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Abstract

A set of chemical reactions that require a metabolite to synthesize more of that metabolite
is an autocatalytic cycle. Here we show that most of the reactions in the core of central
carbon metabolism are part of compact autocatalytic cycles. Such metabolic designs must
meet specific conditions to support stable fluxes, hence avoiding depletion of intermediate
metabolites. As such, they are subjected to constraints that may seem counter-intuitive: the
enzymes of branch reactions out of the cycle must be overexpressed and the affinity of these
enzymes to their substrates must be relatively weak. We use recent quantitative proteomics and
fluxomics measurements to show that the above conditions hold for functioning cycles in central
carbon metabolism of E.coli. This work demonstrates that the topology of a metabolic network
can shape kinetic parameters of enzymes and lead to seemingly wasteful enzyme usage.

Introduction

An essential trait of living systems is their ability to reproduce. This fundamental ability
makes all living organisms autocatalytic by definition. Moreover, autocatalytic metabolism is
considered to be one of the essential components of life [1].

In this work we focus on autocatalytic cycles in chemical reaction systems, in the context
of metabolic networks. The components we consider are the metabolites of the system, with
autocatalytic cycles being formed using the reactions of the metabolic network. An illustrative
example for a metabolic autocatalytic cycle is glycolysis. In glycolysis, 2 ATP molecules are
consumed in the priming phase, in order to produce 4 ATP molecules in the pay off phase.
Therefore, in order to produce ATP in glycolysis, ATP must already be present in the cell.
Subsequently, autocatalysis of ATP in glycolysis (also referred to as “turbo design”) results
in sensitivity to mutations in seemingly irrelevant enzymes [2]. Autocatalytic cycles have also
been shown to be optimal network topologies that minimize the number of reactions needed
for the production of precursor molecules from different nutrient sources [3].
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Metabolic networks often require the availability of certain intermediate metabolites, in ad-
dition to the nutrients consumed, in order to function. Examples of obligatorily autocatalytic
internal metabolites in different organisms, on top of ATP, are NADH, and coenzyme A [4]. We
find that other central metabolites, such as phospho-sugars and organic acids, are autocatalytic
under common growth conditions. The requirement for availability of certain metabolites in or-
der to consume nutrients implies metabolic processes must be finely controlled to prevent such
essential metabolites from running out; in such cases metabolism will come to a halt. Autocat-
alytic cycles present control challenges because the inherent feed-back nature of autocatalytic
cycles makes them susceptible to instabilities such as divergence or drainage of their interme-
diate metabolites [2, 5, 6]. The stability criteria typically represent one constraint among the
parameters of the cycle enzymes. For large cycles, such as the whole metabolic network, one
such constraint adds little information. For compact autocatalytic cycles embedded within
metabolism, one such constraint is much more informative. We thus focus our efforts on ana-
lyzing small autocatalytic cycles. Finding the unique constraints that metabolic autocatalytic
cycles impose is essential for understanding the limitations of existing metabolic networks, as
well as for modifying them for synthetic biology and metabolic engineering applications.

A key example of an autocatalytic cycle in carbon metabolism is the Calvin-Benson-
Bassham cycle (CBB) [7]. The carbon fixation CBB cycle, which fixes CO2 while transforming
five-carbon compounds into 2 three-carbon compounds, serves as the main gateway for convert-
ing inorganic carbon to organic compounds in nature [8]. The autocatalytic nature of the CBB
cycle stems from the fact that for every 5 five-carbon compounds the cycle consumes, 6 five-
carbon compounds are produced (by the fixation of 5 CO2 molecules). Beyond the CBB cycle,
we show that most of the reactions and metabolites in the core of central carbon metabolism
are part of compact (i.e. consisting of around 10 reactions or fewer) metabolic autocatalytic
cycles. Some of the autocatalytic cycles we find are not usually considered as such. The span
of autocatalytic cycles in central carbon metabolism suggests that the constraints underlying
their stable operation have network-wide biological consequences.

In this study we present the specific requirements metabolic autocatalytic cycles must meet
in order to achieve at least one, non-zero, steady state which is stable in respect to fluctuations
of either metabolites or enzyme levels close to the steady state point. The mathematical tools we
use are part of dynamical systems theory [9]. We identify the kinetic parameters of enzymes at
metabolic branch points out of an autocatalytic cycle as critical values that determine whether
the cycle can operate stably. We show that the affinity of enzymes consuming intermediate
metabolites of autocatalytic cycles must be limited to prevent depletion of these metabolites.
Moreover, we show that the stable operation of such cycles requires low saturation, and thus
excess expression, of these enzymes. Low saturation of enzymes has previously been suggested
to stem from a number of reasons in different contexts: (A) to achieve a desired flux in reactions
close to equilibrium, for example in glycolysis [10, 11, 12]; (B) to provide safety factors in the
face of varying nutrient availability, for example in the brush-border of the mouse intestine
[13]; (C) to accommodate rapid shifts in demand from the metabolic networks in muscles with
low glycolytic flux [14]; (D) fast response times, for example to pulses of oxidative load in
erythrocytes, resulting from their adherence to phagocytes [15]. Our findings add to these
reasons the essential stabilizing effect of low saturation of branch reactions on the stability of
fluxes through autocatalytic cycles.

We use recent fluxomics and proteomics data to test the predictions we make. We find them
to hold in all cases tested where autocatalytic cycles support flux. Our analysis demonstrates
how the requirement for stable operation of autocatalytic cycles results in design principles
that are followed by autocatalytic cycles in-vivo. The results and design principles presented
here can be further used in synthetic metabolic engineering applications that require proper
functioning of autocatalytic cycles.
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Results

Compact autocatalytic cycles are common and play important
roles in the core of central carbon metabolism

Different definitions exist for autocatalytic sets in the context of chemical reaction networks
[16, 17, 4]. Here we define an autocatalytic cycle as a set of reactions and metabolites that
form a cycle, and that, when the reactions are applied to the substrates at the given stoichio-
metric ratios, increase the amount of the intermediate metabolites. A minimal example of a
metabolic autocatalytic cycle is shown in Figure 1, where an internal metabolite joins with an
external assimilated metabolite to give rise to 1 + δ copies of the internal metabolite, repre-
senting an increase by δ copies. For stable operation, δ copies have to branch out of the cycle,
and this consumption must be robust to small fluctuations in enzyme levels and metabolite
concentrations. For a formal, mathematical definition, see methods section 1.

δ·Internal metabolite
Internal

metabolite

Assimilated
metabolite

Internal metabolite + Assimilated metabolite → (1 + δ) Internal metabolite

Figure 1: A basic autocatalytic cycle requires an internal metabolite to be present in order to
assimilate the external metabolite into the cycle, increasing the amount of the internal metabolite
by some amount, δ.

While rarely discussed as such, a systematic search in the central carbon metabolism core
model of E.coli (see methods section 2) shows the ubiquity of compact autocatalytic cycles. On
top of the previously discussed CBB cycle (Figure 2, example I), we show two other prominent
examples:

• The glyoxylate cycle within the TCA cycle, which turns an internal malate and two
external acetyl-CoAs into two malate molecules. This is achieved by transforming malate
to isocitrate, while assimilating acetyl-CoA, and then splitting the isocitrate to produce
two malate molecules, assimilating another acetyl-CoA [18] (Figure 2, example II).

• A cycle formed by the glucose phosphotransferase system (PTS) in bacteria. This trans-
port system imports a glucose molecule using phosphoenolpyruvate (pep) as a co-factor.
The imported glucose is further catabolized, producing two pep molecules via glycolysis
(Figure 2, example III).
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Two additional examples are presented in Figures S1 and S2 and discussed below.
The ubiquity of compact autocatalytic cycles in the core of central carbon metabolism

motivates the study of unique features of autocatalytic cycles, as derived below, which may
constrain and shape the kinetic parameters of a broad set of enzymes at the heart of metabolism.
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Figure 2: Three representative autocatalytic cycles in central carbon metabolism: (I) The Calvin-
Benson-Bassham cycle (yellow); (II) The glyoxylate cycle (magenta); (III) A cycle using the phos-
photransferase system (PTS) to assimilate glucose (cyan). Assimilation reactions are indicated in
green. Arrow width in panels represent relative carbon flux.

Steady state existence and stability analysis of a simple auto-
catalytic cycle

To explore general principles governing the dynamic behavior of autocatalytic cycles, we con-
sider the simple autocatalytic cycle depicted in Figure 3A. This cycle has a single intermediate
metabolite, X. We denote the flux through the autocatalytic reaction of the cycle by fa, such
that for any unit of X consumed, it produces two units of X. The autocatalytic reaction assim-
ilates an external metabolite (denoted A), which we assume to be at a constant concentration.
We denote the flux through the reaction branching out of the cycle by fb. Biologically, fb
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represents the consumption of the intermediate metabolite X. In the cycles we find in cen-
tral carbon metabolism, the branch reactions provide precursors that support growth through
subsequent reactions. We thus also sometimes consider fb to represent biomass generation.

For simplicity in the derivation, we assume irreversible Michaelis-Menten kinetics for the
two reactions. Even though fa should follow bisubstrate velocity equation, assuming constant
concentration of A reduces the bisubstrate equation to a simple Michaelis-Menten equation.
The apparent kinetic constants of the equation depend on the constant value of A (see methods
section 4). We extend our analysis to bisubstrate reaction equations in the next section. We
therefore assume that:

fa =
Vmax,aX

KM,a +X

fb =
Vmax,bX

KM,b +X

where Vmax is the maximal flux each reaction can carry and KM is the substrate concentration
at which half the maximal flux is attained. Physiologically, these kinetic parameters must be
positive. Using these simple forms allows us to obtain an analytic solution. We discuss more
general cases below.

We characterize the metabolic state of this system by the concentration of the metabolite
X. We note that knowing the concentration of X suffices in order to calculate the fluxes
originating from it, fa and fb, thus fully defining the state of the system. A steady state of
the system is defined as a concentration, X∗, which induces fluxes that keep the concentration
constant, such that the total in-flux to X is exactly equal to the total out-flux from it. In our
example, the outgoing flux from X is fa + fb and the incoming flux to X is 2fa, so at steady
state it holds that:

Ẋ =
dX

dt
= 2fa − (fa + fb) = 0 (1)

Intuitively, at steady state, the branch reaction must consume all the excess intermediate
metabolite that is produced by the autocatalytic reaction. Indeed, expanding the condition
above gives:

fa = fb ⇒
Vmax,aX

∗

KM,a +X∗
=

Vmax,bX
∗

KM,b +X∗

which is satisfied either if X∗ = 0 or if:

X∗ =
Vmax,bKM,a − Vmax,aKM,b

Vmax,a − Vmax,b
(2)

implying that:

X∗

KM,a
=

Vmax,b

Vmax,a
− KM,b

KM,a

1− Vmax,b

Vmax,a

(3)

The concentration of X cannot be negative, and thus we get a constraint on the kinetic param-
eters for which a positive steady state exists. Either both the numerator and the denominator
of equation 3 are positive, such that:

1 >
Vmax,b

Vmax,a
>
KM,b

KM,a

, or both are negative, such that:

1 <
Vmax,b

Vmax,a
<
KM,b

KM,a
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Ẋ = fa − fb

stable zero steady state

[X]

fl
u

x

unstable non-zero
steady state

[X]

fl
u

x

no stable steady state

[X]

fl
u

x

(B)

Figure 3: (A) A simple autocatalytic cycle induces two fluxes, fa and fb as a function of the
concentration of X. These fluxes follow simple Michaelis Menten kinetics. A steady state occurs
when fa = fb, implying that Ẋ = 0. The cycle always has a steady state (i.e. Ẋ = 0) at
X = 0. The slope of each reaction at X = 0 is Vmax/Km. A steady state is stable if at the

steady state concentration dẊ
dX < 0. (B) Each set of kinetic parameters, Vmax,a, Vmax,b,KM,a,KM,b

determines two dynamical properties of the system: If Vmax,b > Vmax,a, then a stable steady
state concentration must exist, as for high concentrations of X the branching reaction will reduce
the concentration of X (cyan domain, cases (I) and (II)). If Vmax,b/KM,b < Vmax,a/KM,a, implying
that Vmax,b/Vmax,a < KM,b/KM,a, then zero is a non-stable steady state concentration as if X is
slightly higher than zero, the autocatalytic reaction will carry higher flux, further increasing the
concentration of X (magenta domain, cases (I) and (IV)). At the intersection of these two domains
a non-zero, stable steady state concentration exists, case (I).

These constraints are graphically illustrated in Figure 3B, cases (III) and (I).
In order to gain intuition for this relationship we note that Vmax

Km
is the slope of the Michaelis

Menten function at X = 0. The existence of a positive steady state can be used to get that:

X∗ > 0⇒ Vmax,bKM,a − Vmax,aKM,b

Vmax,a − Vmax,b
> 0⇒

Vmax,b

KM,b
− Vmax,a

KM,a

Vmax,a − Vmax,b
> 0
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The last inequality above implies that in order for a positive steady state to exist, the
reaction with higher maximal flux must have a shallower slope at X = 0. Mathematically, the

constraint states that if Vmax,a > Vmax,b then
Vmax,a

KM,a
<

Vmax,b

KM,b
. Alternatively, if Vmax,a < Vmax,b

then
Vmax,a

KM,a
>

Vmax,b

KM,b
. This condition can be intuitively understood, as the reaction with

shallower slope at X = 0 has smaller fluxes for small values of X compared with the other
reaction, so unless it has higher fluxes than the other reaction for large values of X (meaning
that its maximal flux is higher), the two will never intersect (see Figure 3B).

While having a steady state at positive concentration is an essential condition to sustain flux,
it is not sufficient in terms of biological function. The steady state at positive concentration
must also be stable to small perturbations. Stability with respect to small perturbations is
determined by the response of the system to small deviations from the steady state, X∗ (at
which, by definition Ẋ = 0). Assuming X = X∗+ ∆X, stability implies that if ∆X is positive
then Ẋ needs to be negative at X∗ + ∆X, reducing X back to X∗, and if ∆X is negative, Ẋ
will need to be positive, increasing X back to X∗. It then follows that in order for X∗ to be

stable, dẊ
dX

< 0 at X = X∗, implying that upon a small deviation from the steady state X∗

(where Ẋ = 0), the net flux Ẋ will oppose the direction of the deviation.
For the simple kinetics we chose, the stability condition dictates that:

dẊ

dX

∣∣∣
X=X∗

=
Vmax,aKM,a

(KM,a +X∗)2
− Vmax,bKM,b

(KM,b +X∗)2
< 0 (4)

The analysis is straightforward for the case of X∗ = 0, yielding that 0 is a stable steady state

concentration if
Vmax,b

KM,b
>

Vmax,a

KM,a
, corresponding to the area above the diagonal in figure 3B,

where
Vmax,b

Vmax,a
>

KM,b

KM,a
. These cases are denoted as cases (II) and (III). If the relation is reversed

(i.e.
Vmax,b

KM,b
<

Vmax,a

KM,a
), then 0 is an unstable steady state. The criterion that is of interest,

however, is the criterion for stability of the non-zero steady state, X∗ =
Vmax,bKM,a−Vmax,aKM,b

Vmax,a−Vmax,b
.

In this case, substituting X∗ in equation 4 gives the opposite condition to that of X∗ = 0. This

steady state is thus stable if
Vmax,b

KM,b
<

Vmax,a

KM,a
, corresponding to the magenta domain in figure

3B, containing cases (I) and (IV), and unstable otherwise.
The stability criterion can be generally stated in metabolic control terms [19] using the

notion of elasticity coefficients of reactions, defined as:

εfX =
∂f

∂X

X

f

In these terms, stability is obtained if and only if the elasticity of the branch reaction at the
positive steady state concentration is greater than the elasticity of the autocatalytic reaction:

dfb
dX

∣∣∣
X=X∗

>
dfa
dX

∣∣∣
X=X∗

⇒ ε
fb
X > εfaX

The complete analysis is summarized up in Figure 3B. Domain (I) is the only domain where
a positive, stable steady state exists. Domains (I) and (III) are the domains at which a positive
steady state concentration exists, but in domain (III) that steady state is not stable. The
domains below the diagonal (cases (I) and (IV)) are the domains where X∗ = 0 is an unstable
steady state concentration, so that if another steady state exists, it is stable, but in domain
(IV) no positive steady state exists. The domains above the diagonal (cases (II) and (III)) are
the domains where X∗ = 0 is a stable steady state concentration, so that the other steady
state, if it exists, is unstable.
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Aside from existence and stability, a quantitative relationship between the affinity of the
biomass generating, branching reaction and the flux it carries can be obtained. This relation-
ship is opposite to the standard one, meaning that unlike the common case where the flux f
increases when the affinity becomes stronger, in this case, because the steady state concentra-
tion increases when KM,b becomes weaker (equation 7 in methods section 3), fb also increases
when KM,b becomes weaker.

To conclude, for this simple cycle, we get that in order for a positive-concentration stable
steady state to exist (case (I)), two conditions must be satisfied:

Vmax,b > Vmax,a

Vmax,b

KM,b
<
Vmax,a

KM,a

(5)

The first requirement states that the maximal flux of the biomass generating, branching reaction
should be higher than the maximal flux of the autocatalytic reaction. This requirement ensures
a stable solution exists, as large concentrations of X will result in its reduction by the branch
reaction. The second requirement states that for concentrations of X that are close enough to 0,
the autocatalytic reaction is higher than the branch reaction (as can be inferred from the slopes).
This requirement implies that the two fluxes will be equal for some positive concentration of
X, ensuring a positive steady state exists. As this requirement further implies that below the
positive steady state the branch reaction will carry less flux than the autocatalytic reaction, it
follows that small deviations of the concentration of X below the steady state will result in an
increase in its concentration by the autocatalytic reaction, driving it back to the steady state.
Meeting the second constraint has another consequence.

Interestingly, these conditions imply that if KM,b < KM,a then no positive stable steady
state can be achieved. Specifically, changes to the expression levels of the enzymes catalyzing
fa and fb only affect Vmax,a and Vmax,b, and therefore do not suffice to attain a stable positive
steady state. This indicates that stability of autocatalytic cycles, that are represented by the
model analyzed above, depends on inherent kinetic properties of the enzymes involved and
cannot always be achieved by modulating expression levels. We suggest this property to be a
design principle that can be critical in metabolic engineering.

Integrating the bisubstrate nature of the autocatalytic reaction into the
simple model

In the model above, to keep the analysis concise, we neglected the bisubstrate nature of the
autocatalytic reaction. We extend the analysis to the most common classes of bisubstrate
reaction mechanisms in the methods, sections 4, 5, and 6. All bisubstrate reaction schemes
analyzed take a Michaelis-Menten like form once the concentration of the assimilated metabolite
is kept constant (equations 8, 10, 12, and 14 in methods section 4).

For any set of kinetic parameters, under all ternary enzyme complex schemes, a lower bound
on the concentration of A exists, below which the conditions for existence and stability of a
positive steady state cannot be satisfied (equations 18 and 23 in methods section 5). The exact
value of the minimal concentration of A depends on the specific bisubstrate reaction scheme
and the kinetic parameters of it.

In the simplified model analyzed above, stability implied the affinity of the branch reaction
towards its substrate was limited. A similar limit exists in most cases of bisubstrate reaction
schemes (equations 16, 19, and 21 in methods section 5). Interestingly, if the bisubstrate
reaction is ordered with the internal metabolite binding first, then no strict constraints exist
on KM,b and a stable steady state solution can always be achieved by setting appropriate values
to Vmax,b and Vmax, the maximal flux of the bisubstrate autocatalytic reaction.
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Finally, regarding the dynamic behavior of the system when the concentration of A varies,
we note that in all three ternary enzyme complex cases, as the concentration of A approaches
its lower bound, the steady state concentration of X approaches 0, reducing both the autocat-
alytic and the branch fluxes (equations 24, 25, and 26 in methods section 6). In the substituted
enzyme mechanism, the lower bound on the concentration of A is 0, at which the steady state
concentration of X is trivially 0 as well. In all cases, if the maximal flux of the autocatalytic
reaction is higher than the maximal flux of the branch reaction, an upper bound on the con-
centration of A may also exist, to satisfy the condition that Vmax,a < Vmax,b. However, this
bound can be removed by increasing Vmax,b or reducing Vmax.

Extensions of the simple autocatalytic cycle model

Generalizing for different autocatalytic stoichiometries

Our didactic analysis considered an autocatalytic reaction with 1 : 2 stoichiometry, such that
for every substrate molecule consumed, two are produced. Real-world autocatalytic cycles
may have different stoichiometries. For example, the CBB cycle has a stoichiometry of 5 : 6
so that for every 5 molecules of five-carbon sugar that the autocatalytic reaction consumes, 6
five-carbon molecules are produced. We can generalize our analysis by defining a positive δ
such that for every molecule of X that fa consumes, it produces 1 + δ molecules of X, where
δ may be a fraction. This extension implies that equation (1) becomes:

Ẋ =
dX

dt
= (1 + δ)fa − (fa + fb) = 0⇒ δ · fa = fb ⇒

δ · Vmax,aX

KM,a +X
=

Vmax,bX

KM,b +X

Therefore, all of the results above can be extended to different stoichiometries by replacing
Vmax,a with δ · Vmax,a. As a result, the qualitative conditions and observations from the 1 :
2 stoichiometry case remain valid but with a constant factor that changes the quantitative
relations according to the relevant stoichiometry.

Input flux increases the range of parameters for which a stable steady
state solution exists

Autocatalytic cycles are embedded within a larger metabolic network. Specifically, such cycles
may have independent input fluxes to some of their intermediate metabolites, not requiring
the use of other intermediate metabolites of the cycle. For example, in the glucose based,
PTS-dependent autocatalytic cycle, the existence of alternative transporters can generate flux
of glucose 6-phosphate into the cycle without the use of pep [22].

When adding a constant input flux, fi to our simple system (Figure 4A) the steady state
condition changes to include this flux, giving:

Ẋ =
dX

dt
= fi + fa − fb = 0

In this situation, at X = 0, Ẋ = fi > 0 so the concentration of X increases and there is no
steady state at zero. If Vmax,b > fi + Vmax,a then at a large enough value of X, Ẋ will be
negative, implying that at some value of X between these two extremes, Ẋ attains the value of
zero, such that under this condition a positive stable steady state concentration exists (Figure
4 (I)). This case therefore differs from the case with no input flux analyzed above, as now a
positive stable steady state can always be achieved by modifying only Vmax,a and/or Vmax,b.
In this setup, cells can therefore tune the expression levels of enzymes to meet the needs of a
stable steady state flux.
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Figure 4: (A) The effect of a fixed input flux, fi, on the possible steady states of a simple
autocatalytic cycle. A steady state occurs when fa + fi = fb. If Vmax,b > Vmax,a + fi then there is
always a single stable steady state (I). If Vmax,b < Vmax,a + fi then there can either be no steady
states (II), or two steady states where the smaller one is stable (III).

In cases where Vmax,b < fi + Vmax,a either no steady states exist (Figure 4 (II)), or two
positive steady states exist (Figure 4 (III)). The latter case implies that there exists a positive
concentration X that satisfies:

Ẋ = 0⇒ fi + fa(X)− fb(X) = 0⇒ fi +
Vmax,aX

KM,a +X
=

Vmax,bX

KM,b +X

In this case, the lower concentration steady state will be stable.
To conclude, input fluxes change the steady state(s) of autocatalytic cycles. When an input

flux is present, an autocatalytic cycle can always achieve a non zero, stable steady state by
tuning the expression levels of the enzymes forming the cycle.

Interestingly, we find that in the two autocatalytic cycles shown in figures S1 and S2,
reactions that generate direct input flux into the cycle exist. In the ribose-5P assimilating
autocatalytic cycle (Figure S1), the rpi reaction serves as a shortcut, allowing input flux directly
from ribose-5P into the cycle. In the glycerone-phosphate assimilating cycle (Figure S2), the
tpi reaction similarly serves as such a shortcut. In these two cases, these shortcuts relax the
constraints imposed by strict use of the corresponding autocatalytic cycles as they prevent
zero from being a stable steady state concentration. Another example of the effects of addition
of an input flux to an autocatalytic cycle is the input flux of fructose-6-phosphate from the
catabolism of starch into the CBB cycle. This input flux can be used to ’kick start’ the cycle
even without using the intermediate metabolites of the cycle.
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Reversible branch reaction can either be far from equilibrium, resulting in
the simple case, or near equilibrium, pushing the stability conditions down
the branch pathway

The simple model assumed both the autocatalytic and the branch reactions are irreversible.
Assuming the branch reaction, fb, can be reversible, with a product Y , the system can be
analyzed in two extreme cases.

If Y is consumed very rapidly by subsequent reactions, keeping its concentration low, then
fb operates far from equilibrium. In this case, the reversible reaction equation reduces to
an irreversible Michaelis-Menten equation, resulting in the same constraints as in the simple,
irreversible case analyzed above.

If Y is consumed very slowly, and if the maximal consumption of Y is larger than Vmax,a,
then, as long as Vmax,b > Vmax,a, a stable steady state exists both when Vmax,b → ∞, making
fb operate near equilibrium, and when Vmax,b → Vmax,a. A mathematical analysis is provided
in the methods section 7. The assumptions on the consumption of Y in this case are analogous
to the constraints in equation 5, namely that the reaction downstream of Y is less saturated
than the autocatalytic reaction, and that it consumes Y at a lower rate than the rate at which
the autocatalytic reaction produces X near X = 0.

Analysis of a Reversible autocatalytic cycle reaction

The simple model assumed both the autocatalytic and the branch reactions are irreversible
under physiological conditions. The autocatalytic reaction in the simple model represents an
effective overall reaction for all of the steps in autocatalytic cycles found in real metabolic
networks. In order for the combined autocatalytic reaction to be physiologically reversible, all
of the reactions in the real metabolic network must be reversible under physiological conditions.
We note that this is not the case in any of the cycles we identify in central carbon metabolism.
Nevertheless, this case can be mathematically analyzed.

If the autocatalytic reaction is reversible, then it must be driven by the displacement from
thermodynamic equilibrium of the concentration of A versus the concentration of X. Therefore,
for any fixed concentration of A, Â, a concentration of X exists such that fa(X, Â) = 0 < fb(X).
It then follows that a sufficient condition for a positive steady state to exist is that at X = 0,
Ẋ(Â) > 0, which implies that

∂fa
∂X

∣∣∣
X=0,A=Â

>
Vmax,b

KM,b

This condition can always be satisfied by high expression of the autocatalytic enzyme, increasing
Vmax,a. For this case it therefore follows that for any concentration of A, a minimal value for
Vmax,a exists, above which a positive steady state is achieved.

Stability analysis for multiple-reaction cycles

Even the most compact real-world autocatalytic cycles are composed of several reactions. It
is thus useful to extend the simple criteria we derived to more complex autocatalytic cycles.
In such cycles the criteria for existence of a steady state become nuanced and detail specific.
We therefore focus on evaluating stability of such cycles, under the assumption that a non-zero
steady state exists, which is usually known based on experimental measurements.

We analyze the stability criteria for the autocatalytic cycles depicted in figure 5A and B in
the methods, section 8. The analysis is performed for autocatalytic ratios up to 1 : 2, which is
the case for all the autocatalytic cycles we identify. We find that in the multiple reaction case
a steady state is stable if there exists i such that βi > αi (where i can be any number in the

range 1 . . . n, αi =
∂fai
∂Xi

, and βi =
∂fbi
∂Xi

), methods section 9.
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X1X2

fa1

fa2

A

fb1

fb2

X1

X2

Xn

fa1

fan

A

fb1

fb2

fbn

fa2
. . . fan−1

(A) (B)

Figure 5: Generalization of analysis to multiple-reaction autocatalytic cycles with a single assim-
ilating reaction. (A) A two reaction system. (B) A generic n-reaction system. The system is at
steady state when the total consumption of intermediate metabolites by the branch reactions is
equal to the flux through the autocatalytic reaction, because the autocatalysis is in a 1 : 2 ratio. A
sufficient condition for the stability of a steady state in these systems is that the derivative of at
least one branch reaction with respect to the substrate concentration is larger than the derivative
of the equivalent autocatalytic reaction at the steady state concentration. Given the connection
between derivatives of fluxes and saturation levels of reactions (see methods), this condition implies
that at a stable steady state, the saturation level of at least one branch reactions is smaller than
the saturation level of the corresponding autocatalytic reaction.

Using the connection between derivatives of reactions and saturation levels (methods section
11), we conclude that if βi > αi for some i at the steady state point, then the saturation of the
branch reaction, denoted S(f), must be lower than the saturation of the corresponding cycle
reaction at Xi:

S(fbi) < S(fai) (6)

This condition also dictates that the affinity of the branch reaction to the intermediate metabo-
lite of the cycle it consumes must be weaker than the affinity of the corresponding recycling
reaction of the cycle.

While having a single branch point at which βi > αi is a sufficient condition for stability,
we note that the larger the number of branch points satisfying this condition, the more robust
the steady state point will be to perturbations, as such branch points reduce the propagation
of deviations along the cycle (see methods section 10). As we show below, these predictions
hold for functioning autocatalytic cycles.

Using different kinetic equations

Although we utilized the widely-used irreversible Michaelis-Menten kinetics equation to model
enzyme kinetics, our results can be extended to different kinetic equations. Generally, two
conditions must be met for a stable flux through an autocatalytic cycle to exist: (A) there
should be a positive concentration of the intermediate metabolites for which the outgoing
fluxes balance the autocatalytic fluxes, resulting in a steady state, and, (B) at the steady state
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point at least one derivative of an outgoing reaction out of the cycle should be higher than the
derivative of the corresponding cycle reaction, as is implied by equation 31, to enforce stability
in the presence of small perturbations. Therefore, these two conditions should be explicitly
evaluated for every case with different kinetic equations and autocatalytic cycles topologies to
assert whether it can carry stable fluxes or not.

Testing the predictions of the analysis with experimental data
on functioning autocatalytic cycles

To evaluate the validity of our analysis of autocatalytic cycles we searched for growth condi-
tions under which the autocatalytic cycles we identified in central carbon metabolism carry
substantial flux in-vivo. We used recent in-vivo flux measurements in E.coli from [23]. Accord-
ing to the data, two autocatalytic cycles carry substantial flux under at least one of the growth
conditions measured: a cycle using the PTS carries significant fluxes in growth on glucose and
on fructose; the glyoxylate cycle carries significant flux in growth on acetate and on galactose.

As noted above, we predict a design principle for functioning autocatalytic cycles: that at
least one branch reaction should have a steeper response than the corresponding autocatalytic
reaction at steady state. This requirement is sufficient, but not necessary, for the autocatalytic
cycle to be at a stable steady state point. Moreover, having more than one branch point at
which the branch reaction has a steeper response than the autocatalytic reaction increases the
robustness of the steady state flux in the cycle as shown in the methods section 10. An out-
come of the relationship between the steepness’s of responses is a reverse relationship between
the saturation levels of the corresponding reactions (equation 35). In order to evaluate the
saturation level of a reaction under a given condition, two values must be obtained:

1. The maximal flux capacity of the reaction under the given condition, Vmax.

2. The actual flux through the reaction at the steady state, f .

To estimate the maximal capacity of a reaction we followed the procedure described in [24]
(see methods section 12). We used the data from [23] to identify the major branch points
in each functioning cycle and the actual flux in them under each of the relevant conditions.
The results are presented in figure 6 and are provided, with the relevant calculations, in the
supplementary tables.

Our results show that for any of the 4 functioning autocatalytic cycle cases, in at least one
branch point the biomass generating branch reaction has a larger maximal flux capacity, and
is considerably less saturated than the respective autocatalytic reaction, in accordance with
our predictions. Moreover, out of 9 branch points analyzed, in 6 branch points the branching
reactions were significantly less saturated than the autocatalytic reactions, in 2 branch points
the saturation levels were similar, and only in one branch point the autocatalytic reaction was
less saturated than the branching reaction.

The branch point at which the autocatalytic reaction is less saturated than the branch
reaction is the branch point from fructose-1,6-bisphosphate in growth on fructose as the carbon
source. The high saturation of the branch reaction arises as a large flux is reported for the
fbp reaction, whereas the corresponding enzyme is not highly expressed under this condition.
The large reported flux through fbp arises due to assuming a single transport pathway for
fructose, entering the cycle as fructose-1,6-bisphosphate. However, an alternative fructose
transport pathway is known to occur for the concentration at which the measurements were
made [25]. The alternative transport pathway produces fructose-6-phosphate from external
fructose. Therefore, any flux through the alternative transport pathway should be directly
deducted from the flux through fbp. Assuming 20% of the consumed fructose uses this pathway
suffices in order to balance the saturation levels at the fructose-1,6-bisphosphate branch point.
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Prediction: XX% < YY%
for at least one branch reaction
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Figure 6: Major branch points and relative enzyme saturation in operating autocatalytic cycles.
Solid arrow width represents carbon flux per unit time. Shaded arrow width represents maximal
carbon flux capacity per unit time, given the expression level of the catalyzing enzyme. In all cases
there is enough excess capacity in the branching reactions to prevent the cycle from overflowing. A
4% flux from pep to biomass was neglected in growth under glucose and fructose. Only in one out
of the 9 branch points observed (the branch point at fbp in growth under fructose), the outgoing
reaction is significantly more saturated than the autocatalytic reaction. (*) A branch point at
which the branching reaction is more saturated than the autocatalytic reaction, which may result
from neglecting fructose transport directly as f6p when deriving fluxes (see text).

We made two negative control analyses to examine whether other reasons do not underlie
the trend we find. First, we compared the saturation levels at the same branch points in growth
conditions at which the autocatalytic cycles do not function, but the reactions carry flux. We
find that for these cases, only 4 out of 9 cases satisfy the low branch saturation condition
(see supplementary tables). Second, we searched for branch points out of non-autocatalytic
cycles and tested whether in such points branch reactions are also consistently less saturated
than their corresponding cycle reactions. We found two flux-carrying cycles: the TCA cycle,
carrying flux in glucose, fructose, and glycerol growth, and a cycle consisting of the pentose-
phosphate pathway combined with gluconeogenesis, carrying flux in acetate, glycerol, and
succinate growth. Out of the total 6 conditions-branch points cases, in 3 the branch reaction
was less saturated than the cycle reaction, and in 3 the cycle reaction was less saturated than the
branch reaction (see supplementary tables). We therefore conclude that, for cases that do not
involve autocatalysis, the saturation of branch versus cycle reactions seems evenly distributed.

The consistently lower saturation values of biomass generating branch reactions demon-
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strate that the expressed enzymes have enough capacity to prevent the autocatalytic cycle
from increasing the concentration of intermediate metabolites infinitely. Moreover, the lower
saturation values of the biomass generating reactions suggest that at the steady state point
their derivatives are higher, ensuring stable operation of the cycle.

Another demonstration of the autocatalytic mechanism being at play is in the CBB cycle,
which is not a part of the metabolic network of wild type E.coli, and for which no flux mea-
surements are available. This cycle has been recently introduced synthetically into E.coli and
was shown to carry flux in it, given further metabolic engineering of central carbon metabolism
[26]. The experimentally observed key evolutionary event enabling the functioning of the CBB
cycle, was a mutation affecting the kinetic properties of the main branching reaction out of the
CBB pathway, prs, weakening its affinity to its substrate, ribose-5p. The observed weakening
of affinity of prs is directly in line with our predictions on the relationship between the affinity
of branch reactions and the affinity of the corresponding cycle reactions (see methods section
of [26]).

The other examples of autocatalytic cycles we found did not carry flux in any of the con-
ditions for which data was available. The pentose-phosphate cycle variants do not carry flux
in any of the measured conditions, which is expected given that growth on ribose was not
measured. The gluconeogenic FBA with ED pathway cycle also did not carry flux in any of
the measured conditions. Although glycerol could have been a potential carbon source to use
this pathway, the metabolic network allows for a more energy efficient growth by using the tpi
reaction, as was indeed observed.

To conclude, existing data supports predictions made by our model, given the requirement
for stable steady state operation of autocatalytic cycles. This agreement between predictions
and measurements is especially encouraging given the highly limited information on kinetic
properties, concentrations, and fluxes under various growth conditions.

Analysis of Allosteric regulation potential for cycle improve-
ment

Allosteric regulation can modulate the kinetic properties of enzymes at branch points, and of
the cycle in general. As such, the relevant condition for the existence of a stable positive steady
state should hold for the updated kinetic properties as defined following the effect of allosteric
regulation.

We further analyze the ability of specific allosteric interactions to support fast convergence
and stability of autocatalytic cycles in the methods section 13. We compare the expected
beneficial allosteric interactions against the allosteric regulation network of the two functioning
autocatalytic cycles we identified, the PTS-using autocatalytic cycle and the glyoxylate cycle
(see supplementary tables, regulation data was taken from [27] and [28]).

For the PTS cycle we find that there are a total of 12 allosteric interactions, 7 inhibitions
and 5 activations. Out of these 12 interactions, 11 interactions follow our expectations in terms
of the type of the regulating metabolite (assimilated metabolite, cycle intermediate, or branch
product), the regulated reaction (cycle reaction, branch reaction, or the reverse of a branch
reaction), and the direction of the regulation (activation or inhibition). One interaction, the
activation of fba by pep, does not follow our expectation.

For the glyoxylate cycle we find that there are a total of 13 interactions, 12 inhibitions and
1 activation. Out of these 13 interactions, 8 interactions follow our expectations and 5 do not.
The lack of significant agreement between the expected regulation direction and the actual
regulation found for this cycle is consistent with the observation in [23] that TCA cycle fluxes
are regulated mainly by transcription and not by reactants levels.

It is important to note that allosteric regulation serves many roles, and that the metabolic
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network faces many more challenges than just the support of stable autocatalysis. Therefore,
the agreement we find between existing allosteric interactions and the expected regulation
scheme supporting autocatalysis does not suggest that the autocatalytic nature of the PTS is
the only, or even main underlying reason for these allosteric interactions.

Discussion

Our study into the dynamics and stability of autocatalytic cycles suggests design principles
applicable to both systems biology, that aims to understand the function of natural networks,
and in the context of synthetic biology, in the effort to express novel heterologous cycles.

While autocatalytic cycles are often overlooked in the study of metabolism, we find that such
cycles are at the heart of central carbon metabolism. Our autocatalytic modeling framework
gives concrete predictions on saturation levels of branch reactions for operating autocatalytic
cycles. We find these predictions agree well with empirically measured fluxomics and proteomics
data sets. Given that there are other suggestions ([10, 13, 14]) that may underlie the low
saturation of branch reactions, we compare the saturation levels of branch reactions versus
their corresponding cycle reactions both under conditions when the autocatalytic cycle does
not function, and for branch points out of non-autocatalytic cycles. Both tests show no bias
towards low saturation of branch reactions out of non-autocatalytic cycles, contrary to the clear
trend we find for reactions branching out of autocatalytic cycles. Our findings thus support
the addition of stability of intermediate metabolites of autocatalytic cycles as an explanation
for seemingly wasteful expression of enzymes [15, 29]. The model we present can also highlight
metabolic branch points at which the kinetic efficiency of enzymes is constrained due to stability
requirements of a corresponding autocatalytic cycle.

A common concept in synthetic biology is that the successful implementation of novel
pathways requires the expression of functional enzymes in the correct amounts in the target
organism. Here we show that in the context of autocatalytic cycles, such expression modulation
may not suffice. Specifically, changes to the substrate affinity of enzymes at branch points of
the cycle may be required in order for the novel pathway to function.

Another aspect of our findings is that while it is common to assume that strong affinity and
high catalytic rate are desirable traits for enzymes, such seeming improvements may actually
lead to instability and thus to non functional metabolic cycles. Furthermore, for reactions
branching out of autocatalytic cycles, weaker affinities increase the steady state concentration
of intermediate metabolites, resulting in higher fluxes both through the cycle, and through
the branch reaction, suggesting an unconventional strategy for optimizing fluxes through such
reactions. We note that because allosteric regulators modify the affinity of the enzymes they
target, such regulators can potentially be used to restrict the affinity of branch reactions only
when the autocatalytic cycle functions.

An experimental demonstration of these principles in-vivo is the recent implementation of
a functional CBB cycle in E.coli by introducing the two genes missing for its function [26].
The successful introduction of the genes did not suffice to make the cycle function, and further
directed evolution was needed in order to achieve successful operation of the cycle. Strikingly,
most evolutionary changes occurred in branch points from the cycle [26]. The change which
was biochemically characterized in the evolutionary process was the decrease of the value of
kcat/KM of phosphoribosylpyrophosphate synthetase (prs), one of the enzymes responsible for
flux out of the CBB cycle, corresponding to the branch reaction in our simple model. This is
beautifully in line with the predictions of our analysis that suggest that decreasing Vmax/KM of
branch reactions can lead to the existence of a stable flux solution.

Our observation regarding the stabilizing effect of input fluxes into an autocatalytic cycle
can provide means to mitigate the stability issue in synthetic biology metabolic engineering
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setups. In such setups, conducting directed evolution under gradually decreasing input fluxes,
such as those achieved in a chemostat, allows for a pathway to gradually evolve towards sus-
tainable, substantial flux.

Finally, while our work focuses on cycles increasing the amount of carbon in the system,
we note that autocatalysis can be defined with respect to other quantities such as energy (e.g.
ATP investment and production in glycolysis [2]), non-carbon atoms, reducing power, or other
moieties [30]. As autocatalysis is often studied with relation to the origin of life, our analysis
may be useful in studying synthetic autocatalytic systems such as the one recently described
in [31]. The analysis we present here can thus be of relevance for the analysis of metabolic
networks in existing organisms and for the design of novel synthetic systems.
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Methods

Overview of methods

The methods description is composed of the following sections:

1 Formal definition of an autocatalytic metabolic cycle

2 Systematic identification of autocatalytic cycles in metabolic networks

3 Steady state concentration dependence on kinetic parameters of autocatalytic and
branch reactions

4 Connecting bisubstrate reaction kinetic constants with simple Michaelis-Menten
constants

5 Constraints on concentration of assimilated metabolite and kinetic constants of
bisubstrate reactions

6 Dependence of steady state concentration on assimilated metabolite

7 Reversible branch reaction analysis

8 Extending the stability analysis from single to multiple reaction cycles

9 Limits on derivatives of branch reactions for complex autocatalytic cycles

10 Multiple unsaturated branch reactions increase convergence speed and dampen os-
cillations

11 Inverse relationship between derivatives, affinities, and saturation levels

12 Evaluating maximal flux capacity of reactions under a given condition

13 Allosteric regulation can improve network performance

1 Formal definition of an autocatalytic metabolic cycle

Given a metabolic network composed of a set of reactions and metabolites, the following criteria
can be used to define a subset of the network that is an autocatalytic cycle: First we define
a metabolic cycle. A set of irreversible reactions (for reversible reactions only one direction
can be included in the set) and metabolites forms a cycle if every metabolite of the set can
be converted, by sequential application of reactions in the set (where two reactions can be
chained if a metabolite in the set is a product of the first reaction and a substrate of the second
reaction), to every other metabolite in the set. A cycle is autocatalytic if the reactions of the
cycle can be applied, each reaction at an appropriate, positive number of times, such that the
resulting change in the amount of each of the metabolites forming the cycle is non-negative,
with at least one metabolite of the cycle having a strictly positive change.

The same definition can be stated in terms of reaction vectors and a stoichiometric matrix.
If a metabolic network has n metabolites, indicated by the numbers 1 to n, then every reaction,
r, in the network can be described as a vector Vr in Zn, such that the i’th coordinate of Vr
specifies how much of metabolite i the reaction r produces (if r consumes a metabolite, then
the value at the coordinate representing the metabolite is negative).

With this notation, a set of metabolites: M = m1 · · ·mj and a set of reactions, R = r1 · · · rk
form an autocatalytic cycle if:

1. Every row and every column of the stoichiometric matrix have at least one positive and
one negative number.

2. There is a set of positive integers, i1 · · · ik such that the total reaction vector r∗ =
∑k
l=1 ilrl

is non negative at all the coordinates m1 · · ·mj and is strictly positive for at least one
coordinate in this range.
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3. The condition that the total reaction vector r∗ =
∑k
l=1 ilrl is non negative at all the

coordinates m1 · · ·mj and is strictly positive for at least one coordinate in this range
cannot be satisfied by a set of non-negative integers, i1 · · · ik, if this set includes values
that are 0 (this conditions eliminates the addition of disjoint cycles to an autocatalytic
cycle).

2 Systematic identification of autocatalytic cycles in metabolic
networks

We implemented an algorithm to systematically search for autocatalytic cycles in metabolic
networks. The algorithm is not comprehensive, in the sense that there may be autocatalytic
cycles that will not be identified by it. Further work will enable a more advanced algorithm to
identify additional autocatalytic cycles in full metabolic networks. We used the algorithm on
the core carbon metabolism network of E.coli [32].

In our framework, a metabolic network is defined by a set of reactions, (R̄). Each reaction
is defined by a set of substrates and a set of products, with corresponding stoichiometries Ri =
(S, P,NS , NP ), such that Ri describes the reaction

∑
j N

S
j Sj →

∑
kN

P
k Pk. The algorithm

works as follows:

1. All co-factors are removed from the description of the metabolic network.

2. The metabolic network is converted to a directed graph, G: The nodes of G are all the
metabolites and all the reactions of the network. For each metabolite, M , and each
reaction, R, if M is a substrate of R then the edge (M,R) is added to the graph, and if
M is a product of R, then the edge (R,M) is added to the graph.

3. The Tarjan cycle identification algorithm is used to enumerate all the cycles in the graph
[33].

4. For every cycle identified by the Tarjan algorithm, C, the algorithm checks if the cycle
can be the backbone of an autocatalytic cycle as follows:

(a) For every reaction in the cycle, R, the algorithm checks if it consumes more than one
intermediate metabolite of the cycle. If so, C is assumed not to be autocatalytic and
the algorithm continues to evaluate the next cycle.

(b) Otherwise, for every reaction in the cycle, R, the algorithm checks if it has more than
one product that is an intermediate metabolite of the cycle. If so, then the algorithm
lists C as an autocatalytic cycle.

(c) Finally, the algorithm checks, for every reaction in the cycle, if it has a product that
is not an intermediate metabolite of the cycle. If so, denote by ME such a metabolite.
The algorithm proceeds to check if, for every intermediate metabolite of the cycle,
Mi a reaction exists from ME to Mi that does not use any of the reactions of the
cycle, and does not consume any of the intermediate metabolites of the cycle. If so
then the algorithm lists C as an autocatalytic cycle.

The algorithm assumes reactions consume exactly one molecule of any of their substrates
and produce exactly one molecule of any of their products, an assumption that holds for the
core model of E.coli, but not in metabolic networks in general.

3 Steady state concentration dependence on kinetic parameters
of autocatalytic and branch reactions

The simple cycle steady state concentration, X∗, is given in equation 2. Taking the derivative
of this expression with respect to KM,a, KM,b, Vmax,a, and Vmax,b, under the assumption that
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the kinetic parameters satisfy the stability conditions in equation 5 gives:

∂X∗

∂KM,a
=

Vmax,b

Vmax,a − Vmax,b
< 0

∂X∗

∂KM,b
=

−Vmax,a

Vmax,a − Vmax,b
> 0

∂X∗

∂Vmax,a
=
Vmax,b(KM,b −KM,a)

(Vmax,a − Vmax,b)2
> 0

∂X∗

∂Vmax,b
=
Vmax,a(KM,a −KM,b)

(Vmax,a − Vmax,b)2
< 0

(7)

So that X∗ increases when KM,a decreases or Vmax,a increases (or both) corresponding to
activation of fa. On the other hand, X∗ decreases when KM,b decreases or Vmax,b increases (or
both) corresponding to activation of fb.

4 Connecting bisubstrate reaction kinetic constants with simple
Michaelis-Menten constants

Three standard equations are commonly used to describe the flux through irreversible bisub-
strate reactions [21]. We show that, under the assumption that the assimilated metabolite
maintains constant concentration, these equations reduce to simple Michaelis-Menten equa-
tions. We derive the expressions for the apparent Michaelis-Menten constants, KM and Vmax,
as functions of the kinetic constants of the bisubstrate reaction and the concentration of the
assimilated metabolite. While the substrates in these equations are generally denoted as A and
B, here, to keep the notation consistent, we will denote by A the assimilated metabolite and
by X the internal metabolite of the cycle.

The simplest equation describing a bisubstrate reaction assumes substituted enzyme (Ping
Pong) mechanism [20]. As this equation is symmetric with respect to the two substrates, we
can arbitrarily decide which of the two substrates is the assimilated metabolite, and which is
the internal metabolite. We get that the flux through the reaction is:

f =
VmaxAX

KXA+KAX +AX

Rearranging to get the dependence of the flux on X in a Michaelis-Menten like form we get
that:

f =

VmaxA
KA+A

X
KXA
KA+A

+X
(8)

which gives apparent Michaelis-Menten kinetic constants of:

Ṽmax =
VmaxA

KA +A

K̃M =
KXA

KA +A

(9)

The second bisubstrate reaction mechanism we consider is the ternary enzyme complex
with random binding order of the two substrates. As this equation is also symmetric with
respect to the two substrates, we can again arbitrarily decide which of the two substrates is
the assimilated metabolite, and which is the internal metabolite. We get that the flux through
the reaction is:

f =
VmaxAX

Ki,AKX +KXA+KAX +AX
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Rearranging to get the dependence of the flux on X in a Michaelis-Menten like form we get
that:

f =

VmaxA
KA+A

X
Ki,A+A

KA+A
KX +X

(10)

which gives apparent Michaelis-Menten kinetic constants of:

Ṽmax =
VmaxA

KA +A

K̃M =
Ki,A +A

KA +A
KX

(11)

The other equation describing a ternary enzyme complex bisubstrate reaction assumes or-
dered binding of the substrates. Because in ordered binding the equation is asymmetric with
respect to the two substrates, analyzing this reaction is further split according to which of the
two substrates is assumed to be the assimilated metabolite with constant concentration.

If the first binding metabolite is assumed to be the assimilated metabolite we get that:

f =
VmaxAX

Ki,AKX +KXA+AX
=

VmaxX
Ki,A+A

A
KX +X

(12)

which gives apparent Michaelis-Menten kinetic constants of:

Ṽmax = Vmax

K̃M =
Ki,A +A

A
KX

(13)

If the first binding metabolite is assumed to be the internal metabolite we get that:

f =
VmaxAX

Ki,XKA +KAX +AX
=

VmaxA
KA+A

X
Ki,XKA

KA+A
+X

(14)

which gives apparent Michaelis-Menten kinetic constants of:

Ṽmax =
VmaxA

KA +A

K̃M =
Ki,XKA

KA +A

(15)

To summarize, the most common equations describing bisubstrate reactions reduce to equa-
tions of the same form as Michaelis-Menten equations, under the assumption that one of
the metabolites maintains a constant concentration. The apparent kinetic constants of the
Michaelis-Menten equivalent equations depend on the kinetic constants of the bisubstrate re-
actions, as well as on the concentration of the assimilated metabolite.

5 Constraints on concentration of assimilated metabolite and
kinetic constants of bisubstrate reactions

In equation 5 we obtain constraints on the kinetic parameters of Michaelis-Menten reactions
that ensure existence and stability of a positive steady state. We observe that these constraints
imply that even if the maximal rates of the two reactions can be easily modified, if KM,b < KM,a

then such changes cannot suffice in order to satisfy the existence and stability constraints.
Here we map the same constraints from equation 5 onto bisubstrate autocatalytic reactions.

This mapping results in constraints on the assimilated metabolite concentration, as well as on
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the kinetic parameters of the bisubstrate autocatalytic reactions. We show that in all ternary
enzyme complex bisubstrate reaction schemes, there is a lower bound on the concentration
of the assimilated metabolite, below which the system cannot attain a stable positive steady
state. We further show that the nature of the bisubstrate reaction qualitatively affects the
ability to satisfy the stability constraints by changing expression levels alone. In the cases of
substituted enzyme mechanism, random binding order ternary complex, and ordered binding
ternary complex, with the assimilated metabolite binding first, unless the kinetic parameters
of the participating enzymes satisfy specific inequalities, changes to the maximal reaction rates
alone cannot suffice in order to satisfy the existence and stability constraints. However, in the
case of ordered binding ternary complex with the internal metabolite binding first, changes to
the maximal reaction rates alone suffice in order to allow for stable steady state to occur, given
high enough concentration of the assimilated metabolite. We analyze each of the four possible
bisubstrate reaction schemes separately below.

Substituted enzyme (Ping Pong) mechanism The case of substituted enzyme mech-
anism is the simplest case to analyze. We can substitute equation 9 into the conditions from
equation 5 to get: 

Vmax,b >
VmaxA

KA +A
= Vmax

A

KA +A
Vmax,b

KM,b
<
Vmax

KX

(16)

As A
KA+A

< 1, the first inequality can always be satisfied if Vmax,b > Vmax, which is equivalent
to the first condition in equation 5. The second condition is identical to the second condition
from equation 5. Therefore, this case imposes equivalent conditions to those derived for the
simple, single substrate case.

Random binding order In the case of random binding order, we can substitute equation
11 into the conditions from equation 5 to get:

Vmax,b >
VmaxA

KA +A
= Vmax

A

KA +A

Vmax,b

KM,b
<

VmaxA

(Ki,A +A)KX
=
Vmax

A
Ki,A+A

KX

(17)

We first note that from the second inequality we get that:

Vmax,bKX

KM,bVmax
<

A

Ki,A +A
→ Ki,A

KM,bVmax

Vmax,bKX
− 1

< A (18)

Giving a lower bound on the concentration of the assimilated metabolite for which a stable
steady state is attainable.

We now wish to obtain a lower bound on KM,b. In order to obtain such a lower bound, we
need an upper bound on Vmax

A
Ki,A+A

. However, we only have an upper bound on Vmax
A

KA+A
.

We use the first inequality in equation 17 to get that:

Vmax,b > Vmax
A

KA +A
→

Vmax,b
A

Ki,A +A
> Vmax

A

KA +A

A

Ki,A +A
→

Vmax,b
KA +A

Ki,A +A
> Vmax

A

Ki,A +A
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We note that for positive A, KA+A
Ki,A+A

< max(1,KA/Ki,A) and therefore:

Vmax,b max(1,KA/Ki,A) > Vmax
A

Ki,A +A

Substituting this inequality in the second inequality of equation 17 therefore gives us that:

Vmax,b

KM,b
<
Vmax

A
Ki,A+A

KX
<
Vmax,b max(1,KA/Ki,A)

KX
→

KX

max(1,KA/Ki,A)
< KM,b

(19)

We have therefore obtained a lower bound on the affinity of the branch reaction, KM,b, in this
case.

For the random binding order we can thus conclude that, like in the single-substrate case,
a lower bound exists on the affinity of the branch reaction, below which a positive steady state
is not attainable, even if the expression levels of the enzymes, and the concentration of the
assimilated metabolite are modified. Furthermore, for any set of kinetic parameters, there is a
lower bound on the concentration of A for which a positive steady state is attainable.

Ordered binding with the assimilated metabolite binding first In the case of
ordered binding, with the assimilated metabolite binding first, we can substitute equation 13
into the conditions from equation 5 to get:

Vmax,b > Vmax

Vmax,b

KM,b
<

VmaxA

(Ki,A +A)KX
=
Vmax

A
Ki,A+A

KX

(20)

As the second inequality is identical to the one in the random binding order case, we can
immediately conclude that the same lower bound on the concentration of A from equation 18
holds in this case as well.

Regarding a lower bound on KM,b, following similar reasoning as in the previous case, we
first note that for any value of A:

A

Ki,A +A
< 1

Therefore we can deduce, by using the first inequality from equation 20 in the second inequality
from that equation, that:

Vmax,b

KM,b
<
Vmax

A
Ki,A+A

KX
<
Vmax

KX
<
Vmax,b

KX

which immediately yields:
KX < KM,b (21)

setting an absolute lower bound on KM,b.
We thus arrive at the same conclusions in this case, as we have arrived to in the previous

case, namely that a lower bound exists on the affinity of the branch reaction, and that, for
any set of kinetic parameters, there is a lower bound on the concentration of the assimilated
metabolite, below which a positive stable steady state cannot be obtained.
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Ordered binding with the internal metabolite binding first In the case of ordered
binding, with the internal metabolite binding first, we can substitute equation 15 into the
conditions from equation 5 to get: 

Vmax,b >
VmaxA

KA +A
Vmax,b

KM,b
<

VmaxA

Ki,XKA

(22)

As in the previous two cases, the second inequality can be used to obtain a lower bound on the
concentration of A:

Vmax,bKi,XKA

KM,bVmax
< A (23)

However, unlike in the previous two cases, in this case if Vmax < Vmax,b, then the first inequality
in equation 22 holds for any concentration of A, and, for any concentration of A that is larger
than its lower bound, the second inequality is also satisfied, resulting in a stable steady state.
This case is therefore more robust than the other cases as it allows for the conditions to be
satisfied, at least for high concentrations of A, given any set of kinetic parameters.

6 Dependence of steady state concentration on assimilated metabo-
lite

Equation 2 shows the dependency between the steady state concentration of the internal
metabolite X, X∗, and the kinetic parameters of the reactions in the system. Substituting
the dependencies of the apparent kinetic parameters from equations 11, 13, and 15 into equa-
tion 2 gives the dependency of X∗ on the kinetic parameters of the bisubstrate reactions and
the concentration of the assimilated metabolite, A. We get for these 3 cases respectively that:

X∗ =

VmaxA
KA+A

KM,b − Vmax,b
Ki,A+A

KA+A
KX

Vmax,b − VmaxA
KA+A

(24)

X∗ =
VmaxKM,b − Vmax,b

Ki,A+A

A
KX

Vmax,b − Vmax
(25)

X∗ =

VmaxA
KA+A

KM,b − Vmax,b
Ki,XKA

KA+A

Vmax,b − VmaxA
KA+A

(26)

Assuming the kinetic parameters satisfy the stable steady state conditions derived in equa-
tions 17, 20, and 22, we note that when A is equal to its lower bound, the numerator in all
three cases is 0, resulting in X∗ = 0. Furthermore, as A decreases towards its lower bound, X∗

decreases resulting in a decrease in both fb and fa (for the two latter cases this is trivial to
show, as the terms involving A increase and decrease monotonically in accordance with their
effect on X∗. In the first case, taking the derivative of the numerator w.r.t. A shows the
derivative is always positive, resulting in the same conclusion). Interestingly, in the first and
last cases, if Vmax > Vmax,b, then an upper bound on the concentration of A also exists. As
the concentration of A approaches this upper bound, the denominator approaches 0 resulting
in an increase in the concentration of X∗ towards infinity.

7 Reversible branch reaction analysis

The simple model assumed both the autocatalytic and the branch reactions are irreversible.
Here we assume the branch reaction is reversible, and let Y denote its product. For simplicity,
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we further assume that Keq = 1, noting that this assumption can always be satisfied by
measuring the concentration of Y in units of KeqX. We recall that the reversible Michaelis-
Menten equation states that:

fb =
Vmax,b(X − Y )

KX +X + KX
KY

Y

We assume that a third reaction, fc, irreversibly consumes Y . While assuming fc follows
irreversible Michaelis-Menten kinetics is analytically tractable, the analysis is simpler, and as
informative, under the assumption that fc = DY for some constant D. This simplification is
equivalent to assuming fc follows Michaelis-Menten kinetics with

Vmax,c

KM,c
≈ D, and Vmax,c >>

max(Vmax,a, Vmax,b).
We start by deriving the necessary conditions for steady state existence. Because at steady

state fa = fc, it follows that:

Vmax,aX
∗

KM,a +X∗
= DY ∗ ⇒ Y ∗ =

Vmax,a

D
X∗

KM,a +X∗
(27)

Furthermore, as at the steady state fa = fb, we get that:

Vmax,aX
∗

KM,a +X∗
=

Vmax,b(X
∗ − Y ∗)

KX +X∗ + KX
KY

Y ∗

Substituting Y ∗ from equation 27 gives:

Vmax,aX
∗

KM,a +X∗
=

Vmax,b(X
∗ −

Vmax,a
D

X∗

KM,a+X
∗ )

KX +X∗ + KX
KY

Vmax,a
D

X∗

KM,a+X
∗

Which is satisfied when X∗ = 0 (implying that X∗ = Y ∗ = 0 is a steady state), or when X∗

satisfied the quadratic equation:

0 =(X∗)2 +
2KM,aVmax,b − (KM,a +KX)Vmax,a −

KXV
2
max,a

KY D
− Vmax,aVmax,b

D

Vmax,b − Vmax,a
X∗+

KM,a(Vmax,bKM,a − Vmax,aKX −
Vmax,aVmax,b

D
)

Vmax,b − Vmax,a

Albeit intimidating, this quadratic equation can be used to derive the conditions for exis-
tence of a positive steady state. Only if both of the roots of this equation are negative, no
positive steady state exists. We recall that the two roots of a quadratic equation of the form
0 = aX2 + bX + c are negative iff:

b =
2KM,aVmax,b − (KM,a +KX)Vmax,a −

KXV
2
max,a

KY D
− Vmax,aVmax,b

D

Vmax,b − Vmax,a
> 0

c =
KM,a(Vmax,bKM,a − Vmax,aKX −

Vmax,aVmax,b

D
)

Vmax,b − Vmax,a
> 0

As in the irreversible case, the sign of Vmax,b − Vmax,a determines the required condition on
the numerators. We assume that Vmax,b > Vmax,a, noting that if Vmax,b < Vmax,a, a positive
steady state cannot be globally stable because for X such that fa(X) > Vmax,b, the system will
diverge regardless of the value of Y .

Under the assumption that Vmax,b > Vmax,a, the denominator of both b and c is positive,
meaning a positive steady state exists only if the nominators of b or c (or both) are negative.
Thus, two options may arise.
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• If KM,a > Vmax,a/D (implying D > Vmax,a/KM,a, qualitatively suggesting rapid removal
of Y ) then an upper bound on Vmax,b exists, above which the two solutions are negative,
implying no positive steady state exists. A sufficient condition for existence in this case is

that
Vmax,b

KX
<

Vmax,a

KM,a
, ensuring that c < 0. This condition is equivalent to the condition

in the irreversible case. We further show below that for large enough D, the resulting
steady state is stable.

• If D < Vmax,a/KM,a, then for any Vmax,b > Vmax,a, c < 0 implying a positive steady state
exists. As we show below, in this case both when Vmax,b → Vmax,a, and when Vmax,b →∞,
the steady state is stable.

We now turn to analyze the stability of the steady state. For a steady state to be stable,
the eigenvalues of the Jacobian matrix must have negative real values. In our system it holds
that

Ẋ = fa − fb
Ẏ = fb − fc

We use the following notation:

α =
dfa
dX

=
Vmax,aKM,a

(KM,a +X)2

βx =
∂fb
∂X

=
Vmax,b(KX + Y (1 + KX

KY
))

(KX +X + KXY
KY

)2

βy =
∂fb
∂Y

=
−Vmax,b(KX +X(1 + KX

KY
))

(KX +X + KXY
KY

)2

dfc
dY

= D

We can use this notation to write the Jacobian matrix as:

J =

(
α− βx −βy
βx βy −D

)
which gives a characteristic polynomial of:

(α− βx − λ)(βy −D − λ) + βyβx = 0

In order for the real values of the roots of the characteristic polynomial to be negative it
must hold that b > 0 and c > 0, where b and c are now the coefficients of the quadratic equation
aλ2 + bλ+ c = 0. We therefore get that:{

b = βx − α− βy +D > 0

c = (α− βx)(βy −D) + βyβx = βxD + αβy − αD > 0

We denote by f∗ the steady state flux in the system, such that f∗ = fa = fb = fc We note
that for MM kinetics and positive concentrations it holds that:

α > 0

βx > 0

−βy > βx

βx + βy = −f∗
1 + KX

KY

KX +X + KXY
KY
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First we note that if α ≥ βx then the steady state cannot be stable as, looking at the value
of c, we see that in such a case (βx − α)D < 0 and since αβy < 0, c < 0 violating the stability
conditions. However, because we assume that Vmax,b > Vmax,a, then for Y = Y ∗, at X = 0,
fb < fa, but for X →∞, fb → Vmax,b and fa → Vmax,a, so that fb > fa. It then follows that,
because the two fluxes can only intersect once for positive X and fixed Y , at the steady state
point, where fa = fb, α < βx, so this condition is satisfied. We note that this condition is
sufficient to ensure that b > 0. We also note that as α < βx, a large enough value of D exists
at which the steady state is stable, concluding that if D is large enough, then a stable steady
state exists if: 

Vmax,b > Vmax,a

Vmax,b

KX
<
Vmax,a

KM,a

If D is small, such that D < Vmax,a/KM,a, and Vmax,b > Vmax,a (implying that α < βx), we
need to check what other conditions are necessary in order to ensure that βxD+αβy−αD > 0.
We look at the limit Vmax,b →∞. At this limit, the quadratic equation for X∗ converges to:

0 = (X∗)2 + (2KM,a −
Vmax,a

D
)X∗ +K2

M,a −
Vmax,aKM,a

D

For this equation, c < 0, implying that one of the roots is negative and one is positive. The
positive root is:

X∗ =
Vmax,a

D
−KM,a

As this X∗ is finite, we get that when Vmax,b → ∞, Y ∗ also converges to
Vmax,a

D
−KM,a. At

this limit, βx increases infinitely and βy decreases infinitely, but βx + βy converges to:

−f∗
(1 + KX

KY
)

KX + (
Vmax,a

D
−KM,a)(1 + KX

KY
)

that is constant. Therefore, rearranging c such that:

c = (βx + βy)D − βy(D − α)− αD > 0

we note that as Vmax,b increases, the dominant term becomes −βy(D − α) > 0 ensuring that
c > 0 and therefore stability.

On the other hand, when Vmax,b → Vmax,a, we note that because fc < Vmax,a, Y ∗ is bounded

by Y ∗ <
Vmax,a

D
, but X∗ →∞. Thus, both α and βx diminish like 1

X∗
2
, and βy diminishes like

1
X

. The dominant term in c = βxD + βyα − αD therefore becomes (βx − α)D > 0 so again
stability is maintained.

Therefore, for small values of D, as long as Vmax,b > Vmax,a, a positive stable steady state
exists both in the lower limit of Vmax,b → Vmax,a, and in the upper limit of Vmax,b →∞.

Our conclusions are therefore as follows: As in the irreversible case, Vmax,b > Vmax,a is a
necessary condition for existence of a globally stable steady state. For large values of D, the
reversible reaction is far from equilibrium, resulting in an additional condition, equivalent to
the condition we obtained for the irreversible case, namely that Vmax,b/KX is upper bounded
by a term that is larger than Vmax,a/KM,a, but approaches it as D increases. This condition is
sufficient for existence and stability of the steady state. For small values of D, a steady state
always exists (given that Vmax,b > Vmax,a). We can show that this steady state is stable both
when Vmax,b → ∞, and when Vmax,b → Vmax,a. We therefore conclude that in this case, no
further restrictions apply on KX , KY , or KM,a but rather that a steady state can always be
achieved at most by changing Vmax,b.
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Qualitatively, the cases we analyze show that, on top of the required Vmax,b > Vmax,a

condition, the second condition is that either the slope of fc = D is smaller than Vmax,a/KM,a,
or that the maximal slope of fb, Vmax,b/KX , is smaller than Vmax,a/KM,a.

8 Extending the stability analysis from single to multiple reac-
tion cycles

We analyze the stability criteria for the autocatalytic cycles depicted in figure 5A and B. We
start by writing the relevant equations for the autocatalytic cycle depicted in figure 5A. In this
system there are two intermediate metabolites, X1 and X2, two reactions that form the cycle,
fa1 and fa2 , and two branch reactions, fb1 and fb2 . We assume, without loss of generality,
that the autocatalytic reaction (the reaction that increases the amount of carbon in the cycle)
is fa2 and that the autocatalysis is in a 1 : 2 ratio. The equations describing the dynamics of
the system are thus:

Ẋ1 = 2fa2 − fa1 − fb1
Ẋ2 = fa1 − fa2 − fb2

We note that in steady state, where Ẋ1 = Ẋ2 = 0, because the autocatalysis is in a 1 : 2 ratio,
it must hold that fb1 + fb2 = fa2 , meaning the total outgoing flux balances the total increase
of intermediate metabolites due to autocatalysis. Given that a steady state of the system
exists for some value (X∗1 , X

∗
2 ), we can evaluate the condition for stability. In multi-variable

systems, stability dictates that the real part of the eigenvalues of the Jacobian matrix must

all be negative. We define αi =
∂fai
∂Xi

and βi =
∂fbi
∂Xi

for i = 1, 2. We note that as we assume
Michaelis Menten kinetics, αi > 0 and βi ≥ 0, where βi = 0 is the case where there is no flux
branching out at i. We then get that the Jacobian matrix is:

J =

(
−(α1 + β1) 2α2

α1 −(α2 + β2)

)
Solving for the characteristic polynomial gives:

0 = (λ+ α1 + β1)(λ+ α2 + β2)− 2α1α2

= λ2 + (α1 + β1 + α2 + β2)λ+ (α1 + β1)(α2 + β2)− 2α1α2

that has two negative roots when:

(α1 + β1)(α2 + β2)− 2α1α2 > 0⇒ (1 +
β1
α1

)(1 +
β2
α2

) > 2

which is satisfied if β1 > α1 or β2 > α2. Therefore, if either β1 > α1 or β2 > α2 at the steady
state, then the steady state is stable.

The two-metabolites cycle case can be easily extended to a larger number of intermediate
metabolites and reactions, as is depicted in figure 5B. For this extension, we again assume,
without loss of generality, that the autocatalytic reaction is the last reaction, fan , and that the
autocatalysis is in a 1 : 2 ratio.

In this case, steady state implies that the concentration of each intermediate metabolite is
conserved, meaning that for all i > 1:

Ẋi = 0⇒ fai−1 − fai − fbi = 0⇒ fai−1 ≥ fai (28)
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(for i = 1, as fan is the autocatalytic reaction, we get that 2 · fan ≥ fa1). Also, because at
steady state the total outgoing flux from the cycle must balance the total incoming flux into
the system, which is the amount of autocatalysis carried out by fan , we get that:

n∑
i=1

fbi = fan

(due to our assumption of a 1 : 2 autocatalytic ratio) implying that for all i:

fbi ≤ fan (29)

We stress that equation 29 is only valid if the autocatalysis is in up to a 1 : 2 ratio. Deriving a
stability criterion for the multiple-reaction case, we get that in this case a steady state is stable
if there exists i such that βi > αi (see section 9 below).

To conclude, for the straightforward extension of the simple model to multiple reactions
with a single autocatalytic reaction, steady state implies that for all i:

fbi ≤ fan ≤ fai (30)

Where the left inequality is due to Equation 29 and the right inequality is due to Equation 28.
A sufficient condition for such a steady state point to be stable is that at the steady state

point there exists at least one branching point i at which the derivative of the branch reaction
is larger than the derivative of the equivalent autocatalytic reaction:

βi > αi (31)

9 Limits on derivatives of branch reactions for complex auto-
catalytic cycles

Stability analysis of a model complex autocatalytic cycle with n reactions in the cycle results
in the following Jacobian matrix:

J =


−(α1 + β1) 0 · · · 0 2αn

α1 −(α2 + β2) · · · 0 0
...

...
. . .

...
...

0 0 · · · −(αn−1 + βn−1) 0
0 0 · · · αn−1 −(αn + βn)

 (32)

The characteristic polynomial of this matrix is given by:

0 =

n∏
i=1

(λ+ αi + βi)− 2

n∏
i=1

αi (33)

To extract the conditions under which all the roots of the characteristic polynomial have
negative real parts we use Rouche’s theorem. Our strategy will be as follows: We will define a
contour that contains only numbers with negative real parts. We will show that all the roots
of the polynomial 0 =

∏n
i=1(λ + αi + βi) lie within the area this contour encloses. We will

find the conditions for which |
∏n
i=1(λ + αi + βi)| > 2

∏n
i=1 αi on the contour, satisfying the

premise of Rouche’s theorem. We will then claim that under these conditions all the roots
of the polynomial in Equation 33 must also lie inside the contour, and therefore must have
negative real parts. Given that all the roots of this polynomial have negative real parts, we
will conclude that the eigenvalues of the Jacobian matrix at the steady state point all have
negative real parts, making the steady state point stable.
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Proof: We pick a large parameter R, such that R > 3 maxj(αj + βj). We look at the closed
half circle contour, K, composed of the segment [(0,−iR), (0, iR)] and the half circle arc (x, iy)
such that x ≤ 0 and x2 + y2 = R2. We define

g(λ) = 2

n∏
j=1

αj

noting that it is constant over all of C and specifically over K. We define

f(λ) =

n∏
j=1

(λ+ αj + βj)

noting that all of f ’s roots lie inside K as the roots are 0 > −(αj + βj) > −R for all j. We
check the conditions under which |f(λ)| > |g(λ)| over the contour K.

For the arc segment we note that, as for complex numbers it holds that |xy| = |x||y|, then

|f(λ)| =
n∏
j=1

|λ+ αj + βj |

From the triangle inequality we know that |x + y| ≥ |x| − |y| and therefore for all j it holds
that

|λ+ αj + βj | ≥ R− (αj + βj)

As we picked R such that R > 3 maxj(αj + βj) we get that

R− (αj + βj) > 2(αj + βj)

and therefore

n∏
j=1

|λ+ αj + βj | >
n∏
j=1

2|αj + βj | >
n∏
j=1

2|αj | = |g(λ)|

concluding that over the arc, |f(λ)| > |g(λ)|.
For the part of K on the imaginary axis we note that λ = iy where y ∈ [−R,R]. For this

segment we therefore get that

|f(λ)| =
n∏
j=1

|αj + βj + iy| =

√√√√ n∏
j=1

((αj + βj)2 + y2) ≥

√√√√ n∏
j=1

(αj + βj)2

and, as before, that

|g(λ)| = 2

√√√√ n∏
j=1

α2
j

To meet the condition that |f(λ)| > |g(λ)|, which is equivalent to: |f(λ)||g(λ)| > 1, it is sufficient to
find the conditions under which: √∏n

j=1(αj + βj)2

2
√∏n

j=1 α
2
j

> 1

Simplifying this inequality gives:
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1

2

√√√√ n∏
j=1

(αj + βj)2

α2
j

=
1

2

n∏
j=1

αj + βj
αj

=
1

2

n∏
j=1

(1 +
βj
αj

) > 1⇒
n∏
j=1

(1 +
βj
αj

) > 2

A sufficient condition to satisfy this inequality, given that all the αj are positive and all the
βj ’s are non negative, is that there exists j such that βj > αj .

We therefore get that if there exists j such that βj > αj , then |f(λ)| > |g(λ)| over the
contour K. In this case, by Rouche’s theorem, we deduce that, as all of f ’s roots lie inside K,
then it follows that all of f − g’s roots lie inside K, concluding that the real part of all of the
eigenvalues of the characteristic polynomial of the Jacobian matrix of the complex autocatalytic
cycle are negative, making any steady state that meets this criterion stable.

10 Multiple unsaturated branch reactions increase convergence
speed and dampen oscillations

Using the Jacobian matrix from equation 32 we can analyze the effect of multiple low saturation
branch points on convergence to steady state. The analysis shows that the more i’s exist for
which βi > 0, and the larger βi is (resulting in lower saturation of fbi), the faster the convergence
of the cycle to steady state will be.

We denote by ~X∗ the steady state vector of the concentrations of the intermediate metabo-
lites. We denote by ~X = ~X∗+ ∆Xj a state where for all the intermediate metabolites that are
not Xj , their concentration is the same as the steady state concentration, and Xj differs by a
small amount, ∆Xj , from its steady state concentration. We let F denote the fluxes function
of the system such that F (X) = Ẋ| ~X . Evaluating the dynamics of the system at ~X by noting

that F ( ~X) ≈ F ( ~X∗) + J ·∆Xj = J ·∆Xj (where F ( ~X∗) = 0 as ~X∗ is a steady state) results
in F ( ~X)k = 0 for all k 6= j, j+ 1. For Xj such that j 6= n we get F ( ~X)j ≈ −(αj + βj)∆Xj and
for Xj+1 we get F ( ~X)j+1 ≈ αj∆Xj . Therefore, the difference from the steady state decreases
proportionally to βj (and cycles to the next intermediate metabolite, Xj+1). For j = n, we
get that F ( ~X)j ≈ −(αj + βj)∆Xj , as for j 6= n, but F ( ~X)1 ≈ 2αj∆Xj where the factor of 2
is due to the effect of the assimilating reaction, that causes an amplification of the deviation
from steady state (an amplification that is dampened by subsequent reactions along the cycle
if the conditions for stable steady state are satisfied).

It therefore follows that any increase in βj , for any j, increases the speed of convergence to
steady state and reduces the propagation of deviations from steady state for Xj . Because of the
linearity of matrix multiplication, an arbitrary deviation from ~X∗ can always be decomposed
to individual deviations with respect to every intermediate metabolite, making the analysis
above valid for such deviations as well. Thus, to keep deviations from steady state at check, it
is beneficial to increase βj , for all j, which implies decreasing the saturation of fbj .

11 Inverse relationship between derivatives, affinities, and sat-
uration levels

It turns out that for the Michaelis-Menten kinetics equations, the following useful lemma can
be used to connect theoretical observations on the relationships of derivatives to physiological
observations on affinities and saturation levels.

We define the saturation level of a reaction as the ratio between the flux it carries, and the
maximal flux it can carry, given the expression level of the relevant enzyme, that is:

S(X) =
f(X)

Vmax
=

X

KM +X
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Given this definition we can show that if two Michaelis-Menten reactions consume the same
metabolite, X, and at a given concentration, X∗, it holds that fa(X∗) ≥ fb(X∗), then if:

dfb
dX

∣∣∣
X=X∗

>
dfa
dX

∣∣∣
X=X∗

(34)

then it follows that: {
KM,b > KM,a

Sb(X
∗) < Sa(X∗)

(35)

Proof: expanding the condition that fa(X∗) ≥ fb(X∗), we get that:

Vmax,bX
∗

KM,b +X∗
≤ Vmax,aX

∗

KM,a +X∗
⇒ Vmax,b

KM,b +X∗
≤ Vmax,a

KM,a +X∗
(36)

Expanding the premise of the lemma in equation 34 gives us that:

dfb
dX

∣∣∣
X=X∗

>
dfa
dX

∣∣∣
X=X∗

⇒ Vmax,bKM,b

(KM,b +X∗)2
>

Vmax,aKM,a

(KM,a +X∗)2

Because equation 36 holds, it follows that:

KM,b

KM,b +X∗
>

KM,a

KM,a +X∗
⇒ 1

1 + X∗
KM,b

>
1

1 + X∗
KM,a

⇒ KM,b > KM,a

setting the affinity of the autocatalytic enzyme as a lower bound for the affinity of the branch
enzyme. Finally, given this relation of affinities it follows that:

KM,b > KM,a ⇒ X∗+KM,b > X∗+KM,a ⇒
X∗

X∗ +KM,b
<

X∗

X∗ +KM,a
⇒ Sb(X

∗) < Sa(X∗)

concluding the proof.
We note that a multiple reaction autocatalytic cycle at a stable steady state point satisfies

equations 30 and 31, so the lemma applies.

12 Evaluating maximal flux capacity of reactions under a given
condition

To evaluate the maximal flux capacity of a reaction under a prescribed growth condition, given
expression level and flux data for a set of conditions, we follow the procedure described in [24].
For each reaction, under every condition, we divide the flux the reaction carries (obtained from
[23]) by the amount of the corresponding enzyme expressed under that condition (obtained
from [34]). We thus get a flux per enzyme estimate for the given reaction under each of the
conditions. We define the enzyme maximal in-vivo catalytic rate as the maximum flux per unit
enzyme it carries across all conditions analyzed (noting that this is actually only a lower bound
on this rate). Multiplying the enzyme maximal catalytic rate by the enzyme amount at each
condition results in an estimate of the maximal possible flux through the given reaction under
the relevant condition.

13 Allosteric regulation can improve network performance

In this section we touch upon the potential (in somewhat simplified and naively non-rigorous
terms) of allosteric regulation to improve the properties of autocatalytic cycles. The constraint
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on the affinity of the branch reaction imposed by the stability requirement (equation 35) may be
suboptimal under other flux modes. Furthermore, allosteric regulation can be used to accelerate
the rate at which an autocatalytic cycle converges to its stable steady state mode. While many
allosteric regulation schemes exist [21], all of these schemes affect the affinity of the regulated
enzyme, and some of these schemes also affect the maximal rate. We qualitatively analyze the
expected regulation benefits for autocatalytic cycles.

From the perspective of the simple model, we recall that Ẋ = fa − fb. If the cycle is such
that some steady state concentration, X∗, is the desired value for biological function, then for
levels of X below X∗ convergence will be faster if fa is increased and fb is decreased, compared
with their values at X∗. Conversely, for levels of X above X∗, convergence will be faster if fa
is decreased and fb is increased, compared with their values at X∗. Convergence to X∗ can
therefore be accelerated if, for example, X activates the branch reactions and inhibits the cycle
reactions.

The assimilated metabolite can also allosterically regulate the reactions of the cycle. We
assume that the desired steady state, denoted X̂, does not depend on the concentration of the
assimilated metabolite, A. Under this assumption, we further assume that X̂ is attained for
some constant concentration of the assimilated metabolite, Â. It then follows that because the
autocatalytic activity is higher when A > Â, then in order to maintain X∗ close to its desired
level, when A > Â, fa should be inhibited, and fb should be activated, but when A < Â, fa
should be activated, and fb should be inhibited. Therefore, to increase the robustness of the
steady state concentration to changes in the concentration of the assimilated metabolite, the
assimilated metabolite should inhibit the cycle reactions and activate the branch reactions.

Another possible class of regulators are the products of the branch reactions. Taking a
somewhat simplistic view, if the level of Y , the product of a branch reaction is low, this can
indicate that the cycle does not carry sufficient flux to supply the demand for Y . Regulation can
then be used to increase X∗. From equation 7, we get that the steady state concentration, X∗,
increases as KM,b increases and Vmax,b decreases, corresponding to inhibition of fb, and that
X∗ decreases as KM,a increases and Vmax,a decreases, corresponding to inhibition of fa. So,
to tune autocatalytic fluxes to match the demands of Y , regulation should increase X∗ when
Y is low, by activating the recycling and autocatalytic reactions and inhibiting the branch
reactions. On the other hand, regulation should decrease X∗ when Y is high, by inhibiting
the autocatalytic reactions and activating the branch reactions. Therefore, to synchronize the
demand of the cycle product with the cycle flux, the cycle branch products should inhibit the
cycle reactions and activate the branch reactions.

Finally, we note that in the autocatalytic cycles we identify in central carbon metabolism,
there are also reactions that operate in the reverse direction to the branch reactions, such that
they consume products of the cycle and produce intermediate metabolites of the cycle. As such
reactions are mirror images of branch reactions, we expect them to be oppositely regulated to
branch reactions.

We find that these predictions hold for the cycle using the PTS, that is known to be
allosterically controlled, but not for the glyoxylate cycle, which is known to be transcriptionally
controlled [23].
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Supplementary Figures
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Figure S1: An autocatalytic cycle assimilating ribose-5-phosphate using the pentose phosphate
pathway. This cycle contains a direct input reaction (rpi, dashed line) allowing the cycle to operate
with broader sets of kinetic parameters than cycles missing this feature. A knockout strain where
rpi is eliminated, does not grow under ribose despite having the theoretical ability to do so.
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Figure S2: An autocatalytic cycle assimilating dhap while consuming gap using the fba reaction in
the gluconeogenic direction. This cycle contains a direct input reaction (tpi, dashed line) allowing
the cycle to operate with broader sets of kinetic parameters than cycles missing this feature. Ac-
curding to fluxomics data this cycle does not operate in vivo as a more energy efficient alternative
in growth under glycerol is to use the tpi reaction and proceed in the glycolitic direction in the
lower part of glycolysis. A knockout strain where tpi reaction is eliminated, does not grow under
glycerol despite having the theoretical ability to do so.
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