When activated, the inducer Gal3p blocks the repressor Gal80p from inhibiting the action of the 
transcription factor Gal4p. Gal4p, in turn, promotes the transcription of the GAL genes, 
including the regulatory genes GAL3, GAL1, and GAL80, the membrane-bound galactose 
importer gene GAL2, and the enzymes GAL1, GAL7, and GAL10 (1–5). The network's 
interlocking positive and negative regulatory feedback loops control induction in the presence of 
galactose (5–7). Abundant glucose represses GAL network activation (8–10). 

The GAL network has been an important model system for metabolism, gene regulation, 
and now quantitative biology for most of a century, and the behavior of this network in various 
carbon sources at steady state is well understood (5, 11). However, induction timecourses have 
revealed that the transient induction dynamics of the GAL network depend on cellular memory 
of previous nutrient environments (12). Cells previously grown in non-inducing/non-repressing 
media like raffinose or glycerol induce quickly and fairly uniformly (5, 13) (Fig. S2). The same 
is true for reinducing cultures: cells that have undergone prior galactose induction followed by 
short-term, 12-hour, glucose repression (14) before being switched back to pure galactose (Fig. 
1; Fig. S2; Movie S1). By contrast, cell populations that have experienced long-term glucose 
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repression (LTGR) induce the GAL genes after a long lag, producing a transiently bimodal 
distribution that, in population-level experiments, gradually resolves into an entirely induced 
population over the course of many hours (Fig. S2) (14, 15). The inducer/enzyme Gal1p is 
required for the reinduction phenotype (14), but the mechanisms and population biology behind 
the other memory phenotypes – particularly the transient bimodality after LTGR – are unknown, 
in part because research on GAL memory has largely been based on population-level 
measurements or snapshots of a population at a few times. As we show, such population-level 
measurements conflate the effects of growth and induction and mask the potential for 
competition between cell lineages to reshape the composition of the cell population (16).  

To visualize the transient dynamics after the different media histories, we represent them 
as flows across a vector field on the state space of the two inducers, Gal1p and Gal3p (Fig. 2). 
Vector fields are standard modeling tools for analyzing dynamical systems. Here, we translated 
this tool into a biological reality, generating  living vector fields to summarize our measurements 
of thousands of individual cells tracked over time (Fig. 1a) and giving us a comprehensive view 
of their induction dynamics. In these vector fields, each vector illustrates how Gal1p and Gal3p 
concentrations change over a given time interval. The root of a vector represents the protein 
concentrations at time Ti, the direction points towards the concentrations at time Ti+1, and the 
length is proportional to its speed. To measure Gal3p and Gal1p levels, we fused 2x-yECitrine to 
Gal3p and yECerulean to Gal1p (Fig. S3) and used a microfluidic device (17) to measure GAL 
network induction at 20-minute intervals (Fig. S4) as we switched cells with fluorescently 
labeled Gal1p and Gal3p proteins to 2% galactose from each of three conditions:  glycerol-
history, reinduction, and LTGR (Figs. S5-9; Materials and Methods). 

The inducers Gal1p and Gal3p are not the only regulators of the GAL network, but they 
are among the most important. Gal3p has long been recognized as critical to induction speed 
(gal3 mutants take days to induce the network instead of hours) (18–21), and Gal1p is 
responsible for fast, unimodal induction upon reinduction (14). The two inducers are linked by 
positive feedback loops (Fig. S1). In such a system, a cell beginning with low concentrations of 
the proteins would increase those proteins slowly, because neither inducer is abundant enough to 
ramp up GAL induction quickly. A cell with a moderate concentration of either protein will 
increase GAL expression quickly, because the positive feedback enables either inducer to 
accelerate the induction process for both. Finally, a cell approaching the equilibrium point where 
protein synthesis balances decay will begin to plateau and change protein concentrations slowly. 

The vector field unifies the three memory phenotypes into one consistent picture of cell 
behavior. At steady state, glycerol cultures express detectable Gal3p but no Gal1p, and glucose 
cultures express neither (5). After 12 hours of glucose repression, reinduction cultures contain 
evident Gal1p (14) but little Gal3p (this study). The vector field representation illustrates how 
these three different initial inducer levels determine induction lag and population variability. 
Thus, each of the three history media places the cells different initial points in this state space 
(Figs. 2e-f). The appreciable presence of either inducer - Gal3p or Gal1p - is sufficient to drive 
the expression of the entire positive feedback loop, enabling these cells to ramp up induction 
quickly (Figs. 1a,b). However, cells that have been subjected to LTGR enter the galactose 
environment with no inducers to get the feedback loop going. They must wait for molecules of 
Gal3p to be produced so the feedback loop can begin to bootstrap the induction process. We 
suggest that this bootstrapping is the source of the long lag that has been observed following 
LTGR.  
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Single cell dynamics on the vector field could also explain the differences in population-
level induction patterns (i.e. unimodal vs. transiently bimodal) among the three history 
conditions (14, 15)(Fig. 1a; Fig. S2). When only a few molecules of a protein are present in a 
cell, stochastic effects can dominate the molecular interactions involving that protein (22). 
LTGR-history cells are the only cases among our conditions where initial inducer concentrations 
are low enough that we might expect stochastic induction behavior. We hypothesize that when 
cells are switched to galactose after LTGR, they must wait for rare, stochastic molecular 
interactions to activate the positive feedback loops. As a result, individual cells would wait 
widely varying times before starting induction. This would produce a slow, sticky region of the 
Gal1p/Gal3p state space where the concentrations of both proteins would be near zero and from 
which cells would slowly escape one by one while they bootstrap themselves into GAL network 
expression. When extrapolated to the population level, this dynamic would manifest as the slow, 
transiently bimodal induction pattern characteristic of LTGR where an initial distribution of 
uninduced cells shifts to one that is completely induced. In contrast, in reinduction and glycerol-
history conditions, cells start with appreciable levels of at least one inducer, placing them outside 
the putative sticky region. The dynamics in this fast deterministic regime would result in a 
unimodal induction pattern at the population level. 

Population measurements (14, 15) cannot determine why the uninduced peak shrinks 
during the transiently bimodal period following LTGR. Does the uninduced fraction decrease 
because most of the cells in it activate the GAL network, thus switching to the induced fraction? 
Or does the fraction of uninduced cells shrink because a subpopulation of cells in it induces and 
starts to divide and demographically replace the rest? Our single-cell timecourses clearly 
illustrate the latter process: the fully-induced population is composed principally of the 
descendants of the earliest-inducing cells (Figs. 1a, 3a; Movies S1-2).  

The bootstrapping hypothesis makes a number of qualitative predictions for induction 
behavior. It suggests that cells starting in the region near (0%,0%) will have long and variable 
lag times and that the variability in lag times explains the bimodality of LTGR-history induction: 
as individual cells escape from this sticky region, they leave the uninduced population to join the 
inducing subpopulation. It also predicts that once cells leave the sticky region and accumulate 
appreciable levels of inducer, their induction trajectories will match those of cells in reinduction 
and glycerol-history conditions. We tested these predictions using the empirical vector fields 
derived from our microfluidics experiments. 

The results of our microfluidics experiments fulfilled the predictions of the bootstrapping 
hypothesis (Fig. 1a). Lag times after LTGR were much longer and more variable than after the 
other two history conditions (Fig. 1b; Table S1), and many cells failed to induce. As a result of 
the long and variable lag, a small minority of cells induced, grew, and dominated the population, 
while others remained quiescent or died, producing the transiently bimodal induction distribution 
that others (14) have seen but not explained.  

The small region around (0%, 0%) was populated almost exclusively by LTGR cells, and 
their initial trajectories differed markedly from those in other conditions (Fig. 2e-f). Once 
induction was underway, the dynamics were similar in all three histories (Fig. 2d; Fig. S11), 
which allowed us to map where the cells lose their memory of previous nutrient conditions (Fig. 
2d). Cells moved in a consistent direction in the Gal3p/Gal1p state space and transitioned rapidly 
from low Gal3p to plateau levels of Gal3p (Figs. 1a, 2). Their trajectories slowed as they 
approached plateau levels of Gal3p, and the flow on the vector field curved towards the fixed 
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point (100%, 100%). The trajectories of Fig 1a show variation in expression levels for both 
proteins after most of the population has induced. In all three conditions, most of this variation 
can be explained by intercell differences in average expression level, as opposed to fluctuation in 
a cell’s measured expression over time (glycerol: 80.3%, 81.4% (Gal3p, Gal1p); reinduction: 
86.2%, 87.4%; glucose: 80.1%, 84.5%; Materials and Methods). This suggests that while the 
trajectories of inducing cells are generally similar, their final expression plateaus are cell-specific 
and influenced by other variables. 

Although the results from the microfluidics experiments support the bootstrapping 
hypothesis, it is possible that other factors could also contribute to lag time between history 
conditions. For example, glucose represses the expression of a large proportion of the yeast 
genome including the GAL genes and is known to suppress GAL expression via several different 
mechanisms (8, 10, 23–26). If glucose repression or its aftereffects linger in LTGR-history cells, 
this could cause the long lag we observe under those conditions.  

Alternatively, resource constraints could contribute to induction delays. Gal1p is one of 
the most highly induced genes in yeast – it is upregulated 1000-fold – which makes the GAL1 
promoter a useful tool for genetic engineering but also means that GAL network induction 
demands a large investment of resources (27, 28). Polymerases, ribosomes and carbon building 
blocks may need to be diverted from other genes, and a cell must have sufficient energy to build 
these proteins. Although cell populations with more energy reserves adapt as a whole more 
quickly to galactose (29, 30), cells do not use this battery power to propagate. Instead, when cells 
are switched from long-term glucose to galactose, every cell in the population abruptly stops 
growing or dividing and remains in stasis for hours (Fig. 3b; Movie S2). Although they are 
drowning in galactose, they have no GAL proteins and are unable to use it. Fueling initial GAL 
induction via stored energy/carbon reserves alone may be a formidable effort that only a few 
cells are able to muster (Fig. 3a). Only the cells that eventually begin GAL induction ever 
resume growth in our observations (Movie S1), and they rapidly outcompete the rest of the still-
starving population, dooming them to demographic oblivion. The stately population-level picture 
of a bimodal population resolving into a unimodal, fully-induced one is, in fact, a process of 
lineage selection: some cells never manage to induce before they die, and others only do so too 
late. By contrast, the cultures that start with enough Gal3p or Gal1p to begin GAL induction 
quickly, and thus use galactose to fuel further GAL induction, have only a brief pause before 
growth resumes in the new medium (Fig. 3b), and the fully induced population preserves many 
of the original cell lineages (Fig. 1a; Movies S1-2). 

If our resource-constraint hypothesis is correct, then adding a small amount of glucose to 
the galactose media should give cells a boost – extra resources to build their first GAL proteins 
(29). On the other hand, if lingering glucose repression were a cause of the induction delay, then 
glucose in the induction medium should prolong it. We found that adding glucose speeds up 
GAL network induction (Fig 4, Fig. S10): in both mixed-sugar conditions, half the inducing cells 
reach 10% of their plateau Gal3p expression levels within 2.1 hours (Fig. 4b), while LTGR cells 
take 6.4 hours to reach the same point (Fig. 1b). These results rule out lingering glucose 
repression as an explanation for the long lag times we observe after LTGR for times beyond 2.1 
hours. They also point to energy or other resources as important limiting factors for the 
successful transition to metabolizing galactose. While the bootstrapping process imposes a lag on 
GAL activation when cells have no initial inducers, this process speeds up if cells can draw upon 
energy and carbon from the induction media (Fig. 4b). Without usable external energy, cells 
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must fuel induction using only stored energy reserves and balance this against the need to live off 
these reserves in the meantime. Once GAL network induction is underway, galactose-derived 
resources become available to help fuel further induction (Fig. S12). Having other sources of 
energy available also gives cells the option whether the induce the GAL network at all (31).  

Resource constraints alone, however, cannot explain the length and variabilty of the delay 
following LTGR. If they could, then the timing and variabilty of GAL network induction after 
long-term and short-term (reinduction) glucose repression should be the same. Or, if short-term 
exposure to rich glucose medium is not enough time to build up reserves, reinducing cells should 
take even longer to induce and lag length should be even more variable. In fact, induction after 
LTGR takes nearly three times longer than reinduction and is twice as variable (Fig. 1b; Table 
S1), so bootstrapping from initially absent inducers must play a role in lag times and variability. 
Conversely, if resource constraints played no role, then giving the cells extra resources during 
that critical period would have no effect. Instead, induction was faster when we supplemented 
cells with glucose. Therefore both bootstrapping and resource constraints affect the lag. 

Although the process of bootstrapping after LTGR may be stochastic – because of the 
small numbers of molecules involved – it is entirely possible that which cells are successful, or 
perhaps the pool of cells that are able to induce at all, is influenced by aspects of cell state that 
we did not measure. When induction is easy and fast because of initially present inducers, there 
is no starvation period, and almost any cell can mount the effort required for induction. When 
induction is slow and requires surviving starvation, fewer cells have the energy or carbon 
reserves to last until they can bootstrap themselves to the induction level where they can eat 
galactose. Resource levels may also speed the bootstrapping process: when we supplemented 
cells with glucose after LTGR (Fig. 4), they induced more quickly.  

When suddenly switched to galactose, yeast cells pay the cost of not being prepared. 
Activating the GAL network from a repressed state with no initial inducers requires resources 
that most cells do not muster and depends on chance molecular interactions that most cells do not 
experience. The minority of cell lineages that overcome these barriers take over the population, 
The living vector fields synthesize results from five different nutrient conditions to reveal that 
GAL induction behavior depends on whether cells need to bootstrap the positive feedback loops 
in the network from initially absent inducers and that the bootstrapping process is constrained by 
cellular resources.  
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Fig. 1. Cells induce quickly and uniformly after glycerol (yellow) and reinduction (pink), but 
variably after a long lag after long-term glucose repression (blue) producing a bimodal 
population distribution. (A) Single cell timecourses for each of the three history conditions for 
Gal3p-yECitrine and Gal1p-yECerulean. Expression levels have been normalized to an estimated 
100% plateau level (see Methods). Each thin line corresponds to a single cell tracked over time, 
and each plot depicts trajectories from thousands of cells. Datapoints are spaced every 20 
minutes and photobleaching is minimal (Fig S4). Absolute Gal1p-yECerulean fluorescence 
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levels are approximately 10x higher than Gal3p-yECitrine, reflecting the massive induction of 
Gal1p. Fluorophore maturation time is expected to be on the order of 30 minutes. The y-axis 
represents percent of plateau-level gene expression (see Materials and Methods). 0% represents 
the median of the control (i.e. no fluorescent proteins) cell fluorescence levels for a given frame. 
(B) Empirical cumulative distributions for each history condition for Gal3p and Gal1p. Only 
cells that started with expression levels below 10% and induced to at least 75% of the plateau 
level are included (in the glucose condition in particular, most cells fail to induce). 
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Fig. 2. Empirical vector fields depicting the flow through the Gal3p/Gal1p state space for the 
three history conditions. (A-C) Vector fields for glycerol, reinduction, and long-term glucose 
repression conditions. Colored lines are traced of individual cells through the Gal3p/Gal1p state 
space. Arrows represent the vector field. The state space is binned in steps of 6% in each 
direction, and an arrow summarizes the movement of cells in its bin from one timepoint to the 
next. The length of the arrow is half the mean veolcity of cells, and the shade represents the 
circular variance (32) with black indicating consistency in the direction of displacement and 
white indicating inconsistency. The vector fields flow towards (100%,100%). (D) Consistency of 
the vector directions during induction in the three experiments. The color indicates the esimated 
circular standard deviation of the mean vector directions for each of the three experiments (see 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/073817doi: bioRxiv preprint 

https://doi.org/10.1101/073817
http://creativecommons.org/licenses/by-nd/4.0/


Methods). The inset shows the region at the corner near (0%,0%). Once cells leave this corner, 
the statistic drops to near zero indicating that cells are moving in a consistent direction regardless 
of experimental condition – they have lost their memories. (E) Cell trajectories near the (0%,0%) 
corner. Circles indicate the mean fluorescence values for each experiment at the time galactose 
was added. (F) The vector field near the (0%,0%) corner. Circles are as in (E).  
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Fig. 3. The switch to galactose imposes a heavy cost after long-term glucose repression. (A) An 
estimate of cell viability after the switch to galactose. Cells were classified as alive or dead 
(Materials and Methods; Fig. S8). Dying cells were classified as alive, so these curves represent 
upper bounds for the fraction of viable cells in the populations. (B) Average cell movement in 
microns per minute for cells in a field of view as estimated measuring physical displacements of 
individually tracked cells in bright field images taken every 2 minutes. Average cell movement is 
a surrogate for the amount of cell division since cells in the microfluidic device are confluent and 
push each other when they divide. After long-term glucose repression, the switch to galactose is 
accompanied by a 6 hour long pause in cell movement as cells bootstrap themselves into GAL 
network induction followed by a subsequent slow 7 hour recovery as the first cells to induce and 
their progeny take over the population (Movie S2). 
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Fig. 4. Adding a small amount of glucose speeds GAL network induction. (A) Single cell 
timecourses when cells are moved from long-term glucose repression to a mix of 0.15% glucose 
/  2% galatcose (green) or 0.3% glucose / 2% galatcose (grey). For both Gal3p and Gal1p, cells 
initially overshoot their long-term plateau levels. (B) Empirical cumulative distributions as in 
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Fig. 1b. Additional glucose shortens the time until induction, but there is still appreciable 
between-cell variation with 0.15% glucose. (C) Vector fields as in Fig. 2a-c. The vector fields 
noticeably overshoot then curve back around towards (100%,100%). The flows on the 
Gal3p/Gal1p state space are similar in these mixes and otherwise similar to the conditions in Fig. 
2. 
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