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Abstract 40 

Understanding the genetics of gene regulation provides information on the cellular mechanisms 41 
through which genetic variation influences complex traits. Expression quantitative trait loci, or 42 
eQTLs, are enriched for polymorphisms that have been found to be associated with disease risk. 43 
While most analyses of human data has focused on regulation of expression by nearby variants 44 
(cis-eQTLs), distal or trans-eQTLs may have broader effects on the transcriptome and important 45 
phenotypic consequences, necessitating a comprehensive study of the effects of genetic variants 46 
on distal gene transcription levels. In this work, we identify trans-eQTLs in the Genotype Tissue 47 
Expression (GTEx) project data1, consisting of 449 individuals with RNA-sequencing data 48 
across 44 tissue types. We find 81 genes with a trans-eQTL in at least one tissue, and we 49 
demonstrate that trans-eQTLs are more likely than cis-eQTLs to have effects specific to a single 50 
tissue. We evaluate the genomic and functional properties of trans-eQTL variants, identifying 51 
strong enrichment in enhancer elements and Piwi-interacting RNA clusters.  Finally, we describe 52 
three tissue-specific regulatory loci underlying relevant disease associations: 9q22 in thyroid that 53 
has a role in thyroid cancer, 5q31 in skeletal muscle, and a previously reported master regulator 54 
near KLF14 in adipose. These analyses provide a comprehensive characterization of trans-eQTLs 55 
across human tissues, which contribute to an improved understanding of the tissue-specific 56 
cellular mechanisms of regulatory genetic variation. 57 

Introduction 58 

Variation in the human genome influences complex disease risk through changes at a cellular 59 
level. Many disease-associated variants are also associated with gene expression levels through 60 
which they mediate disease risk. The majority of expression quantitative trait locus (eQTL) 61 
studies1–6 thus far have focused on local- or cis-eQTLs because of the relative simplicity of 62 
association mapping in human for both statistical and biological reasons7,8. Trans-eQTLs, or 63 
genetic variants that affect gene expression levels of distant target genes, have received much 64 
less attention in comparison to cis-eQTLs, in part due to the considerable multiple hypotheses 65 
testing burden9. Far fewer replicable, strong effect trans-eQTLs have been discovered in human 66 
data as compared to cis-eQTLs, unlike in model organisms such as Saccharomyces cerevisiae or 67 
Arabidopsis thaliana7,10,11. However, a handful of replicable trans-eQTLs have now been 68 
identified in human tissues3,12,13. Additionally, recent work has suggested that trans-eQTLs 69 
contribute substantially to the genetic regulation of complex diseases12, motivating a careful 70 
examination of the role of trans-eQTLs across human tissues in disease etiology. 71 
 
Here, we identify trans-eQTLs in the Genotype-Tissue Expression (GTEx) v6 data, which 72 
include 449 individuals with imputed genotypes and RNA-seq data across 44 tissues for a total 73 
of 7,051 samples. We evaluate the tissue-specificity of trans-eQTLs, and we demonstrate 74 
replication of trans-eQTLs in a large independent RNA-seq study14.  We show enrichment of 75 
trans-eQTLs for tests restricted to genetic variants associated with expression of nearby genes 76 
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and trait-associated variants. We then explore properties of genetic variants with significant 77 
associations with distal gene expression levels including functional enrichment in cis regulatory 78 
elements and Piwi-interacting RNA clusters. We discuss three examples of trans-eQTLs in the 79 
GTEx data: the broad regulatory role of the 9q22 locus near thyroid-specific transcription factor 80 
FOXE1; a trait-associated regulatory locus in skeletal muscle acting through interferon 81 
regulatory factor IRF-1; and replication of a previously-identified master regulator in adipose 82 
tissue near KLF14 with broad but differential effects in subcutaneous and visceral adipose. 83 
 
Detection of trans-eQTLs across 44 tissues  84 
We performed trans-eQTL association mapping in each of the 44 GTEx tissues independently. 85 
We applied a linear model controlling for ancestry, sex, genotyping platform, and unobserved 86 
factors in the expression data for each tissue that may reflect batch or other technical 87 
confounders15,16 (see Online Methods). We tested for association between every protein coding 88 
gene or long non-coding RNA and all autosomal variants (minor allele frequency, MAF > 0.05), 89 
where the gene-variant pair was located on different chromosomes.  We developed a 90 
standardized pipeline for filtering detectable false positives from trans-eQTL identification in 91 
RNA-seq data. For example, one major source of artifacts arises from mapping errors in 92 
sequencing data, for which true cis-eQTL variants appear to regulate distal genes due to 93 
sequence similarity between distant regions of the genome3.  To correct for this, we eliminated 94 
from consideration genes with poor mappability, variants in repetitive elements, and trans-eQTL 95 
associations between pairs of genomic loci that show evidence of cross-mapping (see Online 96 
Methods).   97 
 
Applying this approach, we found a total of 590 trans-eQTLs (false discovery rate, FDR ≤ 0.1, 98 
Benjamini-Hochberg, assessed in each tissue separately) including 81 unique genes (trans-99 
eGenes, or genes with one or more trans-eQTLs; Fig. 1a) and 532 unique variants (trans-100 
eVariants, or variants that are associated with transcription levels of one or more distal genes) in 101 
18 of the 44 GTEx tissues (Table 1). Tissues with larger sample sizes and greater numbers of 102 
expressed genes were more likely to yield trans associations, indicating that low statistical power 103 
limits our analysis. The tissue with the most trans-eGenes was testis (157 individuals; 28 eGenes; 104 
193 trans-eQTLs), reflecting the unusually large number of expressed genes (16,854 genes) and 105 
consistent with the large number of cis-eQTLs detected in this tissue [Aguet et al, GTEx cis-106 
eQTL manuscript, in submission].  107 
 
We next performed an association test with a restricted subset of variants to control for linkage 108 
disequilibrium (LD), because many of the 532 trans-eVariants are well-correlated variants at the 109 
same genetic locus. To do this, we pruned the set of genotyped and imputed variants to have 110 
local genotype R2 < 0.5 by random selection, agnostic to gene expression levels or functional 111 
annotation of variants17. This LD-pruning led to a set of variants that included approximately 112 
10% of the original variant set. While this may result in false negatives by eliminating some of 113 
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the strongest associations, it also has the potential to reduce false positives that are not supported 114 
by associations with well-correlated variants in the same LD block. Performing association 115 
mapping in this reduced set, we found 41 trans-eQTLs reflecting 40 unique eVariants across 34 116 
eGenes. These LD-pruned trans-eQTLs spanned 18 tissues, as with the genome-wide set, but 117 
included a number of tissues that were not observed in the genome-wide analysis such as breast, 118 
lung, and liver (Table 1).  119 
 

 
Figure 1. Trans-eQTLs across 44 diverse tissues in the GTEx data. (a) The number of trans-eGenes in all the 
tissues at three FDR thresholds, ordered with decreasing number of expressed genes. The x-axis labels include 
(number of expressed gene, number of samples) for each tissue. (b) Distribution of the number of tissues having 
MetaTissue m-value greater than 0.5 for the top variant for each trans-eGene at FDR ≤ 0.5 and each randomly 
selected cis-eGenes (also FDR ≤ 0.5). cis-eGenes were matched for discovery tissue distribution to the trans-eGenes. 
Shown for genes with meta-analysis p-value ≤ 0.01. (c) Hierarchical agglomerative clustering of trans-eGenes (FDR 
≤ 0.5) using a distance metric of (1 − Spearman correlation) of MetaTissue effect sizes over all genes observed in 
both tissues. (d) An example of a trans-eQTL (rs7683255 − NUDT13) identified in skin – sun-exposed (FDR ≤ 0.1, 
P ≤ 1.1 x 10-10) that has a global effect across tissues. The lines represent 95% confidence interval of the effect size. 
(e) An example of a trans-eQTL (rs60413914 − RMDN3) identified in brain putamen (FDR ≤ 0.1, P ≤ 1.2 x 10-13) 
that has an effect in all five brain tissues tested but shows little effect in other tissues. (f) An example of a trans-
eQTL (rs758335 − RPL3) identified in pancreas (FDR ≤ 0.1, P ≤ 2.2 x 10-16) that has a tissue-specific effect. 
 
We also investigated long range eQTLs where the variant lies on the same chromosome as the 120 
target gene but is not local. We performed association mapping between each gene and variant 121 
on the same chromosome and we identified 291 intra-chromosomal distal eQTLs (≥ 5 Mb 122 
between gene and variant; FDR ≤ 0.1), including 46 eGenes and 247 eVariants (Extended Data 123 
Table 1). Further, investigated whether intra-chromosomal distal QTLs acted in cis or trans using 124 
a statistical model to quantify evidence for allele-specific expression (ASE), as cis regulation 125 
would induce allelic imbalance in gene expression levels for cis-eVariant heterozygotes3,18 126 
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(Mohammadi et al., [GTEx companion paper in preparation]; see Online Methods). Applying 127 
this model to a larger set of 23,953 candidate eQTLs based on a p-value threshold of 1.0 x 10-5, 128 
we identified seven distal eQTLs with significant evidence of cis regulation (FDR ≤ 0.1; 129 
Extended Data Table 2).  The support for cis effects overall dropped significantly below 130 
expectation after 3 Mb (Extended Data Fig. 1), possibly suggesting that the majority of distal 131 
intra-chromosomal eQTLs act in trans or represent false positives. However, ASE was observed 132 
for intra-chromosomal gene-variant pairs up to 170 Mb apart, demonstrating that cis regulation 133 
can indeed occur over long genomic distances. While observing ASE provides evidence of cis 134 
regulation, its absence does not guarantee trans regulation, since phasing and power affect 135 
detection (Extended Data Fig. 1). For the remaining analyses, we focus on inter-chromosomal 136 
associations to avoid confounding characterization of cis- and trans-eQTLs. 137 
 
Next, we investigated the level of tissue specificity of the detected trans-eQTLs. We performed a 138 
meta-analysis across the 20 tissues with the greatest number of samples using MetaTissue19. We 139 
selected variants for cross-tissue evaluation from the single tissue trans-eQTLs discovered at a 140 
relaxed FDR of 0.5, giving 798 trans-eGenes across the 20 tissues. We estimated that the level of 141 
tissue specificity for each most significant trans-eVariant for each eGene by quantifying the 142 
number of tissues likely to show effects of the eVariant based on MetaTissue m-values (i.e., the 143 
probability that the eQTL effect exists in the tissue). Overall, we observed greater tissue 144 
specificity for trans-eQTLs than a set of cis-eQTLs randomly selected at the same FDR (Fig. 1b); 145 
this observation was robust to choices of m-value threshold and selection of cis-eQTLs 146 
(Extended Data Fig. 2). Extensive tissue-specificity was also observed based on a hierarchical 147 
approach for FDR control, where we found no trans-eQTLs shared across more than a single 148 
tissue (Extended Data Table 3)20. Our estimate of greater tissue specificity for trans-eQTLs 149 
agreed with the minimal sharing of trans effects reported in previous eQTL studies with fewer 150 
tissues21–23.  151 
 
Although there was greater tissue specificity of trans-eQTLs, we observed trans-eQTL sharing 152 
between pairs of tissues based on MetaTissue effect size estimates that reflected known tissue 153 
relatedness, and were in concordance with patterns of cis-eQTL sharing (Fig. 1c; see Online 154 
Methods; Extended Data Fig. 3). We observed a number of tissue-shared trans-eQTLs, including 155 
rs7683255, which showed moderate trans association with NUDT13 across most tested GTEx 156 
tissues with consistent direction of effect while only being identified as significant (FDR ≤ 0.1; P 157 
≤ 1.1 x 10-10; Fig. 1d) in skin – sun-exposed.  We found examples of trans-eQTLs shared across 158 
a subset of related tissues, such as an association between rs60413914 and RMDN3, which was 159 
genome-wide significant in brain – putamen (FDR ≤ 0.1; P ≤ 1.2 x 10-13; Fig. 1e) and had 160 
moderate effects in all tested brain regions but no strong effect in other tissues. RMDN3 is 161 
widely expressed, with higher average expression levels in brain tissues than outside of the brain 162 
(Extended Data Fig. 4). We observed tissue specific trans-eQTLs, such as rs758335 and RPL3, 163 
which is only observed in pancreas (FDR ≤ 0.1; P ≤ 2.2 x 10-16; Fig. 1f). 164 
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  Genome 

wide 
LD  

pruned 
Cis  

eVariants 
Trait 

associated 
variants 

Any 
approach 

Tissue No. of 
samples 

gene var gene var gene var gene var gene var 

Muscle - Skeletal 361 6 41 0 0 3 4 2 2 6 42 
Whole Blood 338 1 2 1 1 1 1 0 0 2 3 
Skin - Sun Exposed 
(Lower Leg) 

302 9 21 5 5 1 1 1 1 12 24 

Adipose - Subcutaneous 298 2 7 1 1 1 1 0 0 3 8 
Lung 278 0 0 1 1 0 0 1 1 2 2 
Thyroid 278 19 189 4 5 3 2 2 1 20 190 
Cells - Transformed 
fibroblasts 

272 2 11 0 0 2 3 1 1 3 12 

Nerve - Tibial 256 1 1 0 0 1 1 0 0 2 2 
Esophagus - Mucosa 241 2 10 3 3 2 2 0 0 5 13 
Esophagus - Muscularis 218 0 0 1 1 1 1 1 1 3 3 
Artery - Aorta 197 1 1 1 1 0 0 0 0 1 1 
Skin - Not Sun Exposed 
(Suprapubic) 

196 1 1 1 1 0 0 0 0 1 1 

Heart - Left Ventricle 190 0 0 4 4 0 0 0 0 4 4 
Breast - Mammary Tissue 183 0 0 2 3 0 0 1 1 3 4 
Stomach 170 0 0 0 0 1 1 0 0 1 1 
Colon - Transverse 169 3 11 0 0 0 0 0 0 3 11 
Heart - Atrial Appendage 159 0 0 2 3 0 0 0 0 2 3 
Testis 157 28 193 3 4 2 2 4 4 31 197 
Pancreas 149 2 12 0 0 1 2 1 1 3 13 
Adrenal Gland 126 1 1 0 0 0 0 0 0 1 1 
Cells - EBV-transformed 
lymphocytes 

114 0 0 0 0 0 0 2 2 2 2 

Brain - Cerebellum 103 0 0 0 0 2 2 0 0 2 2 
Brain - Caudate  
(basal ganglia) 

100 0 0 3 3 0 0 0 0 3 3 

Liver 97 0 0 1 1 0 0 0 0 1 1 
Brain - Nucleus accumbens 
(basal ganglia) 

93 0 0 0 0 1 1 0 0 1 1 

Brain - Cerebellar 
Hemisphere 

89 0 0 0 0 1 1 0 0 1 1 

Brain - Putamen  
(basal ganglia) 

82 1 9 1 2 0 0 0 0 1 9 

Vagina 79 3 22 0 0 0 0 0 0 3 22 
Small Intestine - Terminal 
Ileum 

77 0 0 1 1 0 0 2 2 3 3 

Uterus 70 0 0 0 0 0 0 1 1 1 1 
Total (union)  81 532 34 40 23 25 19 18 124 580 

Table 1. Trans-eVariant and eGene discoveries for genome-wide and restricted approaches in the GTEx data. 
Each tissue with non-zero values in one or more of the restricted approaches is included in the rows with the total on 
the final row; the columns include the number of samples for that tissue, followed by the number of unique trans-
eGenes and trans-eVariants identified in the genome-wide tests, and tests restricted to the LD-pruned, cis-eQTL, and 
trait associated variants, followed by the number of unique trans-eGenes and trans-eVariants identified by any of the 
four approaches.  
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Characterization and functional analysis of trans-eQTL variants  165 
To better understand their cellular mechanisms, we characterized the functional properties of 166 
trans-eVariants. Of the 590 trans-eVariants from the genome-wide analysis, 312 were also 167 
identified to have a cis association (FDR ≤ 0.05), significantly more than expected by chance 168 
(Fisher’s exact test; P ≤ 2.2 x 10-16).  This pattern would suggest a mechanism for trans 169 
association in which the eVariant directly regulates expression of a nearby gene, whose protein 170 
product then affects other genes downstream.  We performed an association test, restricting the 171 
variants to the set of cis-eVariants (top variant per cis-eGene) and testing for trans association 172 
with all genes on any other chromosome than the variant’s own. Cis-eVariants were significantly 173 
more likely to have low trans-eQTL association p-values than random variants matched for MAF 174 
(Chi-squared test; P ≤ 2.2 x 10-16; Fig. 2a).  We identified a total of 23 trans-eGenes (FDR ≤ 0.1) 175 
among this subset of tests, 14 of which were not discovered in the genome-wide analysis.  176 
Variants with both cis and trans associations did not show stronger effect sizes in cis (Wilcoxon 177 
rank sum test, P ≤ 0.22), and the direction of effect was not significantly matched (binomial test; 178 
P ≤ 0.18; Extended Data Fig. 5); however, the small number of trans-eQTLs discovered after 179 
restricting to cis-eVariants limits the interpretability of these results.  Trans-eVariants that have 180 
no cis association may alter protein function, may reflect false negatives in the cis association 181 
test, or may arise from unmeasured regulatory mechanisms.  We observed a depletion of protein-182 
coding loci among our eVariants (odds ratio = 0.39; Fisher’s exact test, P ≤ 0.03) suggesting that 183 
modification of protein function is not the dominant mechanism for trans-eQTL effects. 184 
 
It has been also reported that genetic variants associated with complex traits in genome-wide 185 
association studies (GWAS) are enriched for trans-eQTLs12,24,25. We evaluated this in the GTEx 186 
data by performing association testing by restricting to variants that have been associated with a 187 
complex trait in a GWAS26 (P ≤ 2.0 x 10-5). Across the 44 tissues, we found 21 trans-eQTL 188 
associations, involving 18 unique variants and 19 unique genes (FDR ≤ 0.1; Fig. 2a; Table 1).  189 
As with the cis-eQTL restricted analysis, we observed lower trans-eQTL p-values among trait-190 
associated variants than in a control set of variants matched on MAF and distance to the nearest 191 
gene transcription start site (TSS; Chi-squared test, P ≤ 1.9 x 10-4).  192 

 
We investigated whether trans-eVariants were each associated with numerous target genes, 193 
which may reflect broad effects of regulatory loci, as have been reported in model organisms27–194 
29. Disambiguating true broad regulatory effects from artifacts remains an important challenge30 195 
– PEER and other methods designed for artifact correction31,32 generally identify and remove 196 
patterns of broad correlation between genes, regardless of whether the source is biological or 197 
technical. We conservatively removed a large number of latent factors (either 15, 30, or 35 PEER 198 
factors16, capturing 59-78% of total variance in gene expression depending on tissue sample size; 199 
Extended Data Fig. 6), which reduces false positives33  but may also remove variance in gene 200 
expression levels arising from broad trans effects. Indeed, we observed loci with numerous 201 
associations in uncorrected data (Extended Data Fig. 7) that disappeared once controlling for 202 
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unobserved factors estimated by PEER.  Despite this, we observed evidence of eVariants with 203 
multiple targets even after correction.  At genome-wide significance, three loci (60 Kb windows, 204 
potentially containing multiple variants) were associated with two distal eGenes each. 205 
Additionally, for each eVariant, we evaluated the distribution of association statistics with all 206 
genes expressed in the corresponding tissue and calculated (1 − 𝜋!), the estimated total fraction 207 
of genes associated with the variant (Extended Data Fig. 8)34. This suggests that much larger 208 
numbers of likely target genes for trans-eVariants than for either cis-eVariants or randomly 209 
selected variants, with significantly higher values of (1 − 𝜋!) (Wilcoxon rank sum test, P ≤ 3.4 x 210 
10-4 and P ≤ 2.2 x 10-16, respectively).  211 
 

 
Figure 2. Functional characterization of GTEx trans-eVariants. (a) Partial quantile-quantile (QQ) plot showing 
enrichment of low trans-eQTL p-values of association for cis-eVariants and trait-associated variants in skeletal 
muscle (n = 361). (b) Cis-regulatory element enrichment analysis of trans-eVariants (FDR ≤ 0.1), cis-eVariants 
(FDR ≤ 0.1), and the top most significant cis-eVariants.  Boxes show promoter and enhancer element enrichment in 
any of the GTEx discovery tissue’s matched cell type specific Roadmap or ENCODE annotations compared to 500 
randomly selected background variants (matched for distance to TSS and MAF). (c) Proportion of loci overlapping 
with piRNA clusters, including randomly sampled loci, trans-eVariants across all tissues, testis trans-eVariants, 
thyroid trans-eVariants, and trans-eVariants from all tissues other than testis and thyroid. (d) Replication of trans-
eVariants from GTEx in the TwinsUK data (y-axis) across matched tissues (green) and unmatched tissues (blue), 
versus the expected p-values from the quantiles of a uniform distribution (x-axis). 
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We studied possible molecular mechanisms underlying the trans-eQTLs.  Using matched tissue-212 
specific annotations from the Roadmap Epigenomics project35,36, we compared enrichment of 213 
trans-eQTLs in promoter and enhancer regions of the genome to randomly selected variants 214 
matched by distance to nearest TSS, MAF, and chromosome. Trans-eVariants (FDR ≤ 0.1) were 215 
enriched in cell-type matched enhancers (Fisher’s exact, P ≤ 6.6 x 10-4) and moderately enriched 216 
for promoters (P ≤ 0.13), with greater enrichment in enhancers (Fig. 2b).  We observed greater 217 
enrichment for trans-eVariants than for cis-eVariants called at the same FDR (promoter 218 
Wilcoxon rank sum test, P ≤ 2.2 x 10-16; enhancer, P ≤ 2.2 x 10-16). Stronger effect sizes are 219 
needed to detect trans-eVariants at the same FDR, but even comparing to a matched number of 220 
the strongest cis-eVariants, we observed greater enrichment among trans-eVariants for enhancer 221 
element overlap. These results indicate that trans-eVariants were more enriched for enhancer 222 
regions than cis-eVariants, consistent with greater tissue specificity of enhancer activity and 223 
greater tissue-specificity of trans-eVariants (Fig. 1b).  224 
 
Observing the large number of trans-eQTLs detected in testis, we investigated possible 225 
mechanisms for this tissue in more detail. Piwi-interacting RNAs (piRNAs) are small 24-31bp 226 
RNAs that bind to Piwi-class proteins and silence mobile elements by RNA degradation and by 227 
methylation of their DNA source. PiRNAs are strongly expressed in testis and may regulate gene 228 
expression37,38. We tested for enrichment of trans-eVariants in piRNA clusters identified in 229 
testis39.  We found that 36.3% of testis trans-eVariants directly overlap piRNA clusters, 230 
representing a significant enrichment beyond the 2.5% of the genome covered by these regions 231 
(permutation, P ≤ 1.0 x 10-4). In aggregate, eVariants from all tissues demonstrated an enriched 232 
overlap of 17.7% with piRNA clusters (permutation, P ≤ 7.0 x 10-4) but this enrichment appeared 233 
to be almost entirely driven by testis eQTLs (Fig. 2c). 234 
 
Replication of trans-eQTLs. 235 
Trans-eQTLs have not replicated consistently in human studies as compared to cis-eQTLs13,40–42, 236 
due in part to insufficient statistical power and a limited number of studies with comparable 237 
tissue and cohort, but also reflecting potential false positive associations. First, we attempted to 238 
replicate two trans-eQTL associations from lymphoblastoid cell lines (LCLs) identified in the 239 
trait-associated variant restricted analysis. We tested these trans-eQTLs in the GEUVADIS data 240 
(n=462)6, but did not find signal of association for either eQTL (P ≤ 0.93, rs3125734; P ≤ 0.64, 241 
rs10520789).  We then tested the union of the GTEx trans-eQTLs across the four sets of tests 242 
(genome-wide, LD pruned, cis-eVariants, and GWAS hits; FDR ≤ 0.1) for replication in the 243 
TwinsUK eQTL data14, which includes four shared tissues with GTEx—whole blood, 244 
subcutaneous adipose, LCLs, and photo-protected infra-umbilical skin—for n=856 donors of 245 
European ancestry14. We found a substantial enrichment of low p-value associations among the 246 
gene-variant pairs in the TwinsUK data for GTEx trans-eQTLs (Wilcoxon rank sum test; P ≤ 4.8 247 
x 10-15; Fig. 2d); furthermore, this enrichment of association p-value was significantly higher in 248 
matched tissue types than in unmatched tissue types (Wilcoxon rank sum test; P ≤ 2.4 x 10-4).   249 
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In related work in the TwinsUK cohort23, with RNA-seq analysis of n=845 individuals in adipose 250 
– subcutaneous, LCLs, and skin, we replicated two strong tissue-specific trans-eQTLs. In GTEx 251 
adipose – subcutaneous, we found two linked variants rs13234269 and rs35722851, which were 252 
not in our trans-eQTL list due to strict repeat element filtering that we relaxed for replication of 253 
these trans effects, that were associated in cis with KLF14 that showed enrichment for genome-254 
wide trans effects (discussed in detail below). These variants were in strong LD (R2 ≥ 0.98) with 255 
master regulator rs4731702 that was identified in both the TwinsUK study23 and MuTHER2,43 256 
study. In skin – sun-exposed in GTEx, rs289750 was associated in cis with NLRC5 and in trans 257 
with TAP1, while the TwinsUK study found rs289749 (located 469 bp away from rs289750; R2 258 
= 0.918) associated with the same genes in cis and trans. 259 
 
Broad regulatory locus 9q22 in thyroid tissue  260 
We found two genome-wide significant trans-eVariants in the 9q22 locus for thyroid tissue 261 
(rs7037324 and rs1867277, with correlation coefficient R2 = 0.74; thyroid n = 278) associated 262 
with TMEM253 (chromosome 14; Fig. 3a) and ARFGEF3 (chromosome 6). These two trans-263 
eGenes were also identified as significant in both the cis-eQTL and the GWAS restricted tests. 264 
The cis target gene was C9orf156, and the supporting GWAS trait was thyroid cancer44 265 
(rs7037324; odds ratio, OR = 1.54; P ≤ 2.2 x 10-16). The 9q22 locus has also been linked with 266 
multiple thyroid specific diseases including goiter, hypothyroidism, and thyroid cancer45–47 and 267 
contains the gene FOXE1, a thyroid-specific transcription factor (Extended Data Fig. 9).  Loss-268 
of-function mutations in FOXE1 manifests as ectopic thyroid tissue or cleft palate in developing 269 
mice48, and congenital cleft lip and cleft palate have also shown association with 9qe22 variants 270 
in human studies45. FOXE1 was weakly associated in cis with variants rs7037324 and rs1867277 271 
(P ≤ 5.2 x 10-3 and 0.0191, respectively), but only before PEER correction of expression data. 272 
Despite this moderate cis association, based on colocalization analysis49, we estimated the 273 
posterior probability that a shared causal variant at this locus drives both cis and trans 274 
associations to be greater than 0.99 for both candidate cis-eGenes (FOXE1 and C9orf156) with 275 
both trans-eGenes (TMEM253 and ARFGEF3). Further, FOXE1 transcription was strongly 276 
correlated with several of the PEER factors estimated from the thyroid gene expression data (Fig. 277 
3b), suggesting a broad effect of this thyroid-specific regulatory gene and explaining the lack of 278 
cis association signal after controlling for all 35 PEER factors. We evaluated the trans-eVariants 279 
for association across all genes in uncorrected data and found substantial enrichment for low p-280 
values across many genes (subcutaneous (1 – 𝜋!) = 0.10 and visceral (1 – 𝜋!) = 0.04; Fig. 3c) 281 
indicating a broad regulatory effect. 282 
 
We replicated the effects of this locus in 496 primary thyroid cancer RNA-seq samples from The 283 
Cancer Genome Atlas (TCGA)50. We tested 19,153 genes for association with 23 variants in 284 
chromosome 9 locus 100600000 - 100670000, which is the region containing the two eVariants. 285 
Correcting for cross-chromosomal association tests across the 23 variants, we found 1173 unique 286 
trans-eGenes (FDR ≤ 0.1), substantially more than randomly selected chromosome 9 variants 287 
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(Fig. 3d, Extended Data Fig. 10). Despite the substantial changes to gene expression levels in 288 
cancer tissue, we replicated both trans-eQTL associations from GTEx in TCGA data, TMEM253 289 
(GTEx P ≤ 1.2 x 10-4, FDR ≤ 0.034) and ARFGEF3 (GTEx P ≤ 1.1 x 10-5, FDR ≤ 0.0097). 290 
Among 15 variants associated with TMEM253, rs10115216 was also associated in cis with 291 
FOXE1 (P ≤ 9.3 x 10-3, FDR ≤ 0.043) and rs6586 in cis with C9orf156 (FDR ≤ 3.0 x 10-13). 292 
These results demonstrate replication of both the broad impact of the 9q22 locus and particular 293 
target genes in thyroid tumor tissue. 294 
 295 

 
Figure 3. Trans-eQTLs in 9q22 locus in thyroid act as master regulators. (a) Association of rs1867277 with 
corrected TMEM253 expression levels (P ≤ 2.2 x 10-16). (b) Correlation between FOXE1 expression levels and 
thyroid PEER factors, compared to 100 random genes. For every gene, absolute correlation was sorted in decreasing 
order. The correlation of FOXE1 with the 5th, 6th, 7th, and 8th PEER factors was significantly higher than the 
correlation of random genes at those rank ordered PEER factors (empirical P ≤ 0.05). (c) P-value histogram of 
associations between 19 variants in the 9q22 locus and all genes in GTEx thyroid gene expression levels, compared 
to 19 random variants from the same chromosome. (d) P-value histogram of associations between 23 variants in the 
9q22 locus and all genes in TCGA thyroid tumor expression data, compared to 23 random variants from the same 
chromosome. 
 
Trait-associated variants in skeletal muscle near interferon regulatory factor IRF-1  296 
In skeletal muscle, two linked variants in the 5q31 locus (rs2706381 and rs1012793, R2 = 0.84) 297 
were associated in trans with the expression of immune response genes PSME1 (P ≤ 9.8 x 10-12), 298 
and ARTD10 (P ≤ 8.3 x 10-10). A third variant on the same locus (R2 = 0.50), rs12659708, also 299 
showed significant association with ARTD10 (P ≤ 4.8 x 10-14) and moderate association with 300 
PSME1 (P ≤ 1.6 x 10-7). These variants were moderately associated with numerous genes in 301 
skeletal muscle (47 trans-eGenes at FDR = 0.2, assessed only among the three variants; Extended 302 
Data Fig. 11). Potential targets (trans-eQTL P ≤ 0.001) were enriched (right-tailed Fisher’s exact 303 
test) in multiple immune pathways from MsigDB51 including interferon alpha response (P ≤ 2.0 304 
x 10-8), interferon gamma response (P ≤ 5.3 x 10-8) and nominally significant for inflammatory 305 
response (P ≤ 0.07; Extended Data Table 4). The two linked variants rs2706381 and rs1012793 306 
were also significantly associated with circulating fibrinogen levels in a GWAS52. Fibrinogen 307 
mediates inflammatory disorders including muscle injury and Duchene muscular dystrophy 308 
(DMD), multiple sclerosis, and rheumatoid arthritis53–56, and has been shown to drive fibrosis in 309 
DMD, where it promotes expression of IL-1𝛽 and TGF-𝛽57.  310 
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Figure 4. Skeletal muscle master regulatory network through IRF-1. (a) Network showing cis and trans 
regulatory effects of rs1012793 mediated through IRF-1 (Interferon regulatory factor 1). Rs1012793 affects 
expression of IRF-1 in cis and PSME1 and ARTD10 in trans (box plots). IRF-1 is significantly co-expressed with the 
trans-eGenes (scatter plots). (b) Cis and trans association significance of variants within 1 Mb of IRF-1 transcription 
start site in chromosome 5 locus with cis-eGene IRF-1 (gray) and trans-eGene PSME1 (teal) demonstrating 
concordant signal across the locus. 
 
To explore cellular mechanisms underlying these effects, we evaluated cis regulatory 311 
associations for each variant. Rs1012793 and rs12659708 appeared as cis-eVariants associated 312 
with IRF-1, and rs1012793 was associated with SLC22A4 (FDR ≤ 0.05). However, the directions 313 
of effect between cis and trans targets were only consistent for IRF-1 (Fig. 4a). The association 314 
statistics in this region were also highly concordant for IRF-1 (cis-eGene) and PSME1 (trans-315 
eGene), (Fig. 4b), quantified using colocalization analysis49, which produced posterior 316 
probabilities greater than 0.97 that the same causal variant regulates IRF-1 and each of PSME1 317 
and ARTD10. The cis-eGene IRF-1 is a transcription factor known to facilitate regulation of 318 
interferon induced immune responses58–61, and PSME1 and ARTD10 are interferon response 319 
genes upregulated in inflammation and antigen presentation58,62–64. Both trans-eGenes PSME1 320 
and ARTD10 were also identified as potential IRF-1 targets in primary human monocytes65. 321 
Together, these results suggest cis regulatory loci affecting IRF-1 are regulators of the IFN 322 
responsive inflammatory processes involving genes including PSME1 and ARTD10, with 323 
implications for complex traits affecting muscle tissue. 324 
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Replication of a trans-eQTL master regulator via KLF14 in adipose tissues  325 
The MuTHER study2,43 (n=776) identified a master trans regulator in adipose – subcutaneous 326 
tissue with the maternally expressed cis target gene KLF14, which encodes a transcription factor, 327 
Kruppel-like factor 1443. Cis-eQTL rs4731702, targeting KLF14, showed enriched association 328 
with genes that are relevant in metabolic phenotypes, such as cholesterol levels66,67. In the GTEx 329 
data, rs4731702 was not quite statistically significant as a cis-eQTL in adipose – subcutaneous in 330 
the GTEx data (P ≤ 8.1 x 10-5, where the FDR ≤ 0.05 significance threshold is P ≤ 5.7 x 10-5). 331 
Adipose – visceral did not have any significant cis-eQTLs at this locus. However, we identified 332 
two variants, rs13234269 (Fig. 5a) and rs35722851, that are cis-eQTLs for KLF14 in adipose – 333 
subcutaneous (P ≤ 2.2 x 10-5 and 4.7 x 10-5, respectively) and in strong LD with rs4731702 (R2 = 334 
0.98 and 0.99, respectively) [Aguet et al, GTEx cis-eQTL manuscript, in submission]. We used 335 
variant rs13234269 for further testing, which was not in our trans-eQTL list due to strict repeat 336 
element filtering but we included here for replication analysis. We tested the association between 337 
this locus and all expressed genes in two GTEx adipose tissues: subcutaneous (14,461 genes) and 338 
visceral (14,342 genes). Although we found no individually significant trans-eGenes, we found 339 
an enrichment of association with distal gene expression, which was more pronounced in adipose 340 
– subcutaneous (1 − 𝜋! = 0.11 for adipose – subcutaneous, 1 − 𝜋! = 0.04 for adipose – visceral, 341 
Figs. 5b, 5c, and Extended Data Table 5), replicating the results of the MuTHER study. 342 
However, the absolute value effect sizes of rs13234269 across 14,105 genes shared in the two 343 
adipose tissues showed poor correlation across the two tissues (R2 = 0.11; Fig. 5d). 344 
 

 
Figure 5: Master regulator in two adipose tissues with sex-specific effects. (a) Association of rs13234269 with 
KLF14 gene expression levels in adipose – subcutaneous in the GTEx data. (b) P-value histogram of associations 
with all genes for rs13234269 in adipose – subcutaneous as compared to the p-value histogram of associations with 
all genes of 7,608 variants matched in MAF and distance to TSS of the closest gene with the best cis-eQTLs in 
adipose – subcutaneous. (c) P-value histogram of associations with all genes for rs13234269 in adipose – visceral. 
(d) Absolute value effect sizes for trans-association between rs13234269 and 14,105 genes in adipose – 
subcutaneous (x-axis) and adipose – visceral (y-axis), with colors indicating the tissue for which the association has 
P ≤ 0.01, and the regression line in blue with R2 = 0.11. 
 
KLF14 is a maternally expressed transcription factor in an imprinted locus, and the MuTHER 345 
study included only females. In GTEx data, both tissues included moderate evidence of sex-346 
differential expression of KLF14 (P ≤ 4.3 x 10-3 in adipose – subcutaneous; P ≤ 2.1 x 10-3 in 347 
adipose – visceral) when correcting for all covariates other than sex. However, when considering 348 
female and male samples together in the GTEx adipose – subcutaneous data, the effect of 349 
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rs13234269 on KLF14 was the same in males and females in adipose – subcutaneous, (gene-by-350 
sex interaction, P ≤ 0.44; Extended Data Fig. 12), but we observed a mild gene-by-sex 351 
interaction with KLF14 in adipose – visceral (P ≤ 2.7 x 10-3; Extended Data Fig. 12). This 352 
suggests a role for trans regulation in metabolic diseases, of which many show evidence of 353 
sexual dimorphism68–70. 354 
 
Discussion 355 
Here, we presented an analysis of the trans regulation of gene expression by genetic variation, 356 
measuring association in expression data from 449 individuals and 44 human tissues in the GTEx 357 
project data. We identified 81 trans-eGenes from 18 tissues, and observed an enrichment for 358 
coincident cis regulatory effects and GWAS associations. We observed that trans-eQTL effects 359 
are moderately shared across tissues, but exhibit much greater tissue-specificity than cis-eQTLs. 360 
This increased tissue-specificity was also reflected in greater enrichment in overlap with 361 
enhancer elements. Testis trans-eVariants were highly enriched in Piwi-interacting RNA clusters, 362 
suggesting a possible general mechanism for these trans-eQTLs across tissues; it remains to 363 
directly assess the mediation of regulatory effects by Piwi-interacting RNAs and to determine the 364 
tissue specificity of the piRNA clusters.  365 
 
Trans-eQTL detection remains limited by power and relative effect size, and also by challenges 366 
in disentangling broad regulatory effects from artifacts in gene expression data3,8,22. While it is 367 
essential to aggressively control for these unobserved confounders in order to avoid false 368 
positives, this may obscure the effects of the most broad trans-eQTLs and master regulatory 369 
elements, as evidenced by analysis of the thyroid FOXE1 9q22 locus. However, in the GTEx 370 
trans-eQTL data, we observed evidence of trans-eVariants associated with multiple genes, and 371 
evaluated three examples in detail. We showed that variants near thyroid-specific transcription 372 
factor FOXE1 are moderately associated with numerous genes in thyroid, an effect we were able 373 
to reproduce in TCGA thyroid cancer samples. We then explored cis and trans effects of a 374 
regulatory region in skeletal muscle that appears to act through IRF-1. Finally, we examined 375 
previously reported master regulatory effects of KLF14 in the two GTEx adipose tissues.  Each 376 
of these three regulatory loci also contained variants associated with tissue-relevant complex 377 
traits.   378 
 
Trans-eQTLs from diverse human tissues will serve as an important resource for characterizing 379 
GWAS variants according to their cellular mechanisms and consequences.  Combining GWAS 380 
variants with genome-wide eQTLs will allow us to identify both the proximal and distal 381 
regulatory effects underlying human disease phenotypes, including tissue-specific regulatory 382 
pathways. This study represents the largest multi-tissue study of trans-eQTLs to date, allowing a 383 
more complete characterization of distal regulatory effects and a greater understanding of the 384 
genome-wide, tissue-specific consequences of genetic variation on gene expression relevant to 385 
complex human traits. 386 
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Online Methods 387 

RNA-seq data from GTEx. The GTEx v6p analysis freeze (phs000424.v6.p1, available in 388 
dbGaP) includes RNA that was isolated from 8,555 postmortem samples from 53 tissue types 389 
across 544 individuals.  All human subjects were deceased donors. Informed consent was 390 
obtained for all donors via next-of-kin consent to permit the collection and banking of de-391 
identified tissue samples for scientific research. A total of 44 tissues were sampled from at least 392 
70 individuals: 31 solid-organ tissues, ten brain subregions with two duplicate regions (cortex 393 
and cerebellum), whole blood, and two cell lines derived from donor blood and skin samples 394 
(Table 1). Each tissue had a different number of unique samples. Non-strand specific, polyA+ 395 
selected RNA-seq libraries were generated using the Illumina TruSeq protocol. Libraries were 396 
sequenced to a median depth of 78M 76-bp paired end reads. RNA-seq reads were aligned to the 397 
human genome (hg19/GRCh37) using Tophat (v1.4.1)71 based on GENCODE v19 annotations. 398 
Gene-level expression was estimated as reads per kilobase of transcript per million mapped reads 399 
(RPKM) with RNA-SeQC using uniquely mapped, properly paired reads72. 400 
 
Only genes with ≥ 10 individuals with expression estimates > 0.1 RPKM and an aligned read 401 
count ≥ 6 within each tissue were considered significantly expressed and used for eQTL 402 
mapping. Within each tissue, the distribution of RPKMs in each sample was transformed to the 403 
average empirical distribution across all samples. Expression measurements for each gene in 404 
each tissue were subsequently transformed to the quantiles of the standard normal distribution. 405 
 
To increase the sensitivity of our analyses, we regressed out both known covariates (three 406 
genotype principal components, sex, and DNA sequencing platform) and PEER factors16 407 
calculated independently for each tissue. A total of 15 PEER factors were included for tissues 408 
with fewer than 150 samples; 30 for tissues with sample sizes between 150 and 250; and 35 for 409 
tissues with more than 250 samples.  410 
 
Genotypes from GTEx. The initial number of GTEx donors genotyped on Illumina’s Omni 411 
arrays in the second phase of GTEx (GTEx_phs000424, release v6) was 455 before sample 412 
quality control (296 declared as males and 159 as females). These samples included 272 donors 413 
genotyped on Illumina’s HumanOmni2.5-Quad Array (2,378,075 variants), and 183 on 414 
Illumina’s HumanOmni5-Quad Array (4,276,680 variants), after excluding 2 Klinefelter donors 415 
and 5 duplicates. DNA isolated from blood samples was the primary source of DNA used for 416 
genotyping (>360ng DNA), performed at the Broad Institute of Harvard and MIT. Genotypes 417 
were called using Illumina's GeneTrain calling algorithm (Autocall). The genotyping call rates 418 
per individual exceeded 98% for all samples. All genotypes and analyses were aligned to 419 
chromosome positions from human genome build 37 (hg19). 420 
 
To merge the genotypes from Illumina’s Omni 5M and Omni 2.5M arrays we extracted the 421 
genotype calls of an overlapping subset of ~2.2 million variants between the two platforms from 422 
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all samples, using VCFtools (http://vcftools.sourceforge.net/). This enabled imputing the same 423 
set of variants into all samples, a reasonable solution given that the concordance between hard 424 
genotype calls and imputed genotypes is high. 425 
 
Multiple sample and variant quality control (QC) steps were performed before running 426 
imputation to ensure high confidence variants and to remove outlier or related samples from 427 
eQTL analysis. We used the toolset PLINK17 to perform appropriate genotype QC filters 428 
(Extended Data Table 6). This resulted in 1,883,274 autosomal variants genotyped across 450 429 
GTEx donors. 430 
 
Imputation of autosomal genotypes. To increase power and resolution for discovering new 431 
eQTLs in the different GTEx tissues collected from the donors, we imputed variants from 1000 432 
Genomes Project into the QC filtered Omni 5M+2.5M merged genotype data for 451 GTEx 433 
donors. The reference panel version used was the 1000 Genomes Phase 1 integrated variant set 434 
release March 2012 (release v3), updated on 24 August 2012, downloaded from the IMPUTE2 435 
website: https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html. 436 
This v3 version includes single nucleotide polymorphisms (SNPs) and indels and is limited to 437 
variants with more than one minor allele copy ("minor allele count greater than 1") across all 438 
1,092 individuals. 439 
    
We filtered out variants with incompatible alleles between the Omni 5M or 2.5M arrays and the 440 
1000 Genomes reference data, and variants with a frequency difference larger than 0.15 between 441 
GTEx and 1000 Genomes samples, computed using samples of European descent, which 442 
constitute the majority of samples in GTEx. Variants were aligned between GTEx samples and 443 
1000 Genomes Project by chromosome position (genome build 37), removing variants that did 444 
not align. 445 
 
The imputation of autosomes was run using the Ricopili pipeline 446 
(https://sites.google.com/a/broadinstitute.org/ricopili/). Prephasing was performed on all samples 447 
together using SHAPEIT v2.r644  448 
(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html). Imputation was 449 
performed using IMPUTE2 2.2.7_beta with the default effective population size of 20,000 on 3 450 
Mb segments across each chromosome, which were subsequently merged. This yielded 451 
14,390,153 variants across 451 samples. After imputation was completed, a chromosome 17 452 
trisomy individual (GTEX-UPIC) was discovered and its genotypes was removed from the 453 
analysis freeze VCF, resulting in genotype data for 450 donors. 454 
 
The following QC filters were applied to the genotyped and imputed array VCF for eQTL 455 
analysis: INFO < 0.4, minor allele frequency (MAF) < 1%, Hardy-Weinberg Equilibrium (HWE) 456 
P ≤ 1.0 x 10-6. We calculated missing rate for best-guessed genotypes, and the HWE test was 457 
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performed using the software tool SNPTEST73 using only samples from European descent. 458 
Indels with length >51 base pairs were removed. About 13% of variants were hard call genotypes 459 
and 87% of variants were imputed. About 91% of the total numbers of variants were SNPs, and 460 
8.9% were indels. The REF and ALT alleles in the imputed VCF were checked for alignment to 461 
the human reference genome hg19, and the REF and ALT sequences were added for both SNPs 462 
and indels. 463 
  
The final genotyped and imputed array VCF (file format v4.1) for autosomal variants contains 464 
genotype posterior probabilities for each of the three possible genotypes for 11,552,519 variants 465 
across 450 GTEx donors. The dosages of the alternative alleles relative to the human reference 466 
genome hg19 were used as the genotype measure for eQTL analysis. To assess the accuracy of 467 
imputation of autosomal chromosomes, we compared the alternative allele dosages between 468 
imputed and genotyped calls, using the Omni 2.5S set of variants for 183 GTEx samples from 469 
the pilot phase, for which we have both direct calls on the Omni 5M array and imputed calls 470 
from the merged set of 450 samples. Imputation accuracy was assessed using the coefficient of 471 
determination (R2) computed for each of the 2.5S variants separately across 183 samples and 472 
between the alternative allele dosage of the post-QC’d imputed calls and the directly genotyped 473 
calls. The imputation accuracy observed was very high for common variants (mean R2 = 0.931-474 
0.969; median R2 = 0.985-0.989), and, as expected, somewhat lower, for low frequency variants 475 
(mean R2 = 0.722-0.906; median R2 = 0.804-0.976; Extended Data Table 7). 476 
  
We computed the principal components (PCs) of the genotyped and imputed variants for 451 477 
GTEx samples using EIGENSTRAT74 as implemented in Ricopili 478 
(https://sites.google.com/a/broadinstitute.org/ricopili/pca). This was done using a genome-wide 479 
set of linkage disequilibrium (LD)-pruned variants (R2 > 0.2, plink --indep-pairwise 200 100 0.2) 480 
generated from best-guessed genotype calls after imputation (posterior probability > 0.9). 481 
Variant filters were applied, including the exclusion of variants not present in all samples, strand 482 
ambiguous SNPs (AT, CG), variants in the MHC region, variants with MAF < 5% or HWE P < 483 
1.0 x 10-4, and variant missing rate > 2%. For eQTL analysis, the first three genotype PCs were 484 
used as covariates, as they captured the largest proportions of genotype variance of the top 485 
genotype PCs (See Supplemental material in [Aguet et al, GTEx cis-eQTL manuscript, in 486 
submission]). 487 
 
Trans-eQTL association testing. Matrix eQTL15 was used to test all autosomal variants (MAF 488 
> 0.05) with all gene transcripts, restricted to lying on different chromosomes, in each tissue 489 
independently using an additive linear model. We included the three genotype PCs, genotyping 490 
platform, sex, and PEER factors estimated from expression data in Matrix eQTL when 491 
performing association testing. The correlation between variant and gene expression levels was 492 
evaluated using the estimated t-statistic from this model, and corresponding FDR was estimated 493 
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using Benjamini-Hochberg FDR correction15,75 separately within each tissue and also using 494 
permutation analysis. 495 
 
Trans-eQTL quality control. Mappability of every k-mer of the reference human genome 496 
(hg19) computed by the ENCODE project35 has been downloaded from the UCSC genome 497 
browser (accession: wgEncodeEH000318, wgEncodeEH00032)76. We have computed exon- and 498 
untranslated region (UTR)-mappability of a gene as the average mappability of all k-mers in 499 
exonic regions and UTRs, respectively. We have chosen k = 75 for exonic regions, as it is the 500 
closest to GTEx read length among all possible values of k. However, as UTRs are generally 501 
small regions, and 36 is the smallest among all possible values of k, we have chosen k = 36 for 502 
UTRs. Finally, mappability of a gene is computed as the weighted average of its exon-503 
mappability and UTR-mappability, weights being proportional to the total length of exonic 504 
regions and UTRs, respectively. We excluded from association testing any gene with 505 
mappability < 0.8. 506 
 
The set of genetic variants tested have also been reduced by first filtering out all variants with 507 
MAF < 0.05 in individuals sampled for the tissue being tested (reducing the variant set to 508 
6,226,121), and then filtering out all variant that are annotated by RepeatMasker to belong to a 509 
repeat region [http://www.repeatmasker.org/], release library version 20140131 for hg19. This 510 
filtering reduced the number of variants tested by roughly 53.6%, from 6,226,121 variants to 511 
2,889,379.  512 
 
Next, we aligned every 75-mer in exonic regions and 36-mers in UTRs of every gene with 513 
mappability below 1.0 to the reference human genome (hg19) using Bowtie (v 1.1.2)77. If any of 514 
the alignments started within an exon or a UTR of another gene, then that pair of genes are cross-515 
mappable.  We excluded from consideration any variant-gene pair where the variant is within 516 
100 Kb of a gene that cross-maps with the potential trans-eQTL target gene. 517 
 
Population structure is another source of potential false positives, and we control for three 518 
genotype principal components (PCs).  While this should capture most broad effects of ancestry, 519 
we additionally check for residual evidence of strong correlation with a larger set of 20 genotype 520 
PCs (Extended Data Table 8).  We observe a modest increase in correlation among trans-521 
eVariants (Extended Data Fig. 13). While we opted not to apply further filtering, we have 522 
flagged any trans-eVariant with maximum correlation greater than 99% of the levels observed 523 
among random variants for use in future downstream analyses that may depend on ancestry. 524 
 
Linkage disequilibrium, cis-eQTL, and GWAS restricted trans-eQTL tests. We performed 525 
restricted trans-eQTL association tests by filtering the set of variants considered in three ways. 526 
First, we filtered the final VCF files using linkage disequilibrium LD-pruning (R2 > 0.5, plink 527 
parameters --indep 50 5 2), removing approximately 90% of variants. Next, from the original 528 
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VCF file, we performed association mapping using only the most significant GTEx cis-eQTL per 529 
eGene per tissue [Aguet et al, GTEx cis-eQTL manuscript, in submission]. From the original 530 
VCF file, we performed association mapping using only variants that had been found to have a 531 
trait association in a genome-wide association study26 (P ≤ 2.0 x 10-5). The three association 532 
mapping analyses and FDR estimation were performed in each tissue separately. 533 
 
Intra-chromosomal long-range eQTL detection. Phased allelic expression data were collected 534 
for all LD pruned eQTL (FDR ≤ 0.1) and only those eQTL with data in at least 10 eVariant 535 
homozygotes and heterozygotes were used. To remove cases where strong allelic imbalance was 536 
seen in eQTL homozygotes, the top 5% of eQTL sorted by homozygote allelic imbalance were 537 
filtered. To minimize the number of phasing errors that occur at long, chromosome wide 538 
distances, we developed a model that predicts the probability of phasing error as a function of the 539 
minor allele frequency of both the eVariant and a coding variant where ASE is assessed, as well 540 
as the distance between them. We used this model to filter cases where the predicted probability 541 
of correct phasing was < 99%. A beta-binomial mixture model was then used to determine if the 542 
allelic data supported the presence of a cis-eQTL. To identify long-range cis-eQTL, from eQTL 543 
with TSS distance > 5 Mb the top eQTL per gene was selected, and multiple testing correction 544 
was performed using the Benjamini-Hochberg FDR method on a per tissue basis. We next 545 
quantified the proportion of eQTL with significant (nominal P ≤ 0.01) ASE supported evidence 546 
of cis regulation as a function of distance to eGene TSS. Although we attempted to reduce 547 
phasing error, we were unable to accurately estimate the remaining error, so we compared the 548 
observed proportion of cis-eQTL to what would be expected under the worst case scenario of 549 
phasing error. Performance under the worst case scenario was determined by introducing phasing 550 
error between eVariants and ASE data at a rate of 50% to LD pruned eQTL (FDR ≤ 0.1) within 551 
100 Kb of the TSS, which were assumed to act in cis, and then determining the number of 552 
significant (nominal P ≤ 0.01) ASE supported cis-eQTL that could be identified as a function of 553 
eQTL effect size. 554 
 
Cross-tissue trans-eQTLs. We used MetaTissue to quantify the tissue-specificity trans-555 
eQTLs19. We ran MetaTissue with the heuristic option on to increase detection of cross-tissue 556 
differences. As MetaTissue, with the heuristic option on, does not permit analysis across all 44 557 
tissues, we restricted to the 20 tissues with the largest sample sizes. We restricted to the best 558 
variant per trans-eGene (FDR ≤ 0.5 in 20 tissue subset; 798 eGenes) and the best variant per 559 
randomly selected cis-eGene (FDR ≤ 0.5 in 20 tissue subet). We also analyzed the top cis-560 
eGenes by p-value in a separate comparison. The distribution of cis-eGene discovery tissues was 561 
matched to that observed in trans. As input to MetaTissue, we used the same genotype and 562 
expression matrices as were used in the tissue-specific Matrix eQTL association analysis. As 563 
MetaTissue does not handle tissue specific covariates and allows for only one genotype file, we 564 
controlled for general covariates (gender, genotype PCs, and DNA platform) in genotype. For 565 
each tissue type, we controlled for all covariates (tissue-specific and general) in the gene 566 
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expression levels and projected the expression levels of each gene to the quantiles of a standard 567 
normal.  568 
 
Tissue clustering from effect size in trans-eQTLs. Hierarchical agglomerative clustering was 569 
performed on trans-eGenes (FDR ≤ 0.5) using distance metric (1 − Spearman correlation) of 570 
MetaTissue effect sizes across all observed genes between tissue pairs.    571 
 
Hierarchical FDR control for multi-tissue eVariant discovery. We applied a hierarchical 572 
FDR control approach to identify significant trans-eVariants across all variants, genes, and 573 
tissues together as a second assessment of tissue-specificity of trans-eQTLs20.  As input, we 574 
considered 305,822 variants from the LD-pruned set that had a nominal trans association P ≤ 1.0 575 
x 10-7 with at least one gene.  Let Hijk denote the null hypothesis of no association between 576 
variant i and the expression of gene j in tissue k, Hij• denote the null hypothesis of no association 577 
between variant i and gene j in any tissue, and Hi•• denote the null hypothesis of no association 578 
between variant i and any gene in any tissue. We consider i to be an eVariant if we reject Hi•, and 579 
a variant-gene pair to be discovered if we reject Hij•. 580 
 
To evaluate Hijk, Hij• and Hi••, we performed a hierarchical testing procedure20,78. P-values were 581 
defined starting from the leaf hypotheses Hijk, where we used the association p-value pijk 582 
calculated by Matrix eQTL. P-values pij• corresponding the variant x gene null hypotheses Hij• 583 
across tissues were then calculated using Simes79, and p-values pi•• corresponding to the variant-584 
level null hypothesis Hi•• were also calculated using Simes. We then applied the Benjamini-585 
Hochberg (BH) procedure on pi•• to identify eVariants at FDR ≤ 0.1. Next, we applied BH with 586 
an adjusted threshold to account for variant selection to the collections of pij• for each discovered 587 
eVariant i to identify which genes it controls. Finally, we applied BH with a threshold adjusted to 588 
account for the two previous selection steps to each of the collections of pijk corresponding to 589 
each discovered eVariant-eGene pair to identify the tissues in which this regulation is present. 590 
This three-level procedure controls the FDR of eVariants, the average expected proportion of 591 
false variant-gene associations across eVariants78, and the expected weighted average of false 592 
tissue discoveries for the selected variant-gene pairs (weighted by the size of the eVariant and 593 
eGene sets) to the target FDR ≤ 0.1. 594 
 
Cis regulatory element enrichment analysis. We annotated discovered trans-eVariants using 595 
chromatin state predictions from 127 cell types or cell lines sampled by the Roadmap 596 
Epigenomics project33. Each cell type or cell line has the genome segmented by a 15-state hidden 597 
Markov model (HMM) in 400 bp windows. Several of these states are labeled as types of 598 
'enhancers', 'promoters,' and 'repressed regions.' For the standard 15-state Roadmap 599 
segmentations, regulatory elements are labeled independently for each cell type. Our analysis 600 
was restricted to GTEx tissues that are composed of at least one Roadmap Epigenomics cell type 601 
(26 tissues); which included 84 eVariants and 24 eGenes (FDR ≤ 0.1). We matched these 602 
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variants to randomly selected variants based on chromosome, distance to nearest TSS, and MAF. 603 
We quantified enrichment of the trans variants relative to random variants in both enhancer and 604 
promoter elements in the GTEx discovery tissue’s matched Roadmap cell type (Extended Data 605 
Table 9). We then performed the same analysis with randomly matched cis-eGenes. Matching 606 
performed as follows: for each of the 24 trans-eGenes g, each having Ng associated eVariants 607 
(FDR ≤ 0.1), we randomly selected a cis-eGene that also had at least Ng associated variants (FDR 608 
≤ 0.1). We then selected the top Ng variants associated with this gene based on p-value to use in 609 
the enrichment analysis. Selecting 24 random cis-eGenes for enrichments yields unstable 610 
enrichment, so we ran cis-eGene selection and enrichment 70 times with different selections. We 611 
rank ordered the 70 trials for both promoters and enhancers based on average odds ratio 612 
enrichment relative to background. We then used the trial that was closest to median rank for 613 
plotting both promoters and enhancers. 614 
 
piRNA cluster enrichment analysis. We obtained a list of 6,250 piRNA clusters that were 615 
experimentally determined from RNA sequencing of human testis36. When considering all 616 
unique trans-eVariants identified in all tissues, we identified an enrichment of trans-eQTLs 617 
overlapping a piRNA cluster (17.8%) compared to the null expectation if trans-eVariants were 618 
randomly distributed compared to piRNA clusters (2.5%). To further establish the statistical 619 
significance of this observation, we generated a null distribution of piRNA-eVariant overlap by 620 
permutation. Using bedtools280, we permuted the location of piRNA clusters on the human 621 
genome 10,000 times, requiring the piRNA clusters be excluded from centromeres and sex 622 
chromosomes. We also evaluated the proportion of trans-eVariants located within 10 Kb of a 623 
piRNA cluster, and estimated the significance of this enrichment using the same permutation 624 
scheme. 625 
 
TCGA thyroid RNA-seq analysis. To replicate trans-eVariants in thyroid, we used Thyroid 626 
Carcinoma (THCA) RNA-seq and genotype array data from The Cancer Genome Atlas (TCGA). 627 
Filtering out tumor normal and metastatic samples, we restricted our analysis to 496 primary 628 
tumor samples45.  Next, after log transforming RNA-seq RSEM measurements81, we quantile 629 
normalized the data to the empirical distribution such that each sample has the same distribution. 630 
Next, we ensured that expression of each gene follows a Gaussian distribution by projecting each 631 
gene expression levels to the quantiles of a standard normal. To account for noise and 632 
confounding factors in RNA-seq measurements, we corrected the data by controlling for the first 633 
five gene expression principal components using a linear model. After this, using a linear model, 634 
we tested the effect of each variant in chr 9 position 100600000 - 100670000 on expression 635 
levels of all distal genes. We used the Benjamini-Hochberg method to correct for multiple 636 
hypotheses testing. Genes with FDR ≤ 0.1 were called as trans-eGenes. 637 
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Colocalization analysis. To quantify the probability that cis- and trans-eGenes share the same 638 
causal genetic locus in thyroid and muscle, we used Coloc49 with p-value summary statistics as 639 
input. 640 
 
Data availability 641 
Genotype data from the GTEx v6 release are available in dbGaP (study accession 642 
phs000424.v6.p1; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-643 
bin/study.cgi?study_id=phs000424.v6.p1). The VCF files for imputed array data are in the 644 
archive phg000520.v2.GTEx MidPoint Imputation.genotype-calls-vcf.c1.GRU.tar (the archive 645 
contains a VCF for chromosomes 1-22 and a VCF for chromosome X). Allelic expression data is 646 
also available in dbGap. Expression data (read counts and RPKM) and eQTL input files 647 
(normalized expression data and covariates for 44 the tissues) from the GTEx v6p release are 648 
available from the GTEx Portal (http://gtexportal.org). eQTL results are available from the GTEx 649 
Portal.  650 
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