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X chromosome inactivation (XCI) silences the transcription from one of the two X chromosomes 
in mammalian female cells to balance expression dosage between XX females and XY males. 
XCI is, however, characteristically incomplete in humans: up to one third of X-chromosomal 
genes are expressed from both the active and inactive X chromosomes (Xa and Xi, 
respectively) in female cells, with the degree of “escape” from inactivation varying between 
genes and individuals1,2 (Fig. 1). However, the extent to which XCI is shared between cells and 
tissues remains poorly characterized3,4, as does the degree to which incomplete XCI manifests 
as detectable sex differences in gene expression5 and phenotypic traits6. Here we report a 
systematic survey of XCI using a combination of over 5,500 transcriptomes from 449 individuals 
spanning 29 tissues, and 940 single-cell transcriptomes, integrated with genomic sequence data 
(Fig. 1). By combining information across these data types we show that XCI at the 683 X-
chromosomal genes assessed is generally uniform across human tissues, but identify examples 
of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at 
least 23% of X-chromosomal genes, identify seven new escape genes supported by multiple 
lines of evidence, and demonstrate that escape from XCI results in sex biases in gene 
expression, thus establishing incomplete XCI as a likely mechanism introducing phenotypic 
diversity6,7. Overall, this updated catalogue of XCI across human tissues informs our 
understanding of the extent and impact of the incompleteness in the maintenance of XCI. 
 
XCI is an inherently random process, meaning that female tissues consist of two mixed cell 
populations, each with either the maternally or paternally inherited X chromosome marked for 
inactivation (Fig. 1). As such, assessments of XCI have often been confined to the use of 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/073957doi: bioRxiv preprint 

https://doi.org/10.1101/073957
http://creativecommons.org/licenses/by/4.0/


artificial cell systems1, or samples presenting with skewed XCI1,2, i.e. preferential inactivation of
one of the two X chromosomes, which is common in clonal cell lines but rare in karyotypically
normal, primary human tissues8 (Supplementary Note and Extended Data Fig. 1). Others have
used bias in DNA methylation3,4,9 or in gene expression5,10 between males and females as a
proxy for XCI status. Here, we describe a systematic survey of the landscape of XCI, using a
combination of three complementary approaches based on high-throughput mRNA sequencing
(RNA-seq) (Fig. 1) that together allow an assessment of XCI from individual cells to population
and across a diverse range of human tissues. 
 

 
Figure 1. Schematic overview of the study. Previous expression-based surveys of XCI1,2 have established the
incomplete and variable nature of XCI, showing that XCI is incomplete for up to 30% of X-chromosomal genes, but
these studies have been limited in the tissue types and samples assessed. To investigate the landscape of XCI
across human tissues, we combined three approaches: 1) sex-biases in expression using population-level GTEx data
across 29 tissue types, 2) allelic expression in 16 tissue samples from a female GTEx donor with fully skewed XCI,
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and 3) validation using single cell RNA-seq by combining allelic expression and genotype phasing. WGS, whole 
genome sequencing; WES, whole exome sequencing; scRNA-seq, single-cell RNA-seq. 

 
The limited accessibility of most human tissues, particularly in large sample sizes, means that 
no global investigation of the impact of incomplete XCI on X-chromosomal expression has been 
conducted in data sets spanning multiple tissue types. We thus used the Genotype Tissue 
Expression (GTEx) project11 data set, which includes high-coverage RNA-seq data from diverse 
human tissues, to investigate male-female differences in expression of 681 X-chromosomal 
protein-coding and long non-coding RNA (lncRNA) genes in 29 adult tissues (sample size per 
tissue 77-361; Extended Data Table 1, Methods) from the GTEx V6 data release, hypothesizing 
that escape from XCI should typically result in higher female expression of these genes. 
Previous work using expression microarrays5,10 has indicated that at least a subset of escape 
genes show a characteristic female bias in expression, but the higher sensitivity of deep RNA-
seq and the more extensive set of profiled tissues in our analysis allows for the detection of 
subtler and tissue-specific phenomena. 
  
To confirm that male-female expression difference serves as an accurate proxy for incomplete 
XCI, we assessed the enrichment of sex-biased expression in known XCI categories using 562 
genes with a previous assignment of XCI status, defined as either escape (N=82), variable 
escape (N=89, i.e. genes where XCI status is variable between individuals) or inactive (N=391), 
combined from two previous expression-based surveys of XCI (Methods and Supplementary 
Table 1) (Fig. 1). As expected, sex-biased expression is more prominent among known escape 
genes compared to both inactive (two-sided Wilcoxon P=6.46×10-11) and variable escape genes 
(P=9.61×10-11) (Fig. 2b and Supplementary Table 2), with 74% of escape genes showing 
significant (false discovery rate (FDR) q-value < 0.01) male-female differences in at least one of 
the 29 tissues (Fig. 2a and Supplementary Table 3). In line with active transcription from two X-
chromosomal copies in females, escape genes in the non-pseudoautosomal (nonPAR) region, 
i.e. in the X-specific region of the chromosome, are predominantly female-biased in expression 
across tissues (52 out of 67 assessed genes, binomial P=6.46×10-6). However, genes in the 
pseudoautosomal region in the tip of Xp, PAR1, are expressed more highly in males (14 out of 
15 genes, binomial P=9.77×10-6) (Fig. 2a), suggesting that combined expression from Xa and Xi 
in females fails to reach the expression arising from both X and Y chromosomes in males, a 
result discussed in more detail below.  
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Figure 2. Assessment of tissue-sharing and population-level impacts of incomplete XCI. a) Heatmap representation
of male-female expression differences in reported XCI-escaping genes (N=82) across 29 GTEx tissues. The color
scale displays the direction of sex bias with red color indicating higher female expression. Genes that were too
weakly expressed in the given tissue type to be assessed in the sex bias analysis are colored grey. Dots mark the
observations where sex bias was significant at FDR<1%. b) Proportion of significantly biased (FDR<1%) genes in
each tissue by reported genic XCI status. c) Proportion of tissues where the bias direction is shared by reported genic
XCI status. Only genes expressed in at least five tissues are included. d) Chromatin state enrichment between
reported escape and inactive genes in female samples from the Roadmap Epigenomics data. e) Classification of X-
chromosomal genes (N=186) into full or incomplete and tissue-shared or heterogeneous XCI based on the analysis
of chrX ASE patterns across tissues in a GTEx donor with fully skewed XCI. Error bars show 95% credible interval. 

 
We find that sex bias of escape genes is often shared across human tissues, with these genes
showing a higher number of tissues with significantly sex-biased expression than genes in other
XCI categories (Fig. 2a and Supplementary Table 2). This result is not explained by a difference
in the number of tissues in which escape and inactive genes are expressed (Supplementary
Table 2), and there is marked consistency in the direction of sex bias across tissues (Fig. 2a,c
and Supplementary Table 2). Together these observations point toward global and tight control
of XCI. Previous reports have suggested that escape genes are unusual in their epigenomic
landscape12,13; here we show that these genes are enriched in chromatin states related to active
transcription (Fig. 2d) using the Roadmap Epigenomics Consortium14 data. 
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While consistent sex bias is remarkably specific to escape genes (Fig. 2b-c), a handful of genes 
show unexpected patterns. Nine genes without assigned XCI status, or previously annotated as 
inactive in some cell types, show more than 90% concordance in effect direction and significant 
sex bias (Extended Data Table 2). This includes CHM, for which we find independent evidence 
for incomplete XCI in single-cell RNA-seq (scRNA-seq; see below), and RP11-706O15.3, a 
lncRNA residing between X-Y homologous escape and variable escape genes PRKX and 
NLGN4X near PAR1 boundary, consistent with known clustering of escape genes1,2. Some 
escape genes show a more heterogeneous sex-biased pattern (Fig. 2a) suggesting either 
subtler or more tissue-specific escape, or alternatively hormonally regulated gene expression 
hampering the detection of the expected female bias (Supplementary Discussion). A cluster of 
such genes lies in the evolutionarily older region of the chromosome15, in Xq, where escape 
genes also show higher tissue-specificity and lower expression levels (Extended Data Table 3, 
Supplementary Discussion). 
  
While sex bias is a broadly accurate proxy of XCI status, it provides only an indirect measure of 
the heterogeneity in inactivation across tissues. We serendipitously identified a GTEx female 
donor with an extremely unusual degree of skewing of XCI, resulting in the same copy of chrX 
being silenced in ~100% of cells across all tissues, yet without any X-chromosomal abnormality 
detected by whole-genome sequencing (WGS) (Methods, Supplementary Note and Extended 
Data Fig. 2). This provides an opportunity to validate the findings described above by leveraging 
allele-specific expression (ASE) in the 16 RNA-sequenced tissue samples available from this 
individual. We thus applied a statistical method designed for the comparison of patterns of ASE 
across tissues16,17 to the retrieved allelic counts (Supplementary Tables 4-6), which highlights 
the widespread incompleteness of XCI and the consistency of XCI across tissues, consistent 
with the preceding sex-bias analysis (Methods and Extended Data Table 4). 
 
In this donor, approximately 23% of the 186 X-chromosomal genes expressed in at least two 
available tissues show evidence for expression from both alleles (Fig. 2e), aligning with previous 
estimates of the extent of escape from XCI1,2. For 43% of the biallelically expressed genes the 
expression arising from Xi is of similar magnitude between tissues (Fig. 2e), further supporting 
the observation of global and tight control of XCI from the sex-bias analysis, but the remainder 
display varying levels of Xi expression, suggesting a degree of tissue-dependence in XCI. In 
fact, this group of genes with more heterogeneous patterns includes a subset (5.8% of all 
genes) that appear biallelic in only one of the multiple tissues assayed. While analyses of 
mouse tissues have implicated several examples of tissue-specific escape18, previous 
methylation-based approaches have provided limited evidence for such a pattern in human 
tissues beyond neuronal samples3,4,9. As an example, in this sample, among the genes with the 
strongest probability for tissue-specific escape is KAL1, the causal gene for X-linked Kallman 
syndrome19; in line with strong female bias in lung expression in the GTEx sex bias analysis 
(Fig. 2a), in this individual KAL1 shows biallelic expression exclusively in lung, thus likely 
representing the first validated example of a tissue-specific escape gene in humans. As a 
whole, the ASE-based predictions of XCI status in this sample align with previous assignments 
(Supplementary Table 7), yet the results also suggest six new escape genes (Extended Data 
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Table 5), four of which act in a tissue-specific manner, e.g. CLIC2 near the PAR2 boundary, 
illustrating the need for exploration of multiple tissue types to fully uncover the diversity in XCI. 
 
While unprecedented in the breadth of tissue types analyzed, the above GTEx analyses share 
similar limitations to previous surveys2,3,5 in that they are confined to leveraging rare 
occurrences of XCI skewing or using indirect measures to assess patterns of XCI. The recent 
emergence of scRNA-seq methods20-22 presents an opportunity for studies of XCI at single cell 
resolution, removing the complication of the cellular heterogeneity in bulk tissue samples (Fig. 
1). To establish the potential of scRNA-seq to directly profile XCI, we examined scRNA-seq data 
in combination with deep genotype sequences from 940 immune-related cells from four 
females: 198 cells from LCLs sampled from three females of African (Yoruba) ancestry, and 742 
blood dendritic cells from a female of Asian ancestry (Villani et al., co-submitted) (Fig. 1, 
Extended Data Table 6). We utilized ASE to distinguish the expression coming from each of the 
two X-chromosomal haplotypes in a given cell. Studying allele-specific phenomena in single 
cells is complicated by widespread monoallelic expression, both biological and technological in 
origin23, which is present in autosomal as well as X-chromosomal genes24-26. To overcome this 
limitation, besides searching for X-chromosomal sites with biallelic expression (Extended Data 
Figure 3), we leveraged genotype phase information to detect sites where the expressed allele 
was discordant with the active X chromosome in that cell (Methods and Fig. 1).  
 
We first confirmed that our single cell data replicates well-established XCI results. Across the 
four samples, 165 protein-coding and lncRNA genes (41-98 per sample) had informative 
heterozygous sites for analysis (Methods and Supplementary Table 4). While allelic dropout, 
which is extensive in scRNA-seq21,23, can lead to false negative calls in ASE (in our approach 
resulting in true escape genes being classified as inactivated), our XCI status estimates are 
robust to such errors and are overall consistent with previous observations: only 126 (76%) of 
the assayed genes were fully inactivated. The remaining genes showed incomplete XCI, i.e. Xi 
expression deviating significantly from baseline (Methods), in one or more samples (Fig. 3a-b, 
Supplementary Table 8), generally consistent with previous assignments of XCI escape status 
to these genes (Fig. 3a and Supplementary Table 8). For instance, single cell data reveal 
consistent expression from both X-chromosomal alleles for eleven genes in PAR1, in line with 
their known escape from XCI (e.g. ZBED1 in Fig. 3c), and also replicate the known expression 
of XIST exclusively from the inactive X chromosome27 (Fig. 3d).  
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Figure 3. Analysis of XCI using scRNA-seq. a) Proportion of genes demonstrating full and partial XCI in the ASE 
analysis in single cell RNA-seq data from four individuals, and the corresponding concordance with previously 
reported XCI status. b-g) Examples of genes with different XCI patterns in scRNA-seq: previously reported inactive 
gene, which is inactive in all three scRNA-seq Yoruba samples (b), known escape gene in PAR1 (c), escape gene 
with known exclusive expression from Xi (d) new candidates for escape genes that demonstrate incomplete XCI in 
only a subset of samples (e and f), and a known escape gene that shows escape of varying degrees in the three 
samples (Pearson's Chi-squared test for equal proportions, P-value = 3.80×10-7) (g). Asterisk above a bar indicates 
that the proportion of Xi expression, i.e. blue bar, in a given sample is significantly greater than the expected baseline 
(Binomial test P-value < 0.05; Methods). In (d) for 24A, i.e. the sample without parental genotype information, the 
allele expressed at XIST is assumed to be the Xi allele, in line with the exclusive Xi expression in the Yoruba samples 
confirmed using the information on parental haplotypes in each sample and the chromosome active in each cell. 

 
Given the robustness of scRNA-seq in detecting known XCI-related phenomena, we next 
assessed whether our approach could further extend the spectrum of escape from XCI. For 
seven genes, the data from single cells conflicted with a previous assignment of the target 
gene’s inactivation status (Supplementary Table 9), including FHL1 (Fig. 3e), highlighted as a 
candidate escape gene also in the GTEx ASE analysis, and ATP6AP2 (Fig. 3f), which displays 
predominantly female-biased expression across GTEx tissues. Both of these genes 
demonstrate significant Xi expression in only a subset of the scRNA-seq samples, a pattern 
consistent with variable escape1,2,13. Additionally, we show that between-individual variability 
exists not only in the presence but also in the degree of expression from Xi (e.g. MSL3 in Fig. 
3g). Further, highlighting the capacity of scRNA-seq to provide information beyond bulk RNA-
seq, we identify examples where Xi expression varies considerably between the two X-
chromosomal haplotypes within an individual (e.g. ASMTL; Supplementary Table 10), which 
suggests contribution from cis-acting regulatory variation as one of the determinants for the 
level of Xi expression3. Additionally, as a further layer of heterogeneity in Xi expression, we find 
a unique pattern at TIMP1, an established variable escape gene. Here expression arising from 
Xi across cells is not significant as a whole, yet exclusive to a subset of cells that express the 
gene biallelically (Extended Data Figure 3), thus suggesting cell-to-cell variability in propensity 
for escape, potentially attributable to variation in TIMP1 promoter methylation28. 
 
Combining ASE estimates from the scRNA-seq and GTEx analyses allows us to infer the 
magnitude of the incompleteness of XCI. We find that expression from Xi at escape genes 
rarely reaches levels equal to Xa, but on average remains at 33% of Xa expression, yet with 
wide variability along the chromosome (Supplementary Discussion and Extended Data Figure 
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4a) as shown in previous reports in specific tissue types1,2. While full escape would be required 
to balance the expression dosages between males and females in PAR1, Xi expression remains 
below Xa expression also in this region (mean Xi to Xa ratio ~0.80), suggesting partial 
spreading of XCI beyond X-chromosome-specific regions. We find no evidence for systematic 
up- or downregulation of Y chromosome expression in PAR1 (Extended Data Figure 4b, 
Methods and Supplementary Discussion) indicating that the consistent male-bias in PAR1 gene 
expression observed in the population-level analysis (Fig. 2a) is due to incomplete escape in 
PAR1 in females. Similarly, the partial Xi expression is responsible for six of the twelve 
assessed X-Y homologous genes in nonPAR29 (Methods), becoming male-biased when the 
expression arising from the Y chromosome counterpart is accounted for (Extended Data Figure 
4c). 
 
By combining diverse types and analyses of high-throughput RNA-seq data, we have 
systematically assessed the incompleteness and heterogeneity in XCI across 29 human tissues 
(Supplementary Table 11). We establish that scRNA-seq is suitable for surveys of XCI and, 
extending recent scRNA-seq-based analysis of the initiation of X-inactivation30, present the first 
steps towards understanding the cellular-level variability in the maintenance of XCI. Our 
phasing-based approach allows for the full use of low-coverage scRNA-seq, yet as any single 
individual and cell type is informative for restricted number of genes, larger data sets with more 
diverse cell types and conditions are required to fully profile XCI. We have thus utilized the 
multi-tissue GTEx data set to explore XCI in a larger number of X-chromosomal genes and to 
assess the tissue-heterogeneity and impacts of XCI on gene expression differences between 
the sexes.  
 
These analyses show that incomplete XCI is largely shared between individuals and tissues, 
and extend previous surveys by pinpointing several examples of variability in the degree of XCI 
escape between cells, chromosomes, and tissues, as well as predicting at least seven new XCI-
escaping genes supported by multiple analyses. In addition, our data demonstrate that escape 
from XCI results in sex-biased gene expression in at least 60 genes, and thus may well 
contribute to sex differences in health and disease (Supplementary Discussion). As a whole, 
these results highlight the between-female and male-female diversity introduced by incomplete 
XCI, the biological implications of which remain to be fully explored. 
 
Methods 
 
GTEx data 
The GTEx project11 collected tissue samples from 554 postmortem donors (187 females, 357 
males; age range 20-70), produced RNA sequencing from 8,555 tissue samples and generated 
genotyping data for up to 449 donors (GTEx Analysis V6 release). More details of methods can 
be found in Aguet et al. (Aguet et al., co-submitted). All GTEx data, including RNA, genome and 
exome sequencing data, used in the analyses described are available through dbGaP under 
accession phs000424.v6.p1, unless otherwise stated. Summary data and details on data 
production and processing are also available on the GTEx Portal (http://gtexportal.org). 
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Single-cell samples 
For the human dendritic cells samples profiled, the healthy donor (ID: 24A) was recruited from 
the Boston-based PhenoGenetic project, a resource of healthy subjects that are re-contactable 
by genotype31. The donor was a female Asian individual from China, of 25 years of age at the 
time of blood collection. She was a non-smoker, had normal BMI (height: 168.7cm; weight: 
56.45kg; BMI: 19.8), and normal blood pressure (108/74). The donor had no family history of 
cancer, allergies, inflammatory disease, autoimmune disease, chronic metabolic disorders or 
infectious disorders. She provided written informed consent for the genetic research studies and 
molecular testing, as previously reported (Villani et al., co-submitted). 
 
Daughters of three parent-child Yoruba trios from Ibadan, Nigeria, (i.e. YRI trios) collected as 
part of the International HapMap Project, were chosen for single-cell profiling both to maximize 
heterozygosity and due to availability of parental genotypes allowing for phasing. DNA and 
LCLs were ordered from the NHGRI Sample Repository for Human Genetic Research (Coriell 
Institute for Medical Research): LCLs from B-Lymphocyte for the three daughters (catalogue 
numbers: GM19240, GM19199, GM18518) and DNA extracted from LCLs for all members of 
the three trios (catalogue numbers: DNA: NA19240, NA19238, NA19239, NA19199, NA19197, 
NA19198, NA18518, NA18519, NA18520). These YRI samples are referred to by their family 
IDs: Y014, Y035 and Y117. 
 
Clinical muscle samples 
To assess whether PAR1 genes are equally expressed from X and Y chromosomes we used a 
combination of skeletal muscle RNA sequencing and trio genotyping from eight male patients 
with muscular dystrophy, sequenced as part of an unrelated study. Patient cases with available 
muscle biopsies were referred from clinicians starting April 2013 through June 2016. All patients 
submitted for RNA-sequencing had previously available trio whole exome sequencing with one 
sample having additional trio whole genome sequencing. Muscle biopsies were shipped frozen 
from clinical centers via liquid nitrogen dry shipper and, where possible, frozen muscle was 
sectioned on a cryostat and stained with H&E to assess muscle quality as well as the presence 
of overt freeze-thaw artifact.  
 
Genotyping 
The GTEx V6 release includes WGS data for 148 donors, including GTEX-UPIC. WGS libraries 
were sequenced on the Illumina HiSeqX or Illumina HiSeq2000. WGS data was processed 
through a Picard-based pipeline, using base quality score recalibration and local realignment at 
known indels. We used the BWA-MEM aligner for mapping reads to the human genome build 
37 (hg19). SNPs and indels were jointly called across all 148 samples and additional reference 
genomes using GATK’s HaplotypeCaller version 3.1. Default filters were applied to SNP and 
indel calls using the GATK’s Variant Quality Score Recalibration (VQSR) approach. An 
additional hard filter InbreedingCoeff <= -0.3 was applied to remove sites that VQSR failed to 
filter.  
 
WGS for one of the clinical muscle samples was performed on 500 ng to 1.5 ug of genomic 
DNA using a PCR-Free protocol that substantially increases the uniformity of genome coverage. 
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These libraries were sequenced on the Illumina HiSeq X10 with 151 bp paired-end reads and a 
target mean coverage of >30x, and processed similarly as above. 
 
The Y117 trio (sample IDs NA19240 (daughter), NA19238 (mother), and NA19239 (father)) was 
whole-genome-sequenced as part of the 1000 Genomes project as described previously32. The 
VCF file containing the WGS-based genotypes for SNPs (YRI.trio.2010_09.genotypes.vcf.gz) 
was downloaded from the project’s FTP site. To convert the genotype coordinates (in human 
genome build 36) in the original VCF to hg19 we used the liftover script (liftOverVCF.pl) and 
chain files provided as part of the GATK package. 
 
WES was performed using Illumina’s capture Exome (ICE) technology (Y035, Y014, 24A) or 
Agilent SureSelect Human All Exon Kit v2 exome capture (clinical muscle samples) with a mean 
target coverage of >80x. WES data was aligned with BWA, processed with Picard, and SNPs 
and indels were called jointly with other samples using GATK HaplotypeCaller package version 
3.1 (24A, clinical muscle samples) or version 3.4 (Y035, Y014). Default filters were applied to 
SNP and indel calls using the GATK’s Variant Quality Score Recalibration (VQSR) approach.  
A modified version of the Ensembl Variant Effect Predictor was used for variant annotation for 
all WES and WGS data. For trio WES or WGS data the genotypes of the proband were phased 
using the PhaseByTransmission tool of the GATK toolkit.  
 
Single cell data preparation and sequencing 
[this section will be added in an upcoming revision] 
 
RNA-seq in GTEx 
RNA sequencing was performed using a non-strand-specific RNA-seq protocol with poly-A 
selection of mRNA using the Illumina TruSeq protocol with sequence coverage goal of 50M 76 
bp paired-end reads as described in detail previously11. The RNA-seq data, except for GTEX-
UPIC, was aligned with Tophat version v1.4.1 to the UCSC human genome release version 
hg19 using the Gencode v19 annotations as the transcriptome reference. Gene level read 
counts and RPKMs were derived using the RNA-SeQC tool33 using the Gencode v19 
transcriptome annotation. The transcript model was collapsed into gene model as described 
previously11. Read count and RPKM quantification include only uniquely mapped and properly 
paired reads contained within exon boundaries. 
 
RNA-seq alignment to personalized genomes 
For the four single-cell samples and for GTEX-UPIC RNA-seq data was processed using a 
modification of the AlleleSeq pipeline34,35 to minimize reference allele bias in alignment. We first 
generated a diploid personal reference genome for each of the samples with the vcf2diploid 
tool34 including all heterozygous biallelic single nucleotide variants identified in WES or WGS 
either together with (YRI samples) or without (GTEX-UPIC, 24A) maternal and paternal 
genotype information. The RNA-seq reads were then aligned to both parental references using 
STAR36 version 2.4.1a in a per-sample 2-pass mode (GTEX-UPIC and YRI samples) or version 
2.3.0e (24A) using hg19 as the reference. The alignments were combined by comparing the 
quality of alignment between the two references: for reads aligning uniquely to both references 
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the alignment with the higher alignment score was chosen and reads aligning uniquely to only 
one reference were kept as such. 
 
RNA-seq of clinical muscle samples 
Patient RNA samples derived from primary muscle were sequenced using the GTEx 
sequencing protocol11 with sequence coverage of 50M or 100M 76 bp paired-end reads. RNA-
seq reads were aligned using STAR36 2-Pass version v.2.4.2a using hg19 as the reference. 
Junctions were filtered after first pass alignment to exclude junctions with less than 5 uniquely 
mapped reads supporting the event and junctions found on the mitochondrial genome. The 
value for unique mapping quality was assigned to 60 and duplicate reads were marked with 
Picard MarkDuplicates (v.1.1099). 
 
Catalogue of X-inactivation status 
In order to compare results from the ASE and GTEx analyses with previous observations on 
genic XCI status we collated findings from two earlier studies1,2 that represent systematic 
expression-based surveys into XCI. Each study catalogues hundreds of X-linked genes and 
together the data span two tissue types. 
 
Carrel and Willard1 surveyed in total 624 X-chromosomal transcripts expressed in primary 
fibroblasts in nine cell hybrids each containing a different human Xi. In order to find the gene 
corresponding to each transcript, the primer sequences designed to test the expression of the 
transcripts in the original study were aligned to reference databases based on Gencode v19 
transcriptome and hg19 using an in-house software (unpublished) (Supplementary Methods). In 
total 553 transcripts primer pairs were successfully matched to X-chromosomal Gencode v19 
reference mapping together to 470 unique chrX genes (Supplementary Methods). These 470 
genes were split into three XCI status categories (escape, variable, inactive) based on the level 
of Xi expression (i.e. the number of cell lines expressing the gene from Xi) resulting in 75 
escape, 51 variable escape and 344 inactive genes. 
 
Cotton et a2 surveyed XCI using allelic imbalance in clonal or near-clonal female LCL and 
fibroblast cell lines and provided XCI statuses for 508 genes (68 escape, 146 variable escape, 
294 subject genes). The data was mapped to Gencode v19 using the reported gene names and 
their known aliases (Supplementary Methods), resulting in a list of XCI statuses for 506 X-
chromosomal genes. 
 
The results were combined by retaining the XCI status in the original study where possible (i.e. 
same status in both studies or gene unique to one study) and for genes where the reported XCI 
statuses were in conflict the following rules were applied: 1) A gene was considered “escape” if 
it was called escape in one study and variable in the other, 2) “variable escape” if classified as 
escape and inactive, and 3) “inactive” if classified as inactive in one study and variable escape 
in the other. The final combined list of XCI statuses consisted of 631 X-chromosomal genes 
including 99 escape, 101 variable escape and 431 inactive genes. 
 
Analysis of sex-biased expression 
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We conducted differential expression analyses to identify genes that are expressed at 
significantly different levels between male and female samples using 29 GTEx V6 tissues with 
RNA-seq and genotype data available from more than 70 individuals after excluding samples 
flagged in QC and sex-specific, outlier and highly correlated tissues37. We only included 
autosomal and X-chromosomal protein-coding or lncRNA genes in Gencode v19, and further 
removed all lowly-expressed genes. (Supplementary Methods and Extended Data Table 1). 
 
Differential expression analysis between male and female samples was conducted using the 
voom-limma pipeline38-40 available as an R package through Bioconductor 
(https://bioconductor.org/packages/release/bioc/html/limma.html) using the gene-level read 
counts as input. We adjusted the analyses for age, three principal components inferred from 
genotype data using EIGENSTRAT41, sample ischemic time, surrogate variables42,43 built using 
the sva R package44, and the cause of death classified into five categories based on the 4-point 
Hardy scale (Supplementary Methods). 
 
To control the false discovery rate (FDR), we used the qvalue R package to obtain q-values 
applying the adjustment separately for the differential expression results from each tissue. The 
null hypothesis was rejected for tests with q-values below 0.01. 
 
XY homolog analysis 
A list of Y-chromosomal genes with functional counterparts in the X chromosome, i.e. X-Y gene 
pairs, was obtained from Bellott et al29, which lists 19 ancestral Y chromosome genes that have 
been retained in the human Y chromosome. After excluding two of the genes (MXRA5Y and 
OFD1Y), which were annotated as pseudogenes by Bellot et al and further four genes (SRY, 
RBMY, TSPY, and HSFY) that according to Bellot et al have clearly diverged in function from 
their X-chromosomal homologs, the remaining 13 Y-chromosomal genes were matched with 
their X chromosome counterparts using gene pair annotations given in Bellot et al or by 
searching for known paralogs of the Y-chromosomal genes. To test for completeness of dosage 
compensation at the X-Y homologous genes, the sex-bias analysis in GTEx data was repeated 
replacing the expression of the X-chromosomal counterpart with the combined expression of the 
X and Y homologs. 
 
Chromatin state analysis 
To study the relationship between chromatin states and XCI, we used chromatin state calls from 
the Roadmap Epigenomics Consortium14. Specifically, we used the chromatin state annotations 
from the core 15-state model, publicly available at 
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state. We followed 
our previously published method45 to calculate the covariate-corrected percentage of each gene 
body assigned to each chromatin state. After pre-processing, we filtered down to the 399 
inactive and 86 escape genes on the X chromosome, and down to 38 female epigenomes. 
 
To compare the chromatin state profiles of the escape and inactive genes in female samples, 
we used the one-sided Wilcoxon rank sum test. Specifically, for each chromatin state, we 
averaged the chromatin state coverage across the 38 female samples for each gene, and 
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compared that average chromatin state coverage for all 86 escape genes to the average 
chromatin state coverage for all 399 inactive genes. We performed both one-sided tests, to test 
for enrichment in escape genes, as well as enrichment in inactive genes. 
 
Next, we performed simulations to account for possible chromatin state biases, such as the fact 
that the escape and inactive genes are all from the X chromosome. Specifically, we generated 
10,000 randomized simulations where we randomly shuffled the “escape” or “inactive” labels on 
the combined set of 485 genes, while retaining the sizes of each gene set. For each of these 
simulated “escape” and “inactive” gene sets, we calculated both one-sided Wilcoxon rank sum 
test p-values as described above, and then, we calculated a permutation “p-value” for the real 
gene sets based on these 10,000 random simulations (Supplementary Methods). Finally, we 
used Bonferroni multiple hypothesis correction for our significance thresholds to correct for our 
30 tests, one for each of 15 chromatin states, and both possible test directions. 
 
Allele-specific expression 
For ASE analysis the allele counts for biallelic heterozygous variants were retrieved from RNA-
seq data using GATK ASEReadCounter (v.3.6)35.  Heterozygous variants that passed VQSR 
filtering were first extracted for each sample from WES or WGS VCFs using GATK 
SelectVariants. The analysis was restricted to biallelic SNPs due to known issues in mapping 
bias in RNA-seq against indels35. Sample-specific VCFs and RNA-seq BAMs were inputted to 
ASEReadCounter requiring minimum base quality of 13 in the RNA-seq data (scRNA-seq 
samples, GTEX-UPIC) or requiring coverage in the RNA-seq data of each variant to be at least 
10 reads, with a minimum base quality of 10 and counting only reads with unique mapping 
quality (MQ = 60) (clinical muscle samples). 
 
For downstream processing of the scRNA-seq and GTEX-UPIC ASE data, we applied further 
filters to the data to focus on exonic variation only and to conservatively remove potentially 
spurious sites (Supplementary Methods), e.g. we removed sites with non-unique mappability, 
and further after an initial analyses of the ASE data subjected 22 of the X-chromosomal ASE 
sites to manual investigation. For GTEX-UPIC we limited the X-chromosomal ASE data in case 
of multiple ASE sites to only one site per gene, by selecting the site with coverage >7 reads in 
the largest number of tissues, to have equal representation from each gene for downstream 
analyses. 
 
Assessing ASE across tissues 
For GTEX-UPIC sample for which we had ASE data from up to 16 tissues per each ASE site, 
we applied the two-sided Hierarchical Grouped Tissue Model (GTM*) implemented in MAMBA 
1.0.016,17 to ASE data. The Gibbs sampler was run for 200 iterations with a burn-in of 50 
iterations.  
 
GTM* is a Bayesian hierarchical model that borrows information across tissues and across 
variants, and provides parameter estimates that are useful for interpreting global properties of 
variants. It classifies the sites into ASE states according to their tissue-wide ASE profiles and 
provides an estimate of the proportion of variants in each of the five different ASE states (strong 
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ASE across all tissues (SNGASE), moderate ASE across all tissues (MODASE), no ASE across 
all tissues (NOASE), and heterogeneous ASE across tissues (HET1 and HET0)).  
 
To summarize the GTM* output in the context of XCI, we considered SNGASE to reflect full 
XCI, MODASE and NOASE together to represent partial XCI with similar effects across tissues, 
and HET1 and HET0 to reflect partial yet heterogeneous patterns of XCI across tissues. In order 
to combine estimates from two ASE states, we summed the estimated proportions in each 
class, and subsequently calculated the 95% confidence intervals for each remaining ASE state 
using Jeffreys prior. 
 
Biallelic expression in single cells 
Biallelic expression in individual cells in the X chromosome was assessed only at ASE sites 
covered by the minimum of eight reads. We considered sites biallelically expressed when 1) 
allelic expression > 0.05, and 2) one-sided binomial test indicated allelic expression to be at 
least nominally significantly greater than 0.025. Only genes with at least two observations of 
biallelic expression across all cells within a sample were counted as biallelic. 
 
Phasing scRNA-seq data 
We assigned each cell to either of two cell populations distinguished by the parental X-
chromosome designated for inactivation utilizing genotype phasing. For the YRI samples, where 
parental genotype data was available, the assignment to the two parental cell populations was 
unambiguous for all cells where X-chromosomal sites outside PAR1 or frequently biallelic sites 
were expressed. For 24A no parental genotype data was available, and hence we utilized the 
correlation structure of the expressed X-chromosomal alleles across the 948 cells to infer the 
two parental haplotypes utilizing the fact that in individual cells the expressed alleles at the chrX 
sites subject to full inactivation (i.e. the majority chrX ASE sites), are from the X chromosome 
active in each cell (Supplementary Methods). For this calculation we excluded all PAR1 sites 
and all additional sites that were frequently biallelic, to minimize the contribution of escape 
genes to the phase estimation. After assigning each informative cell to either of the parental cell 
populations, the reference and alternate allele reads for each ASE site were mapped to active 
and inactive allele reads within each sample using the actual or inferred parental haplotypes. 
The data was first combined per variant by taking the sum of active and inactive counts 
separately across cells, and further similarly combined per gene, if multiple SNPs per gene were 
available. 
 
Determining XCI status from scRNA-seq ASE 
Before calling XCI status using the Xa and Xi read counts, we excluded all sites without fewer 
than five cells contributing ASE data at each gene and also all sites with coverage lower than 
eight reads across cells within each sample. To determine whether the observed Xi expression 
is significantly different from zero, hence indicative of incomplete XCI at the site / gene, we 
required two criteria to be fulfilled: 1) The Xi to total expression ratio above 0.05 for YRI samples 
and 0.075 for 24A (the higher threshold for 24A was selected to account for the larger 
uncertainty in assigning cells to the parental cell populations), and 2) the Xi to total expression 
ratio to be significantly (P<0.05) greater than hypothesized upper bound for error (determined 
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as 0.025 for YRI samples and 0.05 for 24A) in a one tailed binomial test. Genes where at least 
one of the samples showed significant Xi expression were considered partially inactivated, while 
the remaining were classified as subject to full XCI. 
 
ChrX and chrY expression in PAR1  
Using the parental origin of each allele reference and alternate allele read counts at PAR1 ASE 
sites were assigned to X and Y chromosomes (i.e. maternally and paternally inherited alleles, 
respectively). For each sample, the PAR1 ASE data was summarized by gene by taking the 
sum of X and Y chromosome reads across all informative ASE sites within each gene. 
Significance of deviation from equal expression was assessed using a two-sided binomial test. 
 
Manual curation of heterozygous variants from ASE analyses 
Twenty-two heterozygous variants assessed in chrX ASE analysis were subjected to manual 
curation due to providing results in the XCI analysis that were in conflict with previous 
assignment of the underlying gene to be subject to full XCI. For each sample, BWA-aligned 
germline bams were viewed in IGV using either WGS or WES data. The presence of a number 
of characteristics called into question the confidence of the variant read alignments and thus the 
variant itself (Supplementary Methods). Allele balance that deviated significantly from 50:50 was 
considered suspect and often coincided with the existence of homology between the reference 
sequence in the region surrounding the variant and another area of the genome, as ascertained 
using the UCSC browser self-chain track and/or BLAT alignment of variant reads from within 
IGV. Other sequence-based annotations added to the VCF by HaplotypeCaller were also 
evaluated in the interests of examining other signatures of ambiguous mapping. The phasing of 
nearby variants was also considered. If phased variants occurred in the DNA sequencing data 
that were not assessed in the ASE analysis, those variants were considered suspect. 
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