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with a multi-tissue outlier but no multi-tissue eQTL and genes with a multi-tissue eQTL but no multi-451 
tissue outlier. 452 

Overlap of genes with multi-tissue outliers and disease genes 453 
We examined the enrichment of genes with multi-tissue outliers in eight disease gene lists. A summary of 454 
these lists can be found in Extended Data Table 2. We tested for enrichment or depletion by comparing 455 
each disease gene list to the 18,380 genes tested for multi-tissue outliers. We computed odds ratios and 456 
95% confidence intervals using Fisher’s exact test. We compared the enrichments for genes with multi-457 
tissue outliers to genes with shared eQTL effects as defined by the Metasoft approach. Like the ExAC 458 
enrichment analysis, we chose the top 4,919 shared eGenes (ranked by P-value from the RE2 model) to 459 
match the number of genes with multi-tissue outliers.  460 

Heritable cancer predisposition and heritable cardiovascular disease gene lists were curated by local 461 
experts in clinical and laboratory-based genetics in the two respective areas (Stanford Medicine Clinical 462 
Genomics Service, Stanford Cancer Center's Cancer Genetics Clinic, and Stanford Center for Inherited 463 
Cardiovascular Disease). Genes were included if both the clinical and laboratory-based teams agreed 464 
there was sufficient published evidence to support using variants in these genes in clinical decision 465 
making. 466 

RIVER integrative model for predicting regulatory effects of rare variants 467 
RIVER (RNA-Informed Variant Effect on Regulation) is a hierarchical Bayesian model that predicts the 468 
regulatory effects of rare variants by integrating gene expression with genomic annotations. The RIVER 469 
model consists of three layers: a set of nodes G = G1 ... GP in the topmost layer representing P observed 470 
genomic annotations over all rare variants near a particular gene, a latent binary variable FR in the middle 471 
layer representing the unobserved functional regulatory status of the rare variants, and one binary node E 472 
in the final layer representing expression outlier status of the nearby gene. We model each conditional 473 
probability distribution as follows: 474 

!" | 𝑮!!!Bernoulli!!!!,    !!! ! !logit!!(!!!! 
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1
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with parameters β and θ and hyper-parameters λ and C.  475 

Because FR is unobserved, the RIVER log-likelihood objective over instances n = 1, …, N 476 
log 𝑃 𝑬!,𝑮!,𝐹𝑅! 𝜷,𝜽)!

!"!!!
!
!!!  is non-convex. We therefore optimize model parameters via 477 

Expectation-Maximization44 (EM) as follows: 478 

In the E-step, we compute the posterior probabilities (𝜔!
(!)) of the latent variables FRn given current 479 

parameters and observed data. For example, at the ith iteration, the posterior probability of FRn = 1 for the 480 
nth instance is  481 
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In the M-step, at the ith iteration, given the current estimates ω(i), the parameters (β(i + 1)*) are estimated as  483 

argmax𝜷(𝒊!𝟏) log 𝑃 𝐹𝑅! 𝑮!,𝜷 !!!!
!"!!! ∙ ω!",!

(!)!
!!! − !

!
𝜷(!!!) !, 484 

where λ is an L2 penalty hyper-parameter derived from the Gaussian prior on β. 485 

The parameters θ get updated as: 486 

𝜃!"
(!!!) = I(𝐸! = 𝑡)

𝑵

𝒏!𝟏

∙ ω!,!
! + 𝐶, 

where I is an indicator operator, t is the binary value of expression En, s is the possible binary values of 487 
FRn, and C is a pseudo count derived from the Beta prior on θ. The E and M steps are applied iteratively 488 
until convergence. 489 

RIVER application to the GTEx cohort 490 
As input, RIVER requires simply a set of genomic features G and a set of corresponding expression 491 
outlier observations E, each over a set of instances representing one gene in one individual. Using the 492 
variant annotations described above, we generated genomic features at the site-level for the 116 European 493 
individuals with GTEx WGS data that had fewer than 50 multi-tissue outliers. We then collapsed these 494 
features for all rare SNVs within 10 kb of each TSS to generate gene-level features with relevant 495 
computational operators: a binary indicator implying a presence/absence of any rare SNV in each of the 496 
VEP features, total number of rare SNVs in each of the VEP features, chromatin states from 497 
ChromHMM, and Segway segmentations, and a maximum value over all nearby rare SNVs for the rest of 498 
the features. The collapsed features are described in Extended Data Table 3. This produces a matrix of 499 
genomic features G of size (116 individuals x 1,736 genes) x (112 genomic features), which we 500 
standardize within features (columns) before use. The corresponding multi-tissue outlier values E were 501 
computed using PEER-corrected gene expression Z-scores from each tissue. For each gene, we defined 502 
any individual with |median Z-score| ≥ 1.5 as an outlier if the expression was observed in at least five 503 
tissues; the remaining individuals were labeled as non-outliers for the gene. In total, we extracted 48,575 504 
instances where an individual had at least one rare variant within 10 kb of TSS of a gene. We then 505 
incorporated standardized genomic features (G nodes in Fig. 5a) and multi-tissue outlier states (E node in 506 
Fig. 5a) as input to RIVER. 507 

To train and evaluate RIVER on the GTEx cohort, we first identified 3,766 instances of individual and 508 
gene pairs where two individuals had the same rare SNVs near a particular gene. We used these instances 509 
for evaluation as described below. We held out those instances and trained RIVER parameters with the 510 
remaining instances. RIVER requires two hyper-parameters λ and C. To select λ, we first applied a 511 
multivariate logistic regression with features G and response variable E, selecting lambda with the 512 
minimum squared error via 10-fold cross-validation (we selected λ = 0.01). We selected C = 50, informed 513 
simply by the total number of training instances available, as validation data was not available for 514 
extensive cross-validation. Initial parameters for EM were set to θ = (P(E = 0 | FR = 0), P(E = 1 | FR = 0), 515 
P(E = 0 | FR = 1), P(E = 1 | FR = 1)) = (0.99, 0.01, 0.3, 0.7) and β from the multivariate logistic 516 
regression above, although different initializations did not significantly change the final parameters 517 
(Extended Data Table 6).  518 
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The 3,766 held out pairs of instances from individuals with an identical rare variant were used to create a 519 
labeled evaluation set. For one of the two individuals from each pair, we estimated the posterior 520 
probability of a functional rare variant P(FR | G, E, β, θ). The outlier status of the second individual, 521 
whose data was not observed either during training or prediction, was then treated as a “label” of the true 522 
status of functional effect FR. Using this labeled set, we compared the RIVER score to the posterior P(FR 523 
| G, β) estimated from the plain multivariate logistic regression model with genomic annotations alone. 524 
We produced ROC curves and computed AUC for both models, testing for significant differences using 525 
DeLong’s method29. This metric relies on outlier status reflecting the consequences of rare variants—526 
pairs of individuals who share rare variants tend to have highly similar outlier status even after regressing 527 
out effects of common variants (Kendall’s tau rank correlation, P < 2.2 x 10-16). As a second metric, we 528 
also evaluated performance of both the genomic annotation model and RIVER by assessing ASE. We 529 
tested the association between ASE and model predictions using Fisher's Exact Test. High allelic 530 
imbalance, defined by a top 10% threshold on median absolute deviation of the reference-to-total allele 531 
ratio from an expected ratio (0.5) across 44 tissues, was compared to posterior probabilities of rare 532 
variants being functional from both models with four different thresholds (top 10% – 40%).  533 

Supervised model integrating expression and genomic annotation 534 
To assess the information gained by incorporating gene expression data in the prediction of functional 535 
rare variants, we applied a simplified supervised approach to a limited dataset. We used the instances 536 
where two individuals had same rare variants to create a labeled training set where the outlier status of the 537 
second individual was used as the response variable. We then trained a logistic regression model with just 538 
two features: 1) the outlier status of the first individual and 2) a single genomic feature value such as 539 
CADD or DANN. We estimated parameters from the entire set of rare-variant-matched pairs using 540 
logistic regression to determine the log odds ratio and corresponding P-value of expression status as a 541 
predictor. While this approach was not amenable to training a full predictive model over all genomic 542 
annotations jointly, given the limited number of instances, it provided a consistent estimate of the log 543 
odds ratio of outlier status. We tested five genomic predictors: CADD, DANN, transcription factor 544 
binding site annotations, PhyloP scores, and one aggregated feature, posterior probability from a 545 
multivariate logistic regression model learned with all genomic annotations (Logistic) (Extended Data 546 
Table 4). 547 

RIVER assessment of pathogenic ClinVar variants 548 
We downloaded pathogenic variants from the ClinVar database30 (accessed 04/05/2015). We searched for 549 
the presence of any of these disease variants within the set of rare variants segregating in the GTEx 550 
cohort. Using the ClinVar database, we then manually curated this set of variants, classifying them as 551 
pathogenic only if there was supporting clinical evidence of their role in disease. Specifically, any disease 552 
variant reported as pathogenic, likely pathogenic, or a risk factor for disease was considered pathogenic. 553 
To explore RIVER scores for those pathogenic variants, all instances were used for training RIVER. We 554 
then computed a posterior probability P(FR | G, E, β, θ) for each instance coinciding with a pathogenic 555 
ClinVar variant. 556 

Stability of estimated parameters with different parameter initializations 557 
We tried several different initialization parameters for either β or θ to explore how this affected the 558 
estimated parameters. We initialized a noisy β by adding K% Gaussian noise compared to the mean of β 559 
with fixed θ (for K = 10, 20, 50 100, 200, 400, 800). For θ, we fixed P(E = 1 | FR = 0) and P(E = 0 | FR = 560 
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0) as 0.01 and 0.99, respectively, and initialized (P(E = 1 | FR = 1), P(E = 0 | FR = 1)) as (0.1, 0.9), (0.4, 561 
0.6), and (0.45, 0.55) instead of (0.3, 0.7) with β fixed. For each parameter initialization, we computed 562 
Spearman rank correlations between parameters from RIVER using the original initialization and the 563 
alternative initializations. We also investigated how many instances within top 10% of posterior 564 
probabilities from RIVER under the original settings were replicated in the top 10% of posterior 565 
probabilities under the alternative initializations (Accuracy in Extended Data Table 6).    566 

Code availability 567 
RIVER is available at https://github.com/ipw012/RIVER. Additionally, the code for running analyses and 568 
producing the figures throughout this manuscript is available separately 569 
(https://github.com/joed3/GTExV6PRareVariation). 570 

Data availability 571 
The GTEx V6 release genotype and allele-specific expression data are available from dbGaP (study 572 
accession phs000424.v6.p1; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-573 
bin/study.cgi?study_id=phs000424.v6.p1). Expression data from the V6p release and eQTL results are 574 
available from the GTEx portal (http://gtexportal.org).  575 
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