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Abstract 

Susceptibility to obesity in today’s environment has a strong genetic component. 

Lower socioeconomic position (SEP) is associated with a higher risk of obesity but it 

is not known if it accentuates genetic susceptibility to obesity.  We aimed to use up 

to 120,000 individuals from the UK Biobank study to test the hypothesis that 

measures of socioeconomic position accentuate genetic susceptibility to obesity. We 

used the Townsend deprivation index (TDI) as the main measure of socioeconomic 

position, and a 69-variant genetic risk score (GRS) as a measure of genetic 

susceptibility to obesity. We also tested the hypothesis that interactions between BMI 

genetics and socioeconomic position would result in evidence of interaction with 

individual measures of the obesogenic environment and behaviours that correlate 

strongly with socioeconomic position, even if they have no obesogenic role. These 

measures included self-reported TV watching, diet and physical activity, and an 

objective measure of activity derived from accelerometers. We performed several 

negative control tests, including a simulated environment correlated with BMI but not 

TDI, and sun protection use. We found evidence of gene-environment interactions 

with TDI (Pinteraction=3x10-10) such that, within the group of 50% living in the most 

relatively deprived situations, carrying 10 additional BMI-raising alleles was 

associated with approximately 3.8 kg extra weight in someone 1.73m tall. In contrast, 

within the group of 50% living in the least deprivation, carrying 10 additional BMI-

raising alleles was associated with approximately 2.9 kg extra weight. We also 

observed evidence of interaction between sun protection use and BMI genetics, 

suggesting that residual confounding may result in evidence of non-causal 

interactions. Our findings provide evidence that relative social deprivation best 

captures aspects of the obesogenic environment that accentuate the genetic 

predisposition to obesity in the UK. 
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INTRODUCTION 

The prevalence of obesity is set to dramatically exceed targets set by the World 

Health Organisation and place an increasingly large burden on health services 

throughout the world1. Whilst environmental influences, including diet and lifestyle 

have caused the obesity epidemic2, twin and family studies show that genetic factors 

influence susceptibility to obesity in today’s environment3,4. Recent genetic studies 

have identified many common genetic variants associated with BMI 5 but the role of 

genetic susceptibility in different modern day environments has proven controversial.  

Different studies have concluded that physical inactivity6,7, consuming more fried 

food8, more fizzy drinks9 or more protein10 accentuate the risk of obesity in those 

genetically predisposed. These studies have been limited by the necessity of using 

large meta-analyses of studies with heterogeneous measures of the environment or 

have been hindered by the potential biases caused by the use of self-reported 

measures of the environment. Some of these studies have claimed evidence of 

causation for the environmental factor tested, with such statements as “these data 

support a causal relationship among the consumption of sugar-sweetened 

beverages, weight gain and the risk of obesity”; however unlike main effect 

Mendelian randomisation studies, gene x environment studies are susceptible to 

confounding11. A recent study, testing only the FTO locus, overcame many of these 

issues by using a single large, relatively homogeneous study, the UK Biobank, and 

testing many measures of the environment in the same statistical model12. 

Social deprivation is correlated with obesity in children13 and adults14. There is 

evidence that individuals from more deprived backgrounds make poorer food 

choices15 and tend to be less active16. Whilst individuals from more socially deprived 

backgrounds are more overweight on average, few studies have tested the 

hypothesis that deprivation accentuates genetic susceptibility to obesity, with the 

exception of the recent study using the UK Biobank that found nominal evidence that 

deprivation accentuates the effect of the variant at the FTO locus12. We used a 

single large, relatively homogeneous study, the UK Biobank, to test this hypothesis. 

We provide evidence that relative social deprivation in the UK accentuates genetic 

predisposition to obesity. We also suggest that socioeconomic position and residual 
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confounding may explain some of the previously described interactions between BMI 

genetics and specific aspects of the obesogenic environment.  
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RESULTS 

Social deprivation is associated with BMI and variance in BMI in the UK 

Biobank study 

Social deprivation, as measured by the Townsend deprivation index (TDI) was 

associated with BMI in UK Biobank individuals – both in the whole study 

(Supplementary table 1) and the subset of 119,464 with genetic data available at the 

time of our analysis (Table 1).   

Individuals who were more socially deprived had higher BMIs and a higher 

prevalence of obesity. A one standard deviation (1SD) higher Townsend deprivation 

index was associated with a 0.42 kgm-2 [95%CI: 0.40, 0.45] higher BMI (p = <1x10-15). 

The 50% of individuals who were most deprived (n=59,861) had an average BMI of 

27.9 kgm-2, and 95% had a BMI between 21.0 and 37.4 kgm-2 (a range of 16.4) 

whereas the 50% who were least deprived (n=59,872) had an average BMI of 27.2 

kgm-2, and 95% had a BMI between 21.1 and 35.4 (a range of 14.3). 

A BMI genetic risk score is associated with BMI in the UK Biobank study 

The BMI genetic risk score, consisting of 69 known BMI-associated variants, was 

associated with higher BMI and explained 1.5% of the variation in BMI, a figure 

consistent with previous studies5. 

A higher level of deprivation is associated with an accentuated genetic 

susceptibility to higher BMI  

The effect of the BMI genetic risk score on BMI was larger in the group of 50% living 

in the most relatively deprived situations (0.025 standard deviations per allele 

[95%CI: 0.023-0.027]) compared to the group of 50% living in the least deprived 

situations (0.022 SDs per allele [95%CI: 0.020-0.024]) (Table 2; Figure 1A). When 

performing the analysis with Townsend deprivation index on a continuous scale (a 

more robust analysis than using dichotomized measures) the evidence of interaction 

was strong: Pinteraction 6x10-12 (Pinteraction 2x10-10, using robust standard errors). This 

apparent gene x deprivation interaction meant that, compared to below average 

deprivation (in the UK Biobank), above average deprivation was associated with a 

0.92kgm-2 higher BMI in people with the highest genetic risk (top decile) but a 
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0.35kgm-2 higher BMI in people at least genetic risk (bottom decile)(Table 2, Figure 

1A).  Another way of expressing the interaction is that, within the 50% group living in 

the most deprived situations, carrying 10 additional BMI-raising alleles (weighted by 

effect size) was associated with approximately 3.8 kg extra weight in someone 1.73 

metres tall. In contrast, within the 50% group living in the least deprived situations, 

carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg 

extra weight in someone 1.73 metres tall. These differences were even stronger 

when using a cut off that reflected the UK population average TDI (Supplementary 

table 2).   Because UK Biobank participants are of higher socioeconomic position 

(SEP) than the average person of this generation in the UK, we also used a standard 

deviation value of -0.4 TDI to define above and below average deprivation. This UK 

Biobank value approximates to the UK population mean based on number of people 

with an undergraduate degree (33% versus 20%17). The BMI genetics – TDI 

interaction effects between the 29.6% of UK Biobank individuals with the lowest TDI 

and the 70.4% with the highest TDI were even stronger.  

Previous studies have suggested a stronger gradient by genetic risk for BMI at 

younger rather than later ages 18. We stratified our analyses by age and saw 

consistent interaction effects for TDI across different age groups (Supplementary 

table 3). We also noted that the interaction effect was not driven by specific BMI 

associated variants, but was a feature of general genetic susceptibility to higher BMI, 

as measured by the 69 SNP BMI risk score (Supplementary table 4 & supplementary 

figure 1). Excluding the FTO variant did not alter the evidence of interaction.  

In the CoLaus study of 5,237 individuals from Switzerland, we did not observe any 

evidence that TDI interacted with the BMI genetic risk score, but the effect estimates 

overlap those in the UK Biobank (Supplementary table 5).   

Lower occupational job class was not associated with an accentuated genetic 

susceptibility to higher BMI  

In both the UK Biobank and the 1958 Birth Cohort individuals with lower job classes 

had a higher mean and standard deviation for BMI. However, there was no evidence 

of an interaction between job class and genetic risk score in determining BMI in 

either study (Supplementary table 5).   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074054doi: bioRxiv preprint 

https://doi.org/10.1101/074054
http://creativecommons.org/licenses/by/4.0/


Less time spent in education was not associated with an accentuated genetic 

susceptibility to higher BMI 

In the UK Biobank individuals spending less time in education had a higher mean 

and standard deviation for BMI. However, there was no evidence of an interaction 

between time in education and genetic risk score in determining BMI (Supplementary 

table 5).   

Are previously described interactions between BMI genetics and specific measures 

of the environment driven by socioeconomic position? 

We next hypothesized that the interaction between genetic susceptibility to higher 

BMI and socioeconomic position (as measured by TDI) may result in evidence of 

interactions with specific measures of the environment correlated with TDI. Previous 

studies have observed stronger effects of BMI raising alleles in groups of individuals 

who are less active6,19, eating more fried food8 and consuming more sugary drinks9. 

However, all of these groups were more overweight on average than those with the 

healthier lifestyles and any interaction observed may have been a feature of higher 

BMI and lower socioeconomic position, not the specific environment tested. We 

tested 12 additional measures of the environment, including an objective measure of 

activity based on accelerometer wear. One of the measures was a negative control, 

sun protection use in the summer, which has no clear obesogenic role, but is 

strongly correlated with TDI (supplementary methods). Five of these 12 variables 

showed evidence of interaction at p<0.05 and including TDI as a covariate did not 

appreciably alter the evidence of interaction (Supplementary table 6). Our negative 

control, using less sun protection in the summer, was associated with higher 

deprivation and showed evidence of interaction with genetic susceptibility to higher 

BMI, before and after adjustment for TDI (Table 2). 

Testing the specificity of the TDI interaction using a simulated environment and 

groups of individuals randomly selected to be of different BMIs  

We next performed two additional analyses to test the specificity of the interaction to 

TDI. These tests represented “impossible by the proposed mechanism” negative 

controls. 20 These analyses also helped limit the possibility that statistical artefacts 
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were influencing our results, such as wider variances in BMI in deprived individuals 

compared to less deprived individuals.   

 

First, we used a heuristic approach to randomly select groups of individuals with 

identical BMI means and distributions to the high and low TDI groups and tested for 

evidence of interaction. This was repeated 100 times. The associations between the 

BMI genetic risk score and BMI in these randomly selected individuals were similar 

to those observed when we selected based on Townsend deprivation index, but 

none of the 100 analyses showed an interaction p-value lower than the real TDI 

interaction (median p=9x10-4, Table 2, Figure 1B, Figure 2A). We note that this 

analysis is not completely representative of the real TDI analysis because the 

interaction term is a binary variable (presence or absence of the individual in the 

randomly selected groups of higher and lower BMI) not continuous.  

Second, we generated a continuous variable as a dummy environment by regressing 

TDI against BMI, the BMI GRS, age, sex and age squared. The fitted values were 

then added to random permutations of the residuals to generate dummy 

environments that were associated with BMI to the same extent as TDI but not 

associated with TDI. We repeated this 1000 times and each time tested for evidence 

of interaction using the dummy continuous environment as an interaction term. When 

dichotomized into two equal groups, the BMI means, distributions and BMI genetic 

risk score associations with BMI were similar to those observed in the two groups 

defined by the real Townsend deprivation index (Table 2). However, no evidence for 

interaction was observed (p=0.09 based on median of 1000 dummy environments, 

Figure 1C & Figure 2B). In the 1000 permutations of a dummy environment, we 

never observed evidence as strong as that observed with real TDI, providing 

evidence at p<0.001 that the TDI effect was genuine (Figure 2B).  

 

Sensitivity analyses 

 

The evidence of interaction between TDI and the BMI genetic risk score remained 

when we adjusted for other measures of the environment and behaviour previously 

associated with gene-obesity interactions Pinteraction 9x10-8 (Pinteraction 1x10-6, using 

robust standard errors). These factors included self-reported physical activity, TV 
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watching, and a more “westernized” diet (reflecting a more calorie dense diet – see 

methods). All of these measures were associated with TDI in the UK Biobank 

(Supplementary table 7). These factors may be on the causal pathway from relative 

deprivation to higher BMI, but the fact that no one measure accounts for the TDI-BMI 

genetic risk score association suggests that any interaction is not driven by one 

particular aspect of the environment associated with TDI. We addressed several 

other factors that could affect our results in the supplementary information.  
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DISCUSSION 

In the UK Biobank we found evidence that relative deprivation, as measured by the 

Townsend Deprivation Index, accentuates genetic susceptibility to higher BMI. The 

corollary of our findings is that exposure to lower levels of relative deprivation may 

partially attenuate the effects of genetic susceptibility to obesity. Our results are 

important because they provide further evidence for public health campaigns aimed 

at reducing obesity but suggest that measures that target more deprived individuals 

may have proportionally higher impact.  The mechanism by which higher levels of 

deprivation may accentuate the genetic risk of obesity is not known. When adjusting 

for measures of physical activity, a more calorie dense “westernised” diet and 

sedentary activity, the evidence of interaction remained strong. This observation 

suggests that no one aspect of the obesogenic environment we tested can explain 

the interaction effect with TDI, although a caveat to this argument is that these other 

measures were self-reported. The evidence of interaction remained strong when 

adjusting for urban versus rural dwelling, an objective measure associated with 

obesity in the UK Biobank and previously proposed as a contributory factor to the 

obesogenic environment (through reduced exposure to open spaces for example21).  

A further implication of our results is that they suggest that no one aspect of the 

obesogenic environment we tested has a specific role in accentuating the genetic 

susceptibility to obesity. This conclusion contrasts with that from some previous 

studies reporting interactions with TV watching, physical activity, fried food and 

sugary drink consumption6-10. Including sun protection use as a negative control 

helped us control for the possibility that TDI does not capture all of the variance in 

socioeconomic position. The importance of using negative controls in epidemiology 

to control for this residual confounding has been discussed20 and is closely related to 

the use of one of Hill’s original criteria for causal inference in epidemiology – that of 

specificity of the exposure-outcome association22. The fact that this negative control 

showed significant interaction, even after adjustment for TDI, suggests that either it 

is a bad negative control or it is correlated with other obesogenic factors not 

captured by TDI. Low vitamin D levels (which would be caused by high use of sun 

protection) are associated with higher BMI, but there is genetic evidence that this is 

not a causal relationship23, and even if it were, would have resulted in evidence of 

interaction in the opposite direction to our observation. Further work, including the 
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use of negative controls that are likely associated with unmeasured confounders but 

are implausible, will help disentangle which aspects of the environment are causally 

interacting with BMI genetics to accentuate the risk of high BMI.  

 

Our results are consistent with data from twins, where there is evidence that the 

genetic component to obesity is stronger in young UK children exposed to the 

modern environment (twins born in the 1990s and measured at the age of 9), 

compared to measures from twin studies in earlier generations3 and that the genetic 

and environmental components to common traits varies by UK region 24. 

Although the interaction effect sizes observed were small based on each allele, 

when summed across all alleles, the interaction effects we observed were 

meaningful – for example, in the group of 50% in the most deprived situations, 

carrying 10 additional BMI-raising alleles was associated with 3.8 kg extra weight in 

someone 1.73m tall. In contrast, in the group of 50% in the least deprived situations, 

carrying 10 additional BMI-raising alleles was associated with 2.9 kg extra weight in 

someone 1.73m tall. The BMI genetic risk score is associated predominantly with 

extra fat mass with a smaller effect on lean mass, and 900 grams of extra fat per 

person will equate to a large effect on obesity related disease in the relatively 

deprived population.  Furthermore, participants in the UK Biobank are less deprived 

than average UK citizens which may mean the effects are larger in the general 

population.  

Our analysis had a number of strengths. The major strength was the availability of a 

single large study, which was beneficial for two main reasons. First, it provided us 

with relatively homogenous measures of the environment. Several previous studies 

were limited to meta-analyses of summary statistics from many studies with 

heterogeneous measures of the environment although the most recent also used the 

UK Biobank and used the individual level data to jointly model multiple exposures 

and provide evidence that some measures we did not test, including frequency of 

alcohol consumption, remain significant when adjusting for TDI 12. 

Second, it allowed us to test the robustness of our results by randomly selecting 

individuals and testing interactions using a dummy, simulated environment – an 

important negative control experiment to control for potential statistical artefacts and 
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non-specific interaction effects. A third advantage is that we used an objective 

measure of the environment, which provides a cleaner interpretation of results 

compared to those from previous studies that have had to rely on subjective 

measures such as self-reported diet and physical activity. These subjective 

measures are often complex mixtures of environment and behaviour and may be 

subject to reporting biases. The fourth advantage of our study is that we used a 

negative control variable, sun protection use, which helps control for residual 

confounding. 

There were a number of limitations to this study. First, no evidence of interaction 

between TDI and BMI genetics was noted in a smaller study of 5,237 individuals 

from the CoLaus Study. However, the power of this analysis was limited by the small 

sample size. Additionally CoLaus was from an urban based study in another country 

(Switzerland) and as such might not be comparable to the UK Biobank. No evidence 

of interaction was noted for job class or number of years in education. These 

variables were available in <70% of the individuals and are only weakly correlated 

with TDI (r=0.15 and 0.11 respectively) and it is possible that TDI captures the key 

components of the obesogenic environment in those living in relatively deprived 

situations better than these variables. The lack of interaction with job class could 

possibly be explained by manual workers doing more exercise, as observed in the 

UK Biobank. Secondly, we cannot rule out the possibility that statistical artefacts 

have at least partially influenced our results. We observed some evidence of 

interaction when randomly sampling individuals and using dummy environments, 

although the evidence was much weaker and some residual evidence of interaction 

may be expected given that the dummy environments are still slightly correlated with 

TDI. When the outcome (here BMI) and the interaction term (here TDI) are 

correlated, and when the variance of the outcome and interaction term are correlated, 

interaction analyses are prone to artefacts. However, we performed a number of 

sensitivity analyses that suggested these artefacts were not responsible for the 

interaction, including testing both BMI and TDI on different scales. Previous studies 

of BMI gene x environment interactions have not necessarily accounted for such 

sources of potential error. Thirdly, the UK Biobank is enriched for people of lower 

levels of deprivation compared to the average in the UK, but this bias would be 

expected to accentuate the effect of genetic variants in people of low deprivation, the 
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opposite to what we observed. It is also important to note that we were not testing for 

specific gene variant-environment interactions but instead asking a question of public 

health relevance – are people at higher risk of obesity due to their genetics more 

susceptible to the obesogenic environment? It may be that particular genetic variants,  

for example those acting through genes affecting appetite, may have different effects 

compared to others, for example those acting through metabolic rate. Finally, 

variation in BMI in today’s environment is estimated to be 40% genetic (although 

there are wide confidence intervals around all estimates) but our genetic risk score 

only accounts for 1.5% variance in BMI. However, there is no reason to think that the 

69 genetic variants used do not provide a general snapshot of general genetic 

susceptibility to high BMI.  

In conclusion, analyses in 119,733 individuals from the UK Biobank provides 

evidence that socioeconomic position, as measured by the Townsend deprivation 

index, best captures the aspects of the environment that accentuate the genetic risk 

of obesity.  
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METHODS 

UK Biobank participants 

The UK Biobank recruited over 500,000 individuals aged 37-73 years (99.5% were 

between 40 and 69 years) in 2006-2010 from across the UK. Participants provided a 

range of information via questionnaires and interviews (e.g. demographics, health 

status, lifestyle) and anthropometric measurements, blood pressure readings, blood, 

urine and saliva samples were taken for future analysis: this has been described in 

more detail elsewhere25. We used up to 119,688 individuals of British descent from 

the initial UK Biobank with BMI available. We did not include other ethnic groups, 

because individually they were underpowered to detect previously reported 

effects.  British-descent was defined as individuals who both self-identified as white 

British and were confirmed as ancestrally Caucasian using principal components 

analyses (PCA) of genome wide genetic information. This dataset underwent 

extensive central quality control (http://biobank.ctsu.ox.ac.uk) including the exclusion 

of the majority of third degree or closer relatives from a genetic kinship analysis of 96% 

of individuals. We performed an additional round of principal components analysis 

(PCA) on the UK Biobank participants of British descent. We selected 95,535 

independent single nucleotide polymorphisms (SNPs) (pairwise r2 <0.1) directly 

genotyped with a minor allele frequency (MAF) ≥ 2.5% and missingness <1.5% 

across all UK Biobank participants with genetic data available at the time of this 

study (n=152,732), and with HWE P>1x10-6 within the white British participants. 

Principal components were subsequently generated using FlashPCA 26 and the first 

five adjusted for in all analyses.   

Patient Involvement 

Details of patient and public involvement in the UK Biobank are available online 

(http://www.ukbiobank.ac.uk/about-biobank-uk/ and https://www.ukbiobank.ac.uk/wp-

content/uploads/2011/07/Summary-EGF-

consultation.pdf?phpMyAdmin=trmKQlYdjjnQIgJ%2CfAzikMhEnx6).  
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Phenotypes 

BMI 

The UK Biobank measured weight and height in all participants and calculated BMI. 

BMI was available for 119,464 individuals of white descent with Townsend 

deprivation indices and genetic data available. We performed analyses of BMI on 

both its natural (kgm-2) and an inverse normalised scale to account for differences in 

variances (see below). 

Obesogenic environment  

Townsend deprivation index 

The Townsend deprivation index is a composite measure of deprivation based on 

unemployment, non-car ownership, non-home ownership and household 

overcrowding; a negative value represents high socioeconomic position 27. This was 

calculated prior to joining the UK Biobank and is based on the preceding national 

census data, with each participant assigned a score corresponding to the postcode 

of their home dwelling. For presentation purposes, the Townsend deprivation index 

variable was dichotomised at the median with 59,872 individuals in the least 

deprived group (Townsend deprivation index <-2.294) and 59,861 in the most 

deprived group (Townsend deprivation index >-2.294).  

 

The Townsend deprivation index variable was skewed (Supplementary figure 2) and 

therefore we single inverse normalised this variable for use in sensitivity analyses.  

 

Job class 

The UK Biobank asked people to select their current or most recent job. This was 

classified into one of the following strata: elementary occupations, process plant and 

machine operatives, sales and customer service occupations, leisure & other 

personal service occupations, personal service occupations, skilled trades, admin 

and secretarial roles, business and public sector associate professionals, associate 

professionals, professional occupations and managers and senior officials. Data 

were available for 76,374 individuals. The job class variable was dichotomised at the 
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median value with 38,942 individuals in the high job class category (associate 

professionals and above) and 37,374 in the low job class category.  

Years in education 

A variable based on the standardised 1997 International Standard Classification of 

Education (ISCED) of the United Nations Educational, Scientific and Cultural 

Organisation was created in the UK Biobank, using previously published guidelines 

28. Data were available for 118,775 individuals. The educational years variable was 

dichotomised into shorter educational duration (7-15 years, n=63,572), versus a 

longer educational duration (19 to 20 years, n=55,203).   

Specific measures of the obesogenic environment  

To test the hypothesis that previously published BMI gene-environment interactions 

may have been driven by SEP we tested 12 additional measures of the obesogenic 

environment, including self-reported and objectively measured physical activity, 

several diet variables, TV-watching and, as an implausible control variable, sun  

protection use (Supplementary table 8).  

Replication with TDI: CoLaus Study 

The CoLaus Study 29 is a population based study including over 6500 participants 

from Lausanne (Switzerland). This study included inhabitants aged 35-75 years at 

baseline (2003-2006) and they were followed up between 2009 and 2012 (mean 

follow-up 5.5 years). Within this cohort TDI was available for 5,237 individuals with 

BMI and BMI genetic variants available. The use of TDI in Lausanne may capture 

socioeconomic position in a different way to the UK Biobank, because, for example, 

not owning a car correlates with higher SEP. The CoLaus study complied with 

Declaration of Helsinki and was approved by the local Institutional Ethics Committee.  

Replication with job class: 1958 Birth Cohort 

The 1958 Birth Cohort 30 has followed persons born in England, Scotland and Wales 

during one week in 1958 from birth into middle age. Within this cohort 6,171 

individuals had information on social class based on their own current or most recent 

occupation (at age 42), body mass index (measured at age 44-45) and genetic data.  

The social class measure was dichotomised separately for men and for women, 
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yielding 2,873 participants in the high job class category and 3,298 in the low job 

class category. 

Selection of Genetic Variants associated with BMI and Genetic Risk Score 

We selected 69 of 76 common genetic variants that were associated with BMI at 

genome wide significance in the GIANT consortium in studies of up to 339,224 

individuals (Supplementary table 9)5. We used these variants to create a genetic risk 

score to represent genetic susceptibility to high BMI – we were not testing specific 

variants for interaction, but instead how genetic susceptibility overall may be 

influenced by environmental and behavioural exposures. We used genotypes 

imputed by central UK Biobank analysts using a combined reference panel of the 

1000Genomes and UK10K sequenced datasets. We confirmed the validity of the 

genotypes by testing the genetic risk score for association with BMI. We limited the 

BMI SNPs to those that were associated with BMI in the analysis of all European 

ancestry individuals and did not include those that only reached genome-wide levels 

of statistical confidence in one-sex only, or one-strata only. Variants were also 

excluded if known to be classified as a secondary signal within a locus. Three 

variants were excluded from the score due to potential pleiotropy (rs11030104 

[BDNF reward phenotypes], rs13107325 [SLC39A8 lipids, blood pressure], 

rs3888190 [SH2B1 multiple traits]), 3 SNPs not in Hardy Weinberg Equilibrium 

(P<1x10-6; rs17001654, rs2075650, rs9925964) or the SNP was unavailable 

(rs2033529).   

 

The imputed dosages for each SNP were recoded to represent the number of BMI-

increasing alleles for that particular SNP. A BMI genetic risk score (GRS) was 

created using the SNPs. Each allele associated with high BMI was weighted by its 

relative effect size (β-coefficient) obtained from the previously reported BMI meta-

analysis data5. A weighted score was created (equation 1) in which β is the β-

coefficient representing the association between each SNP and BMI.  

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =  𝛽1 𝑥 𝑆𝑁𝑃1 +  𝛽2 𝑥 𝑆𝑁𝑃2 + ⋯ 𝛽𝑛 𝑥 𝑆𝑁𝑃𝑛 (Equation 1) 

 

The weighted score was rescaled to reflect the number of BMI-increasing alleles 

(Equation 2). 
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𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑅𝑆 =  
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝑠𝑐𝑜𝑟𝑒 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑆𝑁𝑃𝑠

𝑠𝑢𝑚  𝑜𝑓  𝑡ℎ𝑒 𝛽 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠
 (Equation 2) 

 

Statistical analysis 

The mean and standard deviation of BMI was calculated for two groups in the UK 

Biobank: those living in the 50% relatively most and least deprived situations.  

For each of the measures of the socioeconomic position we calculated the 

association between the 69 SNP BMI GRS and BMI in the high risk and low risk 

environments using linear regression models. BMI was adjusted for age, sex, five 

ancestry principal components and assessment centre location. We additionally 

adjusted for genotyping platform (two were used) at runtime. 

Interactions between the genetic variables and the obesogenic environment 

variables on BMI were tested by including the respective interaction terms in the 

models (e.g. interaction term= GRS x Townsend deprivation index (continuous)). A 

continuous measure for Townsend deprivation index was used to limit spurious 

results from the gene x environment interactions.  

 

We performed the analyses in two ways. First we analysed the data with BMI on its 

natural scale (kgm-2) (residualised for age, sex, centre location and five ancestry 

principal components). Second we inverse normalised the data so that BMI, in each 

strata had a mean BMI of 0 and a SD of 1. This analysis allowed us to account for 

the differences in BMI variation observed in high and low risk strata. We present 

primary results from the inverse normalised data. To further assess the extent to 

which differences in BMI variation could influence our results we tested for 

heteroscedasticity using the Breusch-Pagan test as implemented with the estat 

hettest in STATA31. Standard regression analysis can produce biased standard 

errors if heteroscedasticity is present 32. If heteroscedasticity was present we utilised 

robust standard errors, using the vce(robust) option in STATA, which relaxes the 

assumption that errors are both independent and identically distributed and are 

therefore more robust.  
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We also repeated the analysis adjusting for other measures of the environment 

previously associated with interactions, including self-reported physical activity, TV 

watching and diet6,7,9,10.  

The analysis was repeated using single inverse normalised Townsend deprivation 

index.  

Finally, we investigated each of the 69 SNPs individually. The association between 

each of the 69 SNPs and BMI in the high risk and low risk environments was 

investigated using linear regression models. Interactions between each SNP and the 

Townsend deprivation index on BMI were tested by including the respective 

interaction terms in the models (e.g. interaction term= SNP x Townsend deprivation 

index (continuous)).  

Identical analyses were performed in the CoLaus Study and the 1958 Birth Cohort.   

Randomly selecting groups of individuals to be of different BMIs 

Firstly, we employed a meta-heuristic sampling approach to randomly select 2 

groups of individuals with BMI distributions identical to the high and low Townsend 

deprivation index groups. This method selected 59,712 individuals with a mean BMI 

of 27.86 and a standard deviation of 5.12 and a group of 59,754 individuals with a 

mean BMI of 27.19 and a standard deviation of 4.47. There was no overlap between 

individuals selected for the two groups. This analysis was repeated 100 times. No 

significant overlap between the groups was observed (i.e. those in the high risk 

group in 1 analysis were randomised across high and low risk groups in subsequent 

analyses).  

BMI genetic risk score interactions with dummy “environments” 

Secondly, we created a random dummy continuous environmental variable that was 

correlated with BMI to approximately the same extent as the Townsend deprivation 

index (r2=0.0894), but was only minimally correlated with Townsend deprivation 

index itself.  The new variable, Y, was created in STATA by regressing TDI on BMI, 

the genetic risk score and a range of covariates (age, age2, sex) and taking the fitted 

values and the residuals. The residuals were then randomly permuted 1000 times 

and added to the fitted values. This ensures that the simulated variable has the 

same conditional expectations and same residual distributions as the real TDI 
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variable. Further information on this method is provided in the supplement. The 

interaction model was run for all 1000 simulations.   

Negative control variable – self reported sun protection use 

We used sun protection use as a negative control variable to attempt to account for 

residual confounding. UK Biobank participants were asked “Do you wear sun 

protection (e.g. sunscreen lotion, hat) when you spend time outdoors in the 

summer?" with the options: Never, Sometimes, Most of the time, Always, Don’t go 

out in the sun, Don’t know and Prefer not to answer.  The variables was correlated 

with TDI and BMI but is implausible as a mechanism (see discussion for why vitamin 

D exposure is unlikely to be a mechanism in this context). 
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Table 1: Demographics of the 119,733 individuals in the UK Biobank with Townsend deprivation index, BMI and genetic data 

available by deprivation. 

 

 

 

 

 

 

 

* High job class included the following job categories: associate professionals, professional occupations and managers and senior 

officials. 

  

 Most deprived Least deprived P* 

N 59,861 59,872  

Mean age at recruitment (SD) 56.5 (8.1) 57.4 (7.8) <1x10-15 

Male, N (%) 28,306 (47.3) 28,383 (47.4) 0.91 

Mean Townsend deprivation index (SD) 0.83 (2.5) -3.78 (0.9) <1x10-15 

Mean BMI (SD) 27.9 (5.1) 27.2 (4.5) <1x10-15 

Obese, N (%) 16,647 (27.9) 13,233 (22.1) <1x10-15 

Current smoker, N (%) 9,193 (15.4) 4,139 (6.9) <1x10-15 

Type 2 diabetes, N (%)  2,304 (3.9) 1,702 (2.8) <1x10-15 

Coronary artery disease, N (%) 3,312 (5.5) 2,449 (4.1)  <1x10-15 

High job class*, N (%) 25,947 (43.4) 29,540 (49.3) <1x10-15 

Mean education duration (SD) 14.2 (5.3) 15.2 (4.9) <1x10-15 
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Table 2: Differences in BMI by BMI genetic risk score decile (kgm2) and by allele (inverse normalised scale) for a) actual Townsend deprivation index, 
b) randomly selected groups based on the BMI distribution in the two TDI categories and b) simulated environments with a simi lar association to TDI 

and BMI. There are slightly fewer individuals in the randomly selected groups due to the need to obtain an identical distribution to the real TDI variable.  

Trait 
Obesogenic 

category 
N 

BMI 
(SD) 

BMI 
difference 

in 10% 

lowest 
genetic risk 

BMI 

difference in 
10% highest 
genetic risk 

Per-
allele 

Beta  

SE 
P 

association 
P 

interaction* 
P Interaction 

Robust** 

Townsend Deprivation 
Index (natural scale) 

High SEP 
TDI<-2.294 

59,872 
27.20 
(4.47) 

  
0.022 0.001 <1x10-15 

6x10-12 2x10-10 
Low SEP 

TDI>-2.294 
59,861 

27.87 

(5.13) 
+0.35 kgm-2 +0.92 kgm-2 0.025 0.001 <1x10-15 

Townsend Deprivation 
Index (natural scale)*** 

High SEP 
TDI<-2.294 

42,753 
27.09 
(4.32) 

  0.022 0.001 <1x10-15 

1x10-7 1x10-6 
Low SEP 

TDI>-2.294 
42,684 

27.72 

(4.94) 
+0.35 kgm-2 +0.90 kgm-2 0.024 0.001 <1x10-15 

Townsend Deprivation 

Index (Inverse 
normalised) 

High SEP 
TDI<-2.294 

59,872 
27.20 
(4.47) 

  0.022 0.001 <1x10-15 

7x10-4 8x10-4 
Low SEP 

TDI>-2.294 
59,861 

27.87 

(5.13) 
+0.35 kgm-2 +0.92 kgm-2 0.025 0.001 <1x10-15 

Randomly selected 
individuals (TDI on 
natural scale)**** 

Pseudo low 
risk 

59,753 
27.19 
(4.47) 

  
0.022 0.001 <1x10-15 

8x10-4 9x10-4 
Pseudo high 

risk 
59,711 

27.86 
(5.12) 

+0.51 kgm-2 +1.00 kgm-2 
0.024 0.001 <1x10-15 

Simulated environment 

Pseudo low 

risk 
59,741 

27.16 

(4.61) 

  
0.022 0.001 <1x10-15 

0.093 0.094 
Pseudo high 

risk 
59,740 

27.90 
(5.01) 

+0.58 kgm-2 +1.00 kgm-2 
0.025 0.001 <1x10-15 

Sun protection use 

Usually or 

always use 
68,507 

27.32 

(4.75) 

+0.32 kgm-2 +0.63 kgm-2 

0.022 0.001 <1x10-15 

1x10-4 1x10-4 Never or 
sometimes 

use 

50,561 
27.81 
(4.89) 

0.025 0.001 <1x10-15 

BMI adjusted for age, sex, ancestral principal components and assessment centre location. Models additionally adjusted for genotyping platform 
* Interaction p-value 

** Interaction p-value accounting for heteroscedasticity using robust standard errors 
***Interaction model adjusted for TV watching, physical activity and Western diet.  
****by Meta-heuristic sampling 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074054doi: bioRxiv preprint 

https://doi.org/10.1101/074054
http://creativecommons.org/licenses/by/4.0/


Figure list 

Figure 1: Association between the BMI genetic risk score (by decile) and BMI in A) 

most socially deprived (black circles) and least socially deprived (white circles); B) 

individuals randomly selected to be of high BMI (black circles) and individuals 

randomly selected to be of low BMI (white circles) and C) individuals in the high 

obesogenic simulated environment (black circles) and individuals in the low 

obesogenic simulated environment (white circles). Note for the simulated 

environment we used the median BMI GRS BMI association after 1000 simulations. 

For B it was not possible to use a continuous measure in the calculation of the 

interaction term.  This figure is based on a similar way of showing interaction data 

with a BMI genetic risk score from 33 SEP: Socioeconomic Position 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074054doi: bioRxiv preprint 

https://doi.org/10.1101/074054
http://creativecommons.org/licenses/by/4.0/


 

Figure 2: Histogram showing the –log10(P values) for the interactions from a) the meta-heuristic generated environment and b) the 
simulated environments. The dashed line represents the median value and the solid red line represents the p-value obtained from 

the real data.  
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