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Abstract

The coordinated behaviour of populations of cells plays a central role in tissue growth and

renewal. Cells react to their microenvironment by modulating processes such as movement,

growth and proliferation, and signalling. Alongside experimental studies, computational models

offer a useful means by which to investigate these processes. To this end a variety of cell-based

modelling approaches have been developed, ranging from lattice-based cellular automata to

lattice-free models that treat cells as point-like particles or extended shapes. It is difficult

to accurately compare between different modelling approaches, since one cannot distinguish

between differences in behaviour due to the underlying model assumptions and those due to

differences in the numerical implementation of the model. Here, we exploit the availability of an

implementation of five popular cell-based modelling approaches within a consistent computational

framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily

change constitutive assumptions within these models. In each case we provide full details of all

technical aspects of our model implementations. We compare model implementations using four

case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short-

and long-range signalling. These case studies demonstrate the applicability of each model and

provide a guide for model usage.
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Introduction 1

Cells in eukaryotic organisms respond to physical and chemical cues through processes such 2

as movement, growth, division, differentiation, death and secretion or surface presentation of 3

signalling molecules. These processes must be tightly orchestrated to ensure correct tissue-level 4

behaviour and their dysregulation lies at the heart of many diseases. The last decade has witnessed 5

remarkable progress in molecular and live-imaging studies of the collective self-organization of 6

cells in tissues. In combination with experimental studies, mathematical modelling is a useful tool 7

with which to unravel the complex nonlinear interactions between processes at the subcellular, 8

cellular and tissue scales from which organ- and organism-level function arises. The classical 9

approach to modelling these processes treats the tissue as a continuum, using some form of 10

homogenization argument to average over length scales much larger than the typical diameter of 11

a cell. It can thus be difficult to incorporate heterogeneity between cells within a population, or 12

investigate the effect of noise at various scales, within such models. 13

Facilitated by the reduction in cost of computing power, a number of discrete or ‘individual-based’ 14

approaches have been developed to model the collective dynamics of multicellular tissues (Fig 1). 15

Such models treat cells, or subcellular components, as discrete entities and provide natural 16

candidates for studying the regulation of cell-level processes in tissue dynamics. However, they 17

are less amenable to mathematical analysis than their continuum counterparts. The precise 18

rules and methods of implementation differ between models and must be adapted to a particular 19

biological system. However, they can be broadly categorised as on- and off-lattice, according to 20

whether or not cells are constrained to lie on an artificial lattice. Each of the models described 21

below have been helpful in furthering our knowledge but, like all models, they are simplifications 22

and so have limitations. 23

Arguably the simplest individual-based models are cellular automata (CA), where each lattice 24

site can contain at most a single cell (Fig 1(a)). The system is evolved discretely, using a 25

fixed time-stepping [1] or event-driven [2] approach, with the new state of each cell determined 26

using deterministic or stochastic rules and the state of the system at the previous time step. 27

The computational simplicity of CA renders them amenable to simulating large numbers of 28

cells. 29

Another class of on-lattice model is the cellular Potts (CP) model [3], which represents each 30

cell by several lattice sites, allowing for more realistic cell shapes (Fig 1(b)). The shape of 31

each cell is evolved via some form of energy minimization. Unlike CA, the CP model can 32
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(a) (b) (c) (d) (e)

(f)

Fig 1. Schematics of the cell-based models considered in this study. (a) Cellular
automaton (CA). (b) Cellular Potts (CP) model. (c) Overlapping spheres (OS) model. (d)
Voronoi tessellation (VT) model. (e) Vertex model (VM). (f) Flow chart of cell-based simulation
algorithm. See text for full details.

incorporate mechanical processes such as cell membrane tension, cell-cell and cell-substrate 33

adhesion, chemotaxis and cell volume conservation. The CP model has been used to study 34

biological processes ranging from cell sorting [4] and morphogenesis [5] to tumour growth [6]. 35

The removal of a fixed-lattice geometry in off-lattice models enables the more detailed study 36

of mechanical effects on cell populations. Two common descriptions of cell shape in off-lattice 37

models are (i) ‘overlapping spheres’ (OS) or quasi-spherical particles [7] and (ii) through Voronoi 38

tessellations (VT) [8]; in both approaches, the centre of each cell is tracked over time. In the 39

former, cells are viewed as particles that are spherical in the absence of any interactions but 40

which deform upon cell-cell or cell-substrate contact (Fig 1(c)). In the latter, the shape of each 41
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cell is defined to be the set of points in space that are nearer to the centre of the cell than the 42

centres of any other cell; a Delaunay triangulation is performed to connect those cell centres that 43

share a common face, thus determining the neighbours of each cell [9] (Fig 1(d)). In either case, 44

Monte Carlo methods or Langevin equations may be used to simulate cell dynamics. 45

An alternative off-lattice approach commonly used to describe tightly packed epithelial cell sheets 46

are vertex models (VM), in which each cell is modelled as a polygon, representing the cell’s 47

membrane (Fig 1(e)). Each cell vertex, instead of centre, moves according to a balance of forces 48

due to limited compressibility, cytoskeletal contractility and cell-cell adhesion. Additional rules 49

govern cell neighbour rearrangements, growth, mitosis and death. 50

Several on- and off-lattice cell-based models have coupled descriptions of nutrient or morphogen 51

transport and signalling to cell behaviour [10, 11, 12, 13, 14]. For example, a hybrid CA was 52

used by Anderson and colleagues to study the role of the microenvironment on solid tumour 53

growth and response to therapy [15], while Aegerter-Wilmsen et al. coupled a vertex model of 54

cell proliferation and rearrangement with a differential algebraic equation model for a protein 55

regulatory network to describe the interplay between mechanics and signalling in regulating 56

tissue size in the Drosophila wing imaginal disk [10]. 57

As the use of cell-based models becomes increasingly widespread in the scientific community, 58

it becomes ever more useful to be able to compare competing models within a consistent 59

computational framework, to avoid the potential danger of artifacts associated with different 60

methods of numerical solution. To date there has not been a comparison of the classes of models 61

described above, because it is difficult to identify in some cases corresponding processes but 62

also that there has not been a common computational framework in which to carry out such 63

a comparison. The development of Chaste, an open-source C++ library for cell-based and 64

multiscale modelling [16, 17], now allows for the latter. 65

Here we present a systematic comparison of five classes of cell-based models through the use 66

of four case studies. We demonstrate how the key cellular processes of proliferation, adhesion, 67

and short- and long-range signalling can be implemented and compared within the competing 68

modelling frameworks. Moreover, we provide a guide for which model is appropriate when 69

representing a given system. We concentrate throughout on the two-dimensional case, but note 70

that many of these models have also been implemented in three dimensions. 71

The remainder of this paper is structured as follows. We begin by presenting the five mathematical 72

frameworks and discuss their implementation. Next, we use our four case studies to demonstrate 73
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how the modelling frameworks compare. Finally, we discuss our results and present a guide to 74

which framework to use when modelling a particular problem. 75

Materials and Methods 76

In this study we compare the implementation and behaviour of: cellular automata (CA); cellular 77

Potts (CP); cell-centre, both overlapping sphere (OS) and Voronoi tessellation (VT); and vertex 78

(VM) models. We begin by briefly describing the governing rules and equations for each of these 79

models focussing on the way they implement the common processes of cell-cell interaction and 80

cell division. Throughout, full references are given to previous publications giving much fuller 81

details of the derivation and implementation of each of these models. We also present a consistent 82

numerical implementation for the models. 83

Cellular automaton (CA) model 84

There are several possible ways to represent cell movement in a CA. Here we focus on compact 85

tissues so consider movement driven by division and cell exchange, using a shoving-based 86

approach [18]. The spatial domain is discretised into a regular lattice with cells occupying the 87

individual lattice sites (Fig 1(a)). The area Ai of each cell i in this model is given by 1 squared 88

cell diameter (CD2). 89

In common with all of the cell-based models presented here, cell proliferation is determined by a 90

model of how cells progress through the cell cycle, which in turn specifies when cells divide. Our 91

model of cell-cycle progression varies across the four examples considered. However, in all cases 92

a dividing cell selects a random lattice site from its Moore neighbourhood (the eight cells that 93

surround it), and all cells along the row, column or diagonal from the dividing cell’s location are 94

instantaneously displaced or ‘shoved’ to make space for the new cell. 95

We use a Metropolis-Hastings algorithm to make additional updates to the state of the tissue 96

using asynchronous updating. At each time step ∆t, after checking for and implementing any 97

cell divisions, we sample with replacement NCells cells, where NCells is the number of cells in the 98

tissue at time t (thus, it may be the case that a cell is sampled more than once in a time step, 99

while others are not sampled). This sweeping of the domain is also known as a Monte Carlo 100

Step (MCS). We randomly select a neighbouring lattice site from each sampled cell’s Moore 101
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neighbourhood for a potential swap. The swapping of cells is intended to model random motility 102

and the affinity of cells to form and break connections with adjacent cells. Assigning the MCS 103

to a time step ∆t allows us to parametrize the timescale of the switching process and relate this 104

to cell division. A probability per hour is assigned for the cells (or empty lattice site, which we 105

refer to as a void) to swap locations, pswap, which is calculated as 106

pswap =

κswap, for ∆H ≤ 0,

κswap exp
(
−∆H

T

)
, for ∆H > 0.

(1)

where κswap represents the rate of switching and T represents the background level of cell 107

switching, modelling random cell fluctuations. If T = 0 then only energetically favourable swaps 108

happen, and we use this as the default value for our simulations; as T increases, more energetically 109

unfavourable swaps occur. Finally, ∆H = H1 −H0 denotes the change in adhesive energy due 110

to the swap, with H0 and H1 being the energy in the original and changed configurations 111

respectively, which is defined to be the sum of the adhesion energy between lattice sites: 112

H =
∑

(i,j)∈N

γ(τ(i), τ(j)), (2)

where γ(a, b) is a constant whose value depends on a and b, representing the adhesion energy 113

between cells (or void) of type a and b, τ(k) is the type of cell k (or void if there is no cell on the 114

lattice site) and N is the set of all neighbouring lattice sites. Here τ(k) takes the values ‘A’, ‘B’ 115

and ‘void’, but can in principle be extended to more cell types. 116

Cellular Potts (CP) model 117

As in the CA, we discretize the spatial domain into a lattice. Although, as in the CA case, the 118

structure and connectivity of this lattice may be arbitrary, for simplicity we restrict our attention 119

to a regular square lattice of size N ×N . In contrast to the CA model, each cell is represented 120

by a collection of lattice sites, with each site contained in at most one cell with the cell type of a 121

lattice site being referred to as its spin. The area Ai of each cell i in this model is given by the 122

sum of the area of all the lattice sites contained in the cell. In the present study, we take the 123

area of each lattice site to be 1/16 CD2 and cells have a target area of 16 lattice sites i.e. 1 CD2. 124

This is illustrated in Fig 1(b). 125
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In a similar manner to the CA, the system evolves by attempting to minimize a total ‘energy’ or 126

Hamiltonian, H, over discrete time steps using a Metropolis-Hastings algorithm. The precise 127

form of H varies across applications but can include contributions such as cell-cell adhesion, 128

hydrostatic pressure, chemotaxis and haptotaxis [5]. One iteration of the algorithm consists of 129

selecting a lattice site and a neighbouring site (from the Moore neighbourhood) at random and 130

calculating the change in total energy resulting from copying the spin of the first site to the 131

second, ∆H = H1 −H0. The spin change is accepted with probability 132

pswap = min
(

1, e−∆H/κT
)
, (3)

where κ is the Boltzmann constant and T , referred to as the ‘temperature’, characterizes 133

fluctuations in the system; broadly speaking, at higher values of T cells move more freely, and 134

hence system fluctuations increase in size. At each time step, ∆t we choose to sample with 135

replacement N ×N lattice sites (thus, it may be the case that a cell is sampled more than once 136

in a time step, while others are not sampled). Note that this established algorithm for simulating 137

CP models permits cell fragmentation, in principle; however, recent work has overcome this 138

limitation [19]. 139

In this study, we use a Hamiltonian of the form 140

H =

NCells(t)∑
i=1

[
α
(
Ai −A(0)

i

)2
+ β

(
Ci − C(0)

i

)2
]

+
∑

(i,j)∈N

(1− δσ(i),σ(j))γ(τ(i), τ(j)), (4)

where the first and second terms on the right-hand side represent the area and perimeter constraint 141

energies, summed over each cell in the system, and the third term represents the adhesion energy. 142

Here σ(k) denotes the index of the cell containing lattice site k (note we let σ(k) = 0 if no cell 143

is attached to the lattice site and we denote this to be the void), and δa,b is the delta function, 144

which equals 1 if a = b and 0 otherwise. τ(k) denotes that cell’s ‘type’ (with the type void if 145

σ(k) = 0), and γ denotes the interaction energies between cells occupying neighbouring lattice 146

sites i and j. Again N is the set of all neighbouring lattice sites and we allow γ to take different 147

values for homotypic and heterotypic cell-cell interfaces and for ‘boundary’ interfaces between 148

cells and the surrounding medium. Here A
(0)
k and C

(0)
k denote a specified ‘target area’ and 149

‘target perimeter’ for cell k, respectively, which can depend on internal properties of the cell, 150

allowing for cell growth to be modelled. Here we assume all cells are mechanically identical and 151

set A
(0)
k = A(0) and C

(0)
k = C(0). The parameters α and β influence how fast cells react to the 152
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area and perimeter constraints, respectively. 153

Cell-centre models 154

Here cells are represented by their centres, which are modelled as a set of points {r1, . . . , rNCells
} 155

which are free to move in space. For simplicity, we assume all cells to have identical mechanical 156

properties and use force balance to derive the equations of motion. We balance forces on each cell 157

centre and making the standard assumption that inertial terms are small compared to dissipative 158

terms (as cells move in dissipative environments of extremely small Reynolds number [20]), we 159

obtain a first-order equation of motion for each cell centre, ri, given by 160

η
dri
dt

= Fi(t) =
∑

j∈Ni(t)

Fij(t), (5)

where η denotes a damping constant and Fi(t) is the total force acting on a cell i at time t which 161

is assumed to equal the sum of all forces, coming from the connections with all neighbouring 162

cells j ∈ Ni(t) adjacent to i at that time, Fij(t). The definition of Ni(t) varies between the OS 163

and VT models; in the former, it is the set of cells whose centres lie within a distance rmax from 164

the centre of cell i, while in the latter, it is the set of cells whose centres share an edge with the 165

centre of cell i in the Delaunay triangulation. We solve this equation numerically using a simple 166

forward Euler scheme with sufficiently small time step ∆t to ensure numerical stability: 167

ri(t+ ∆t) = ri(t) +
∆t

η

∑
j∈Ni(t)

Fij(t). (6)

If the subcellular machinery causes cell i to divide then we generate a random mitotic unit 168

vector m̂ and the daughters cells are placed at ri ± εm̂, where ε is a constant division separation 169

parameter and is dependent on the particular cell centre model being used. 170

Overlapping spheres (OS) 171

Here, each cell i has an associated radius Ri. Two cells i and j are assumed to be neighbours if 172

their centres satisfy ||ri − rj || < rmax for a fixed constant rmax, known as the interaction radius, 173
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where rmax > 2Ri for all i. The area of the cell is defined as [21] 174

Ai = π
(
Reff
i

)2
, (7)

where 175

Reff
i =

1

6

 ∑
j∈Ni(t)

1

2
(Ri −Rj + ||rij ||) +Ri(6− size(Ni(t)))

 . (8)

Here rij(t) = rj(t) − ri(t) is the vector from cell i to cell j at time t. An illustration of cell 176

connectivity is given in Fig 1(c). 177

In the OS model we define the force between cells as [21] 178

Fij(t) =


µijsij(t)r̂ij(t) log

(
1 +

||rij(t)||−sij(t)
sij(t)

)
, for ||rij(t)|| < sij(t),

µij(||rij(t)|| − sij(t))r̂ij(t) exp
(
−kC ||rij(t)||−sij(t)

sij(t)

)
, for sij(t) ≤ ||rij(t)|| ≤ rmax,

0, for ||rij(t)|| > rmax.

(9)

Here µij is known as the “spring constant” and controls the size of the force (and depends on 179

the cell types of the connected cells), by default µij = µ for all interactions, rij(t) = ri(t)− rj(t), 180

r̂ij(t) is the corresponding unit vector, kC is a parameter which defines decay of the attractive 181

force, and sij(t) is the natural separation between these two cells. For the OS model sij(t) is the 182

sum of the radii of the two cells, and here the cell’s radius increases from 0.25 to 0.5 CDs over the 183

first hour of the cell cycle, and hence is a function of time. Note that there is a cut off distance, 184

rmax, such that once ||rij(t)|| > rmax the cells are not connected so the force is zero. 185

Voronoi tessellation (VT) 186

In the VT model we represent cells by the Voronoi region of the cell centres (this is defined as 187

the region of space that is nearer to one cell centre than any other). Example cell regions are 188

shown as solid lines in Fig 1(d). In this model, the area Ai of a cell i is defined to be the area of 189

the corresponding Voronoi region. Cell connectivity is defined by the dual of the Voronoi region, 190

known as a Delaunay triangulation and this is shown by the dashed lines in Fig 1(d). Two cell 191

centres are assumed to be connected if they share an edge in the Delaunay triangulation. 192
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In the VT model we define the force between cells to be [8, 22], 193

Fij(t) = µij r̂ij(t) (||rij(t)|| − sij(t)) . (10)

Here µij is the spring constant (which again defaults to µij = µ), rij(t) = ri(t)− xj(t), r̂ij(t) is 194

the corresponding unit vector and sij(t) is the natural separation between these two cells. For 195

the VT model this increases linearly from s = ε (= 0.1) to s = 1 over the first hour of the cell 196

cycle. 197

When using a Delaunay triangulation to define cell connectivity, on a growing tissue, long edges 198

can form between distant cells causing unrealistic connections to be made. There are two methods 199

used to overcome this. The first is to introduce a cut-off length, rmax, such that cells further 200

apart than the cut-off length are no longer connected (analogous to the OS model). The second 201

method is to introduce ghost nodes, which are extra nodes introduced into the simulation which 202

surround the tissue, which do not exert any forces on the cells, and preclude any long connections 203

from forming. Moreover these ghost nodes ensure that the Voronoi regions, and therefore cell 204

areas, are finite. In order for the ghost nodes to surround the tissue, as it grows, cells exert a 205

force on the ghost nodes (and ghost nodes exert forces on other ghost nodes) causing them to 206

move with the cells. The force applied is calculated using Equation (10). For more details on 207

ghost nodes see [23]. 208

Vertex model (VM) 209

In the VM a tissue is represented by a collection of non-overlapping connected polygons whose 210

vertices are free to move, each polygon corresponds to a cell. In this model, the area Ai of a 211

cell i is given by the area of the associated polygon. An illustration of cells in a VM is given in 212

Fig 1(e). As in cell-centre models we consider a set of points {r1, . . . , rNVertices
} and we use force 213

balance to derive an equation of motion [24]: 214

ηV
dri
dt

= −∇i

NCells(t)∑
j=1

α(Aj −A(0)
j

)2
+ β

(
Cj − C(0)

j

)2
+

Mj∑
m=1

γ(τ(j), τ(jm))Lj,m

 , (11)

where ri is the position of vertex i, ηV is an associated drag constant, ∇i is the gradient with 215

respect to ri and NCells(t) denotes the number of cells in the system at time t. The variables Aj 216

and Cj denote the cross-sectional area and the perimeter of cell j, respectively, and Mj is the 217
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number of vertices of cell j. Lj,m is the length of the line connecting vertices m and m+ 1 in 218

cell j and jm is the neighbour of cell j which shares the edge connecting vertices m and m+ 1 in 219

cell j. Similar to the CP model, A(0) is the cell’s natural (or target) area, and C(0) is its natural 220

perimeter. Finally, α and β are positive constants that represent a cell’s resistance to changes in 221

area or perimeter, respectively. γ again denotes the interaction energies between neighbouring 222

cells. We allow γ to take different values for homotypic and heterotypic cell-cell interfaces and 223

for ‘boundary’ interfaces between cells and the surrounding medium. 224

For simplicity here we set all cells to have a target area of A(0) = 1 and therefore a target 225

perimeter of C(0) = 2
√
π. See [25] for a discussion on the other growth options and their influence 226

on simulations. 227

To maintain a non-overlapping tessellation of the domain we need to introduce a process where 228

cell edges can swap, known as a T1 transition. This process allows cell connectivity to change as 229

cells grow and move and is instrumental in the process of cell sorting. When an edge between 230

two cells, A and B, becomes shorter than a given threshold, lr, we rearrange the connectivity so 231

that the cells A and B are no longer connected and the other cells that contain the vertices on 232

the short edge, C and D, become connected. Other processes may also be required, such as a 233

T2 transition where small triangular elements are removed to simulate cell death. For further 234

details of these elementary operations, see [26]. 235

As with all of these models, other force laws could be used to define cell interactions [27]. For full 236

details of the forces used in the vertex model, along with how they differ in both implementation 237

and simulation results, see [26]. 238

Implementation 239

Now we have briefly introduced all the cell-based models used in this study we proceed to discuss 240

their implementation. Each simulation takes the form given in Fig 1(f). All components of this 241

algorithm are the same for each simulation type except for the CA model where cells may also 242

move due to the division of other cells. All models have been non-dimensionalised so that the 243

units of space are cell diameters (CDs) and time is measured in hours. 244

We implement all model simulations within Chaste, an open source C++ library that provides a 245

systematic framework for multiscale multicellular simulations [17]. Further details on the imple- 246

mentation of VM and CP models within Chaste can be found in [26] and [28], respectively. 247
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Results 248

We now present a series of case studies that illustrate how cellular processes can be represented in 249

each cell-based model and how differences in representation may influence simulation results. 250

Adhesion 251

Cell-cell adhesion is a fundamental property of tissue self-organization. If embryonic cells of two 252

or more histological types are placed into contact with each other, they can undergo spontaneous 253

reproducible patterns of rearrangement and sorting. This process can, for example, lead to 254

engulfment of one cell type by another. Explanations for this phenomenon include the differential 255

adhesion hypothesis, which states that cells tend to prefer contact with some cell types more 256

than others due to type-specific differential intercellular adhesion [29]; and the differential surface 257

contraction hypothesis, which states that cells of different types instead exert different degrees 258

of surface contraction when in contact with other cell types or any surrounding medium [30]. 259

Computational modelling has played a key role in comparing these hypotheses [31]. 260

As our first case study, we simulate cell sorting due to differential adhesion in a monolayer of 261

cells in the absence of cell proliferation or respecification. We consider a mixed population of two 262

cell types, A and B, which we assume to exhibit differential adhesion. This is implemented in the 263

CA, CP and VM models by having different values of the parameter γ for different cell types. 264

Specifically, we choose γ(A,A) = γ(B,B) < γ(A,B) and γ(A, void) < γ(B, void) to drive type-A 265

cells to engulf type-B cells. In the cell-centre (OS and VT) models, we instead assume that for 266

any pair of neighbouring cells located a distance farther apart than the rest length, the spring 267

constant, µ is reduced by a factor µhet = 0.1 if the cells are of different types. Additionally, in 268

the OS model we use a larger interaction radius, rmax = 2.5, to encourage cell sorting. 269

In addition to the update rules and equations of motion outlined in the previous section, we 270

consider each cell to be subject to random motion. This random motion is intrinsic to the CA 271

and CP models and is adjusted by changing the parameter T in Eq (1) and Eq (3). For the OS, 272

VT and VM models we introduce an additional random ‘diffusive’ force acting on each cell or 273

vertex, 274

Frand =

√
2ξ

∆t
η, (12)
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where η is a vector of samples from a standard multivariate normal distribution and ξ is a 275

parameter that represents the magnitude of the perturbation [26]. This size is scaled by the time 276

step to ensure that when the equations of motion are solved numerically, the rate of diffusion is 277

independent of the size of time step. We simulate each model ten times, starting from an initial 278

rectangular domain of width Lx and height Ly, comprising 50% type-A cells and 50% type-B 279

cells. For all models, the edge of the domain is a free boundary. 280

The time step of the CA and CP models dictates how many MCS occur per hour and, along 281

with the temperature, T , can influence the dynamics of the simulation [28]. Here we perform an 282

ad hoc calibration of T and ∆t so that the temporal dynamics of the CA and CP models match 283

those of the other models as far as possible [28]. A full list of parameter values is provided in 284

Tables 1 and 2. 285

The results of a single simulation of each model are shown in Fig 2. In each case, the tissue 286

evolves to a steady state where cells of each type are more clustered than the initial configuration. 287

In the CA, CP and VM models, type-A cells are eventually completely engulfed; note that for 288

other parameter values, each model can exhibit dissociation or checkerboard patterning [4, 31]. In 289

the other models, the tissue evolves to a local steady state that does not correspond to complete 290

engulfment. 291

A quantitative comparison of cell sorting dynamics is shown in Fig 3. In particular we show how 292

cell sorting is affected by the level of random motion applied to cells. This is demonstrated by 293

computing the fractional length, defined as the total length of edges between cells of different 294

types for each simulation. These are then normalised by the length at t = 0 for comparison. We 295

find that the CA and CP models undergo repeated annealing due to their stochastic updating, 296

and eventually end up at the global minimum (corresponding to complete engulfment). However, 297

large amounts of noise can cause disassociation of cells in the CP model. 298

As Fig 3 shows, for the off-lattice models the total energy of the system evolves to a local 299

minimum in the absence of noise; however, we can recover more complete engulfment through 300

the addition of random cell movement. A relatively large amount of noise is required to alter cell 301

neighbours in the Delaunay triangulation, illustrated by the flat lines in Fig 3(b). However, if 302

there is too much noise then cells can become dissociated and move amongst the ghost nodes; in 303

this case, if a cell reaches the edge of the ghost node region, its Voronoi area becomes ill-defined. 304

A similar sensitivity is exhibited by the VM; in this case, if the amount of noise is too high, cell 305

shapes can become inverted due to vertices randomly intersecting edges. 306
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Table 1. Table of parameters used in the models across case studies.

Parameter Description Model(s) Value Reference

∆t Time step CA, CP 0.01 h [28]*
OS, VT, VM 0.005 h [26][22]

A(0) Cell target area CA 1 ls (1.0 CD2) –
OS π/4 CD2 –
CP 16 ls (1.0 CD2) –

VT
√

3/2 CD2 –
VM 1 CD2 [26]

γ(cell, cell) Cell-cell adhesion coefficient CA, CP 0.1 [28]*
VM 1 [26]

γ(cell, void) Cell-boundary adhesion coefficient CA, CP 0.2 [28]*
VM 10 [26]

kC Decay of attraction force OS 5 [21]

T Temperature CA 0.0 –
CP 0.1 [28]

α Volume deformation coefficient CP 0.1 [28]
VM 50.0 [26]

β Surface deformation coefficient CP 0.01 [28]
VM 1.0 [26]

C(0) Cell target perimeter CP 16 ls (4 CD) [28]
VM 2

√
π CD [26]

η Drag coefficient OS, VT 1.0 [22]
VM 1 [26]

µ Spring constant OS, VT 50.0 [8, 32]

s Mature cell spring rest length OS, VT 1.0 CD [22]

κswap rate of cell switching CA 1 –

rmax Force cut-off length OS 1.5 –

lr Cell rearrangement threshold VM 0.1 CD [26]

Asterisks (*) denote parameters whose values are taken for the CP model from the given
reference, with the same value being assumed for the CA model.

To summarise, we find that the degree of cell sorting observed in our simulations depends on 307

how much random cell movement can be accommodated within each model. We note that there 308

is no reason a priori to suppose that the configuration corresponding to the global minimum 309
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Table 2. Table of parameters specific to the differential adhesion simulations.

Parameter Description Model(s) Value Reference

Lx Initial width of tissue All 10 CD –
Ly Initial height of tissue All 10 CD –
tcycle Mean cell cycle duration All 16 h –
tend Simulation duration All 100 h –

γ(A,B) Heterotypic cell-cell adhesion coefficient CA 0.2 *
CP 0.5 *
VM 2 *

γ(B, void) Type B cell-boundary adhesion coefficient CA 0.4 *
CP 1.0 *
VM 20 *

T Base ‘temperature’ CA 0.1 *
CP 0.2 [28]*

µhet Heterotypic spring constant OS, VT 0.1 [33]
rmax Force cut-off length OS 2.5 *
ξ Level of noise OS 0.05 *

VT 0.1 *
VM 0.1 *

Asterisks (*) denote parameters whose values in the CA and CP models are chosen to ensure
that engulfment occurs over a similar timescale to that observed in the OS, VT and VM models.

is biologically realistic; this depends on how the typical time scale over which complete sorting 310

occurs compares to other embryogenic processes. 311

Proliferation, death and differentiation 312

Embryonic development and adult tissue self-renewal both rely on careful control of cell prolifer- 313

ation, differentiation and apoptosis to ensure correct cell numbers. The intestinal epithelium 314

offers a particularly important example of such tightly orchestrated cell dynamics. It is folded 315

to form invaginations called crypts and (in the small intestine) protrusions called villi. The 316

disruption of cell proliferation and migration in intestinal crypts is the cause of colorectal cancers. 317

Experimental evidence indicates a complex pattern of cell proliferation within the crypt, in which 318

cells located at the base of the crypt cycle significantly more slowly than those further up. One 319

possible explanation for this is contact inhibition, in which stress due to overcrowding causes a 320

cell to proliferate more slowly, enter quiescence or even undergo apoptosis [34]. The biological 321

mechanism through which shear stress affects the expression of key components in the Wnt 322

signalling pathway, which in turn plays an important role in cell proliferation and adhesion in 323
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CA

CP

OS

VT

VM

      t=10                        t=100                    t=1000                   t=10000

Fig 2. Simulations of cell sorting due to differential adhesion. Snapshots are shown at
selected times for each model. Cells of type A and B are shown in purple and green, respectively.
Engulfment of type-B cells occurs most readily in the CA, CP and VM models. Parameter
values are given in Tables 1 and 2.
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Fig 3. Comparison of cell sorting dynamics across differential adhesion
simulations. As a measure of sorting, the fractional length is computed as a function of time
for each model: (a) CA; (b) CP; (c) OS; (d) VT; (e) VM. Results are shown for varying
multiples of the baseline level of noise, ξ, whose value is defined for each model in Table 2. Each
line is the mean value of 10 simulations. Parameter values are given in Tables 1 and 2.
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this tissue, has been elucidated through a number of studies [35, 36]. 324

A variety of cell-based models have been developed to study aspects of intestinal crypt dy- 325

namics [37], including defining the role of the Wnt signalling pathway [38]. The process and 326

consequences of contact inhibition have also been described using cell-based modelling approaches 327

in a more general setting [39, 40, 41]. A recent study used a cell-centre modelling approach to 328

investigate how combined changes in Wnt signalling response and contact inhibition may induce 329

altered proliferation in radiation-treated intestinal crypts [33]. 330

As our second case study, we simulate the spatiotemporal dynamics of clones of cells within a 331

single intestinal crypt. This example demonstrates how multicellular models and simulations (in 332

particular Chaste) can include the coupling of cell-level processes to simple subcellular processes 333

and deals with cell proliferation, death and differentiation. 334

Our underlying model of a colonic crypt has been described in detail previously [23, 42, 43]. We 335

restrict cells to lie on a fixed cylindrical crypt surface, defined by the two-dimensional domain 336

[0, Lx] × [0, Ly], where Lx and Ly denote the crypt’s circumference and height, respectively. 337

Periodicity is imposed at the left- and right-hand boundaries x ∈ {0, Lx}. We impose a no-flux 338

boundary condition at the crypt base (y = 0) and remove any cell that reaches the crypt orifice 339

(y = Ly). In each simulation, we start with a random tessellation of cells occupying this domain; 340

the crypt is then evolved for a duration tstart to a dynamic equilibrium, before cell clones are 341

recorded and the crypt evolved for a further duration tend. 342

For each cell-based model considered, we implement cell proliferation and differentiation as 343

follows. Any cell located above a threshold height yprolif from the crypt base is considered 344

to be terminally differentiated, and can no longer divide. Any cell located below yprolif can 345

proliferate. On division a random cell cycle duration is drawn independently for each daughter 346

cell. Specifically, we draw the duration of each cell’s G1 phase, tG1, from a truncated normal 347

distribution with mean µG1 = 2, variance σ2
G1 = 1 and lower bound tG1min = 0.01, and we set 348

the remainder of the cell cycle as tS = 5, tG2 = 4 and tM = 1, for the durations of the S phase, 349

G2 phase, and M phase, respectively. 350

In addition the duration of G1 phase depends on the local stress, interpreted as the deviation 351

from a cell’s preferred area. A cell pauses in the G1 phase of the cell cycle if 352

Ai < rCIAT i, (13)
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where rCI is the quiescent area fraction and Ai is as earlier defined for each model [44]. This 353

description allows for quiescence imposed by transient periods of high compression, followed by 354

relaxation. If a cell is compressed during the G2 or S phases then it will still divide, and thus 355

cells whose areas are smaller than the given threshold may still divide. 356

The dimensions of the crypt domain are chosen in line with [32] but are scaled to decrease 357

simulation time. A full list of parameter values is provided in Tables 1 and 3. 358

Table 3. Table of parameters specific to the colonic crypt simulations.

Parameter Description Model(s) Value Reference

tstart Pre-simulation duration All 100 h –
tend Simulation duration All 1000 h –
rCI Quiescent volume fraction All 0− 1 –
Lx Width of crypt All 15 CD Scaled from [32]
Ly Height of crypt All 12 CD Scaled from [32]
h Height at which cells are sloughed All 12 CD Scaled from [32]
µG1 G1 phase duration mean All 2 h –
σ2
G1 Cell cycle variance All 1 h –

tG1min Minimum G1 Phase duration All 0.01 h –
tS S Phase duration All 5 h –
tG2 G2 Phase duration All 4 h –
tM M Phase duration All 1 h –
yprolif Proliferation height threshold All 6 CD Scaled from [32]

The results of a single simulation of each model are shown in Fig 4. In each case, the number of 359

clones decreases over time as the crypt drifts to monoclonality. A more quantitative comparison 360

of clonal population dynamics is shown in Fig 5. For each simulation we compute the number 361

of clones remaining in the crypt as a function of time. All models exhibit the same qualitative 362

behaviour, with a sharp initial drop as all clones corresponding to cells outside the niche are 363

rapidly lost, followed by a more gradual decay in the number of clones at the crypt base due 364

to neutral drift. However, we note that the number of clones reduces more slowly in the VM 365

than other models, since the implementation of the ‘no flux’ boundary condition at the crypt 366

base causes cells to remain there for longer in this model. This highlights the effect that the 367

precise implementation of boundary conditions can have in such models. Finally, we note that 368

for models where contact inhibition can be imposed, we see a slight effect of the degree of contact 369

inhibition on the clonal population dynamics. In most of the models contact inhibition slows 370

the process of monoclonal conversion, due to there being more compression at the crypt base. 371

In contrast, in the VM the number of clones present in the crypt decreases more quickly when 372
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rCI is larger. This effect is due to there being higher rates of division, resulting in cells more 373

frequently being ‘knocked’ from the crypt base; in the other models this effect is counteracted by 374

compression from above. 375

A quantitative comparison of cell velocity profiles up the crypt is shown in Fig 6. This extends 376

the comparison previously made of cell-centre and vertex models of crypt dynamics in [42]. For 377

each simulation we compute the vertical component of cell velocity at different heights up the 378

crypt, averaging over the x direction. We find that all models are similar when considering 379

a ‘position-based’ cell-cycle model (in which cell proliferation occurs below a threshold height 380

up the crypt, corresponding to a threshold Wnt stimulus). However we see more pronounced 381

differences when incorporating more restrictive contact inhibition into the cell-cycle model. 382

Short-range signalling 383

In many developmental processes, distinct states of differentiation emerge from an initially uniform 384

tissue. Lateral inhibition, a process whereby cells evolving towards a particular fate inhibit 385

their immediate neighbours from doing so, has been proposed as a mechanism for generating 386

such patterns. This process is known to be mediated by the highly conserved Notch signalling 387

pathway, which involves ligand-receptor interactions between the transmembrane proteins Notch 388

and Delta or their homologues [45]. 389

Lateral inhibition through Notch signalling has been the subject of several mathematical modelling 390

studies [46, 47, 48, 49, 50, 51]. Such models have largely focused on the conditions for fine-grained 391

patterns to occur in a fixed cell population; little attention has been paid to its interplay with cell 392

movement, intercalation and proliferation. To illustrate how cell-based modelling approaches may 393

be utilised to investigate such questions, as our third case study we simulate Notch signalling in a 394

growing monolayer, with cell proliferation dependent on Delta levels. This example demonstrates 395

how intercellular signalling may be incorporated within each cell-based model. 396

In this example, cells proliferate if located within a radius RP from the origin, and are removed 397

from the simulation if located more than a radius RS > RP from the origin. For each proliferative 398

cell, we allocate a probability pdiv of division per hour, once the cell is above a minimum age, 399

tmin. This is implemented by independently drawing a uniform random number r ∼ U [0, 1] for 400

each cell at each time step and executing cell division if r < pdiv∆t. 401

This description is coupled to a description of Notch signalling between neighbouring cells that 402
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Fig 4. Simulations of monoclonal conversion in the colonic crypt. Snapshots are
shown at selected times for each model. In each simulation at time t = 0, every cell is regarded
as a clonal population and given a different colour, which is inherited by its progeny. These
populations evolve in time due to cell proliferation and sloughing from the crypt orifice,
resulting in a single clone eventually taking over the entire crypt. Parameter values are given in
Tables 1 and 3.
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Fig 5. Comparison of clonal population dynamics across crypt simulations for
varying levels of contact inhibition. The number of clones remaining in the crypt is
computed as a function of time for each model: (a) CA; (b) CP; (c) OS; (d) VT; (e) VM. For
each model, the mean and standard error from 10 simulations are shown for three levels of
contact inhibition, quantified by the parameter rCI . Parameter values are given in Tables 1
and 3.
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Fig 6. Comparison of crypt cell velocity profiles across simulations. The vertical
component of cell velocity is computed for each model: (a) CA; (b) CP; (c) OS; (d) VT; (e) VM.
For each model, the mean and standard error from 10 simulations are shown for three levels of
contact inhibition, quantified by the parameter rCI . Parameter values are given in Tables 1
and 3.

is based on a simple ordinary differential equation model previously developed by Collier et 403

al. [46]. This represents the temporal dynamics of the concentration of Notch ligand, Ni(t), and 404

Delta receptor, Di(t), in each cell i in the tissue. A feedback loop is assumed to occur, whereby 405
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activation of Notch inhibits the production of active Delta. Signalling between cells is reflected 406

in the dependence of Notch activation on the average level of Delta among a cell’s immediate 407

neighbours. The precise set of equations for this signalling model takes the form 408

dNi

dt
=

D̄nN
i

kN + D̄nN
i

−Ni, (14)

dDi

dt
= rDN

(
kD

kD +NnD
i

−Di

)
, (15)

where D̄i denotes the average value of {Dj(t) : j ∈ Ni(t)}, and Ni(t) is the set of neighbours of 409

cell i. A full list of parameter values is provided in Tables 1 and 4. At the start of the simulation, 410

values of each Ni and Di are independently drawn from a U [0, 1] distribution. Upon division, 411

the values of Ni and Di are inherited by each daughter cell. 412

Table 4. Table of parameters specific to the lateral inhibition simulations.

Parameter Description Model(s) Value Reference

tend Simulation duration All 1000 h –
pdiv Cell division rate All {0.01, 0.05, 0.1} cell−1 h−1 –
tmin Minimum division age All 1 h –
kN Dependence of Notch on Delta All 0.01 [46]
kD Dependence of Delta on Notch All 0.01 [46]
nN Notch Hill coefficient All 2 [46]
nD Delta Hill coefficient All 2 [46]
rDN Relative rate of Delta activity All 1 h−1 [46]
RS Removal zone radius All 5 CD –
RP Proliferative zone radius All 15 CD –
rmax Force cut-off length OS 1.0 –

Eq (14) and Eq (15) are coupled to the cell-based models using the following algorithm. At each 413

time step, having updated the cell-based model, we calculate D̄ based on the current connectivity 414

and, assuming D̄ remains constant on the short interval ∆t, we solve the Notch signalling model 415

numerically over the interval [n∆t, (n+ 1)∆t] using a Runge-Kutta method. 416

Simulation snapshots for each model are shown in Fig 7. In each case, we see that lateral 417

inhibition successfully leads to patterning of cells in ‘high delta’ steady state surrounded by 418

cells in a ‘low delta’ steady state in the outer ring of non-proliferating cells. This patterning 419

is disrupted in the inner proliferating region, as cells frequently change neighbours and hence 420

are unable to synchronise their delta-notch dynamics. The degree of this disruption increases 421

with cell division rate and is most apparent in the VM simulation. This may be due to cells 422
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exchanging neighbours more frequently, even in regions without proliferation, in the VM; a 423

similar disruption is observed in the CP simulation. A lattice-induced anisotropy is clearly visible 424

in the CA simulation, where cell shoving causes significantly more cell rearrangements and, as a 425

result, less patterning along diagonals. This phenomenon also occurs, to a lesser extent, in the 426

CP simulation. 427

Fig 7. Simulations of lateral inhibition in a proliferating tissue. For each model,
snapshots are shown for three levels of cell proliferation, quantified by the parameter pdiv.
Parameter values are given in Tables 1 and 4.

A quantitative comparison of the patterning dynamics across models is shown in Fig 8. As a 428

measure of patterning we plot the ratio of cells in the heterogeneous steady state to those not in 429
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this state at the end of each simulation, computed as a radial distribution across the tissue. Note 430

that the ‘kinks’ observed in the CA results (Fig 8(a)) are due to the presence of discrete cells on 431

a fixed lattice. We see that there is significantly less patterning in the proliferative region for all 432

models and that as the rate of division is increased the difference is exaggerated. 433

Long-range signalling 434

Morphogens are secreted signalling molecules that provide positional information to cells in 435

a developing tissue and act as a trigger for cell growth, proliferation or differentiation. The 436

processes of morphogen gradient formation, maintenance and interpretation are well studied, 437

most notably in the wing imaginal disc in the fruit fly Drosophila [52], a monolayered epithelial 438

tissue. A key morphogen called Decapentaplegic (Dpp) forms a morphogen gradient along the 439

anterior-posterior axis of this tissue. Dpp is known to determine the growth and final size of 440

the wing imaginal disc, although the mechanism by which its gradient is established remains 441

unclear. 442

A number of cell-based models have been proposed for the cellular response to morphogen 443

gradients and mechanical effects in developing tissues such as the wing imaginal disc [53, 54, 11]. 444

As our final case study, we simulate the growth of an epithelial tissue in which cell proliferation 445

is coupled to the level of a diffusible morphogen. This case study represents an abstraction 446

of a wing imaginal disc and illustrates how continuum transport equations may be coupled to 447

cell-based models. 448

Our description of morphogen-dependent cell proliferation is based on that proposed by [12] and 449

is implemented as follows. The probability of a cell dividing exactly n time steps after its last 450

division is given by pdivun∆t, where pdiv is a fixed parameter and the weighting un satisfies the 451

recurrence relation 452

un+1 = un (1 + ∆tg(1 + λcn)(1− un)) , (16)

with u0 = uN/2 where uN denotes the parent cell’s weighting value immediately prior to division. 453

Here λ is a fixed parameter quantifying the effect of the morphogen on cell growth, cn denotes the 454

morphogen concentration at that cell at that time step, and g is a random variable independently 455

drawn upon division from a truncated normal distribution with mean µg, variance σ2
g and 456

minimum value gmin. 457
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Fig 8. Comparison of cell fate patterning across lateral inhibition simulations. As a
measure of patterning, the ratio of cells in the heterogeneous steady state to those not in this
state is computed at time tend, as a radial distribution across the tissue (calculated using a bin
size of 0.5 CDs), for each model: (a) CA; (b) CP; (c) OS; (d) VT; (e) VM. For each model, the
mean and standard error from 10 simulations are shown for three levels of cell proliferation,
quantified by the parameter pdiv. Parameter values are given in Tables 1 and 4.
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When initialising the simulation, a value of g is drawn independently for each cell from a truncated 458

normal distribution (as on division), and a value of u0 is drawn independently from a U [0.5, 1] 459

distribution. 460

Each cell-based model is coupled to a continuum model of morphogen transport based on that 461

proposed by [12]. We assume that the morphogen is secreted in a central ‘stripe’ of tissue and 462

diffuses throughout the whole tissue, being transported by the cells, while being degraded. In 463

this description, the morphogen concentration c(x, t) is defined continuously for times t ≥ 0 in 464

the spatial domain x ∈ Ωt defined by the boundary of the cell population (see below). This 465

concentration evolves according to the reaction-advection-diffusion equation 466

∂c

∂t
+ w · (∇c)−∇ · (D∇c) = f(x)− kcc, (17)

with zero-flux boundary conditions at the edge of the domain. The vector field w denotes the 467

velocity of the cells moving in the tissue (and is found in the weak formulation in [12]). Its 468

inclusion in Eq (17) denotes the advection of Dpp with the cells. The parameters D and kc 469

denote the morphogen diffusion coefficient and degradation coefficient respectively. Finally, the 470

function f specifies the rate of production of morphogen in the central stripe of tissue, and is 471

given by 472

f(x, y) =

fprod for x ∈ (−Lprod, Lprod),

0 otherwise.
(18)

To solve Eq (17) numerically, we first discretise the spatial domain defined by the cells to make 473

a computational mesh. For the VT model we use the triangulation defined by the dual of the 474

Voronoi tessellation; for the vertex model we use the triangulation defined by dividing each 475

polygon cell into a collection of triangles (made up from the set of vertices and the centre of the 476

polygon) as in [12]; and for the CA, CP and OS models we create a triangulation by calculating 477

the constrained Delaunay triangulation of the centres of the cells. This tessellation changes over 478

time as the tissue grows. 479

We solve Eq (17) using a method of lines approach along the characteristic lines 480

dc

dt
=
∂c

∂t
+ w · (∇c), (19)

and a continuous Galerkin finite element approximation to the spatial derivatives. 481
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We approximate the solution of Eq (17) using a Forward Euler discretization for time and a linear 482

finite element approximation in space. As we generate the computational mesh from the cells, 483

the mesh moves with velocity w. We can therefore account for the advective term of Eq (17) by 484

moving the solution with the moving cells. Finally in each model when a cell divides it creates a 485

new node in the mesh and the solution at the new node is defined to be the same as the node 486

attached to the parent cell. A full list of parameter values is provided in Tables 1 and 5. 487

Table 5. Table of parameters specific to the morphogen-dependent proliferation
simulations.

Parameter Description Model(s) Value Reference

∆t Time step All 0.005 h –
tend Simulation duration All 100 h –
Lr Initial radius of tissue All 5 CD [12]
D Dpp diffusion coefficient All 10−4 CD2h−1 [12]
kc Dpp degradation rate All 0.01 h−1 [12]
f Maximal Dpp production rate All 0.01 h−1 [12]

WDpp Width of Dpp production zone All 4 CD [12]
pdiv Average baseline cell division rate All 0.1 h−1 [12]
λ Morphogen effect on cell growth All 0.01 [12]

fprod Level of production of Dpp in sripe All 0.01 [12]
Lprod Half the width of stripe of Dpp production All 2 [12]
µg Cellular growth rate mean All 0.05 –
σ2
g Cellular growth rate variance All 0.000 1 –

gmin Minimum cellular growth rate All 0.01 –

Simulation snapshots for each model are shown in Fig 9. As expected, over time the morphogen 488

biases the shape of the tissue, which exhibits greater growth in the y direction. This is confirmed 489

in Fig 11, which shows a quantitative comparison of tissue shape dynamics across models. A 490

quantitative comparison of the spatio-temporal morphogen dynamics across models is shown in 491

Fig 10. In each case, the morphogen distribution is plotted at different times as an average over 492

the x direction and over 20 simulations. While the mean behaviour is conserved across models, 493

the CA exhibits significantly greater variation about this mean. This is due to the discrete nature 494

of cell movement, and hence morphogen advection, in these models. Looking at the snapshots in 495

Fig 9 we see that despite being an off lattice model the VT model exhibits some regularity in 496

shape through growth, witnessed by straighter than expected edge segments. This is due to the 497

method for calculating connectivity in VT model and can introduce artefacts when considering 498

freely growing domains as seen here. 499
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Fig 9. Simulations of morphogen-dependent proliferation. Snapshots of the tissue and
associated morphogen distribution are shown at selected times for each model. Parameter values
are given in Tables 1 and 5.
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Fig 10. Comparison of spatio-temporal morphogen dynamics across simulations.
Results are shown for each model: (a) CA; (b) CP; (c) OS; (d) VT; (e) VM. In each case, the
morphogen distribution is plotted at selected times as an average over the x direction and over
20 simulations. Parameter values are given in Tables 1 and 5.
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Fig 11. Comparison of tissue shape dynamics across morphogen-dependent
proliferation simulations. As a measure of tissue anisotropy, the ratio of the widths of the
tissue in the x and y directions is computed as a function of time for each model: (a) CA; (b)
CP; (c) OS; (d) VT; (e) VM. For each model, we plot the mean and standard error of this ratio
across 10 simulations. Parameter values are given in Tables 1 and 5.

Discussion 500

The field of mathematical modelling in biology has matured beyond recognition over the past 501

decade. One indication of this is the move towards quantitative comparison with data taking 502
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precedence over qualitative comparison. In this context, we must investigate if the model 503

framework chosen might amplify or diminish the effects of certain processes. To this end, the 504

present work seeks to advance our comparative understanding of different classes of models in 505

the context of cell and tissue biology. 506

A variety of cell-based approaches have been developed over the last few years. These models 507

range from lattice-based cellular automata to lattice-free models that treat cells as point-like 508

particles or extended shapes. Such models have proven useful in gaining mechanistic insight 509

into the coordinated behaviour of populations of cells in tissues. However, it remains difficult 510

to accurately compare between different modelling approaches, since one cannot distinguish 511

between differences in behaviour due to the underlying model assumptions and those due 512

to differences in the numerical implementation. Here, we have exploited the availability of an 513

implementation of five popular cell-based modelling approaches within a consistent computational 514

framework, Chaste. This framework allows one to easily change constitutive assumptions within 515

these models. In each case we have provided full details of all technical aspects of our model 516

implementations. 517

We compared model implementations using four case studies, chosen to reflect the key cellular 518

processes of proliferation, adhesion, and short- and long-range signalling. These case studies 519

demonstrate the applicability of each model and provide a guide for model usage. While on 520

a qualitative level each model exhibited similar behaviour, this was mainly achieved through 521

parameter choice and fitting. Parameters were chosen to give consistent behaviour where possible. 522

When choosing which model to use, one should bear in mind the following. 523

Certain examples presented in this study are more aligned with particular models. For example, 524

in the adhesion example the CP and VM models are designed to explicitly represent cell sorting 525

(through cell boundary energy terms) whereas the other models needed modification to represent 526

the same phenomena. In fact, in the OS and VT (and to some extent the VM) models, the ability 527

to sort completely was limited by the presence of local energy minima and a noise component of 528

cell motion was required to mitigate this. However, as the level of noise was increased, artefacts 529

can be introduced into the models, for example the tessellation may become non conformal 530

leading to voids in the tissue. 531

The implementation of other features such as boundary conditions can also influence simulation 532

outcomes. This was observed in the proliferation example where the rate of neutral drift was 533

significantly different in the VM compared to the other models, due to additional adhesion of 534
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cells to the bottom of the domain. In this study we did not implement contact inhibition for the 535

CA model as our definitions of contact inhibition required cells to be for different sizes. It is 536

possible to implement an alternative form of contact inhibition in the CA model by restricting 537

division events to only occur when there is sufficient free space [55]; however, this would again 538

result in a different behaviour to our simulations. 539

A key difference between the models we considered lies in the definition of cell connectivity. It is 540

possible for cells in the same configuration to have different neighbours under different models. 541

For example, when under compression cells in the OS model can have more neighbours than 542

similarly sized cells in CP, VT or VM models. The effects of this can be seen in the short-range 543

signalling example with a high degree of proliferation. 544

In terms of understanding and software development time, one can code up a simple CA model 545

in a few hours and the models increase in complexity from there in order CP, OS, VT, with 546

VM being the most involved. While the focus here has been on epithelial layers and two spatial 547

dimensions, all the models have also been utilised in 3D and for the CA, CP, OS, and VT, models 548

the extension is relatively natural. For the VM model the extension is not trivial, as multiple 549

rearrangements need to be considered in order to maintain a confluent tissue. 550

Finally, the models differ vastly on how long they take to simulate. In their original uncoupled 551

forms, the least computationally complex model to simulate is the CA, followed in order by the 552

CP, OS, VT and VM. However, this complexity depends on what is coupled to the models, at 553

both the subcellular and tissue levels. Specifically, in order to make the CP model equivalent 554

to the other models when coupling to subcellular and tissue level processes, we have chosen 555

to use a time step that is smaller than that typically used in CP simulations, increasing the 556

computation time. Table 6 shows how long typical simulations took for each example across 557

the models considered in the present study. We see that (except for the CP model) the level 558

of computational time is roughly as expected, increasing with complexity with the OS and VT 559

models being similar. There are exceptions to this. For example, the CA and CP simulations 560

of the long-range signalling example take longer than may be expected. This is due to the 561

method used to calculate the growing PDE mesh in our computational implementation in Chaste, 562

which is optimal for off-lattice models; future work will involve developing optimised numerical 563

techniques that exploit the lattice structure of the on-lattice models. On the other hand, the VM 564

simulation of the proliferation example is quicker than may be expected; this is due to the choice 565

of parameters leading to there being slightly fewer cells in the VM simulation for this example, 566

reducing the computational demands. 567
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Table 6. Table of approximate simulation times. Run time (in seconds, on a single core i7
processor) for typical single runs for each problem considered here.

Example CA CP OS VT VM

Adhesion 34 1638 168 625 321
Proliferation 44 4336 1218 2752 2419

Short-range signalling 166 7536 2837 4433 9983
Long-range signalling 1393 23741 804 789 5803

Parallelisation is one way to both decrease computational time and to also be able to solve larger 568

problems. Of the models considered, the CA model is simplest to parallelise. While more more 569

advanced, the CP model has been parallelised in publicly available software packages [56], as has 570

the OS model [57]. In the VT and VM cases, the implementations are much more involved. 571

The present study provides a starting point for a number of further avenues for research. First, 572

there remains a need for theoretical and computational tools with which to easily perform 573

quantitative model comparisons. Our results indicate that for many of the sorts of questions 574

these types of model are currently being used to address, there is likely to be little difference in 575

model predictions. However, such models are nevertheless moving toward a more quantitative 576

footing, particularly as the resolution of experimental data at the cell to tissue scale improves. 577

Further progress in this area will be accelerated by advances in automating the process of model 578

specification and implementation, for example through extended use of mark-up languages such 579

as SBML, FieldML and MultiCellDS. 580

Here we have made use of a consistent simulation framework, Chaste, within which to compare 581

different classes of cell-based model. A longer-term challenge is to extend such comparison studies 582

across simulation tools, of which there is an increasing ecosystem (CompuCell3d, Morpheus, 583

EPISIM, CellSys, VirtualLeaf, Biocellion, BioFVM). We emphasize here the lack of ‘benchmarks’ 584

on which to make such comparisons; the present study offers four examples that could offer such 585

benchmarks. 586

Throughout this study we have concentrated on 2D studies. However, many of the models 587

considered have also been implemented in three dimensions both in previous studies and in 588

the Chaste modelling framework, for example in the case of overlapping spheres models of 589

the intestinal crypt [33, 58] or 3D vertex models of the mouse blastocyst [59]. Of the models 590

considered in the present study, vertex models are arguably the most technically challenging to 591

extend to three dimensions, due to the complexity of the possible cell rearrangements and force 592
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calculations. 593

Work has also been done to model individual cells at a finer resolution by considering them 594

to be composed of mesoscopic volume elements, which enables cell geometry and mechanical 595

response to be emergent, rather than imposed, properties. These include the subcellular element 596

model [60], which may be thought of as a natural extension of the cell centre model, and the 597

finite element model [61] and immersed boundary model [62], which use alternative approaches 598

to decompose cell shapes into volumetric or surface elements in a much more detailed manner 599

than vertex models. 600
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