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ABSTRACT 
Fluorescence micrographs naturally exhibit darkening around their edges (vignetting), which 
makes seamless stitching challenging. If vignetting is not corrected for, a stitched image will 
have visible seams where the individual images (tiles) overlap, introducing a systematic error 
into any quantitative analysis of the image. Although multiple vignetting correction methods 
exist, there remains no open-source tool that robustly handles large 2D immunofluorescence-
based mosaic images. Here, we develop and validate QuickStitch, a tool that applies a 
recursive normalization algorithm to stitch large-scale immunofluorescence-based mosaics 
without incurring vignetting seams. We demonstrate how the tool works successfully for tissues 
of differing size, morphology, and fluorescence intensity. QuickStitch requires no specific 
information about the imaging system. It is provided as an open-source tool that is both user 
friendly and extensible, allowing straightforward incorporation into existing image processing 
pipelines. This enables studies that require accurate segmentation and analysis of high-
resolution datasets when parameters of interest include both cellular-level phenomena and 
larger tissue-level regions of interest.  
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INTRODUCTION 
In immunofluorescence microscopy studies of tissue-scale morphology, mosaics comprised of 
multiple fields of view are often required to obtain high-resolution data necessary to study cell-
level properties. For example, quantitatively connecting cell shape parameters to tissue-level 
morphogenetic processes is a key challenge in developmental biology (1–3). Due to the non-
uniform illumination present in all optical equipment, objects located near the edges of 
fluorescence micrographs have a lower signal intensity than those in the center of the field of 
view (4). This causes stitched montages to have visible seams (vignetting) that reduce the 
accuracy of image data (5). While commercial systems are increasingly reducing the effect of 
vignetting by providing more uniform illumination, vignetting is never entirely eliminated. A 
solution is needed to generate seamless mosaics of fluorescent images of large tissues with 
sparse background, such as histological samples.  

To address this, we have developed QuickStitch, an open-source, freely available, 
computationally efficient image processing tool that applies a high-pass filter either through a 
Fast Hartley Transform (FHT) or by Gaussian filtering to individual tiles, then fits normalization 
parameters to minimize the sum of squared error (SSR) in the overlap. The Fast Fourier 
Transform (FFT) is a computational algorithm commonly used to decompose sequences into a 
sum of sinusoidal functions (6). FFT high-pass filtering can be approximated by using an FHT 
band-pass filter to remove low-frequency objects affecting the entire field of view, such as 
vignetting artifacts, while preserving the high-frequency features that comprise the raw image. 
To demonstrate the tool’s efficacy, we validated QuickStitch on whole-mount Drosophila 
embryos. 

BACKGROUND  
Several flat-field correction methods are commonly used to approximate the original pattern of a 
signal from the raw data collected. The flat-field correction equation for vignetting is given by 

𝐼!,!∗ =
𝐼!,! − 𝐵!,!
𝑉!,! − 𝐵!,!

𝑉, (1) 

where 𝐼 and 𝐼∗ are the original and corrected image matrices respectively; 𝑉 is the vignetting 
mask, which is a matrix of the same size as the image matrix; 𝑉 is its spatial average; and 𝐵 is 
the background intensity (7). The indices 𝑥 and 𝑦 in eq. (1) represent the position of pixels in the 
𝑥 and 𝑦 directions. In practice, 𝐵 is frequently assumed to be constant across the field of view, 
hence does not contribute to vignetting artifacts.  

A variety of methods used for approximating  𝑉 and 𝐵 are summarized below: 

Fluorescent correction slide 
A common recourse for flat-field correction is to obtain an image of a blank area on a slide to 
utilize as a vignetting mask (7–10). This image is assumed to be the inverse of 𝑉, while 𝐵 is 
taken to be the zero matrix. This approach is applicable for brightfield microscopy; however, in 
the case of fluorescence microscopy, a fluorescent slide must be used because the empty 
region of the glass slide does not yield a fluorescence signal (7). Furthermore, neglecting 𝐵 
causes artifacts in the interpretation of fluorescence data, which results in the over or under-
estimation of regional concentrations (11). To avoid this, 𝐵 may instead be an image taken while 
the lasers are inactive. Another weakness of this method is the assumption that the vignetting 
mask is the same for all images, regardless of the signal intensity (7–9). 
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Background segmentation 
Background segmentation techniques can be used to correct for vignetting after image 
acquisition via the creation of a vignetting mask from background information, typically by 
averaging or taking the median of background pixels (12,13). However, this information may not 
be present if the sample takes up the whole viewing area, or may be difficult to segment in 
whole-tissue mosaics given that different tissue types and cell cultures frequently require 
tailored segmentation methods. Such background detection methods assume that the vignetting 
mask is dependent only on position and not intensity, enabling the user to obtain a background 
image from a composite of multiple fields of view (12,14). As a result, this requires segmentation 
to separate the background from the foreground, which is difficult to do for features of varying 
size, because an entirely new segmentation algorithm is needed for each application. This 
method also requires many images to approximate the vignetting parameters. This method 
attempts to construct a background slide image from regions of the image that do not contain 
objects, meaning that while it can be used to approximate 𝐵, approximation of 𝑉 is challenging. 
Open-source implementations of this method are available, but are of limited applicability to 
images of large tissues that expose only small sections of background (14,15). 

Physical (parametric) principles 
Another class of methods for vignetting correction is to solve for the vignetting mask using 
analytical solutions derived from the physics governing vignetting (16,17). Generally, focal 
length, principal point, aspect ratio, and skew of the lens must either be provided or measured 
from reference material. Good approximations of the vignetting function can even be made 
without a reference slide if the geometry of the optical instrumentation is known such that these 
parameters can be obtained. Since precise specifications that govern every piece of optical 
equipment involved in the imaging are needed, this method is most feasible for applications by 
the companies that supply the optical equipment. Highly informed parametric methods are also 
often slower than other methods. Further, it is impossible for a parametric method to account for 
all sources of vignetting (16,17). This method is not a practical solution for end-users or for 
custom equipment, but is often implemented by equipment manufacturers. 

Image averaging methods 
For image averaging methods, an “average image” is generated from a set of images (18). The 
inverse of the average is taken to be the vignetting mask. This method does not require a 
reference slide; however, it assumes that objects in the image are uniformly distributed, 
meaning that a large number of reference images are needed if the landmarks are not 
sufficiently homogeneous (18).  

High-pass filtering methods 
Frequency-filtering methods decompose an image into a sum of images of various spatial 
frequencies. Low frequency features such as the background are separated from high 
frequency effects such as details and noise. Although FFT is more frequently employed in 
image de-noising algorithms (19), here we utilize FFT filtering of the tiles to remove features 
lower in frequency than the cutoff frequency, which is greater than the frequency of vignetting 
across an empty field, but less than the frequency of the largest object. Consequently, a major 
limitation of this approach is that vignetting effect must have a larger period than other features 
in the images; however, this approach does not suffer from the limitations imposed by other 
approaches which require many images, segmentation, or reference images. This results in the 
removal of vignetting artifacts because vignetting is a low-frequency phenomenon. 
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Need for a normalization method 
In the course of obtaining high-resolution, multi-tiled immunofluorescent image data sets of late 
stage Drosophila embryos, we found that visible seams caused by vignetting were present. We 
tested several vignetting correction methods previously described in the literature in an effort to 
correct for vignetting to produce clearly defined mosaics with image features of variable 
characteristic sizes. We concluded that none of the approaches satisfactorily correct for 
vignetting. In particular, we compared our proposed method to the gold standard rhodamine 
fluorescence slide method, and found that our method was better able to qualitatively eliminate 
the seams arising from vignetting.  

 

MATERIALS AND METHODS 
Immunohistochemistry 
A Drosophila line expressing GAL4 under the engrailed (en) promotor and CD8::GFP under the 
UAS promotor was used in preparing Figure 2. The immunohistochemistry (IHC) protocol was 
based on previously described experiments (20,21) optimized for dpERK labeling with rabbit 
anti-dpERK (1:100, Cell Signaling), rat DCAD2 (1:100, DSHB) and DAPI (5 µg/ml, Invitrogen 
DU1306), with  goat anti-rat IgG 561 (1:500, Invitrogen), and goat anti-rabbit IgG 647 (1:500, 
Invitrogen).  

Confocal microscopy 
An Andor spinning disc confocal microscope with a piezo stage at 1.0 µm intervals was used to 
collect confocal z-stacks. Six by six grids with thirty-three percent overlap were collected for 
each of the four channels for each embryo. The same settings were used to obtain images of 
the Rhodamine test slide. Blank images were generated without fluorescent media. 
MetaMorph® version 7.0.11 was employed for image collection.  

Rhodamine correction slide 
A saturated Rhodamine (R6626-25G, Sigma) solution in phosphate-buffered saline was filtered 
with a syringe filter and placed on a glass slide and sealed with fingernail polish (wet n wild, 
Wild Shine).  

FFT filtering 
Prior to normalization, images were processed to remove vignetting artifacts. A maximum-
intensity z-projection of each z-stack was generated using Miji (22), a MATLAB implementation 
of Fiji (23). For the dpERK antibody stainings, a median filter of radius 3 pixels was employed to 
remove salt-and-pepper noise caused by the low intensity of the signal relative to the 
background. The FFT high-pass filter in Fiji was utilized to eliminate vignetting artifacts present 
in individual tiles. A qualitative parameter sweep revealed that a large object filter between 80 
and 150 pixels was sufficient to remove the vignetting artifacts while preserving small image 
features. 

Gaussian Filtering 
As an alternative to FFT, images were processed with a high-pass Gaussian filter, 

𝐼∗ = 𝐼 − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐼,𝜎 = 10) (2) 

where 𝐼∗ is the processed image, 𝐼 is the raw image, and 𝜎 is the sigma radius of the Gaussian 
filter. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/075440doi: bioRxiv preprint 

https://doi.org/10.1101/075440


6 
 

Normalization 
To compare or stitch multiple transformed images, objects of similar intensity must first be 
registered as having the same signal strength. We implement a recursive algorithm to 
simultaneously normalize adjacent sets of an increasing number of tiles (Figure 1). In each 
recursion step, we linearly rescale sets of adjacent tiles: 

𝐼!,!,!,!∗ = 𝑎!,!𝐼!,!,!,! − 𝑏!,! (3) 

where the parameter matrices 𝑎 and 𝑏 are independent of 𝑥 and 𝑦, and 𝑖 and 𝑗 represent grid 
coordinates of tiles within a mosaic. The parameters 𝑎!,! and 𝑏!,! are chosen such that the 
intensity differences to neighboring tiles are minimized in the overlapping region. At each 
recursion step we consider up to 2x2 sets of adjacent tiles (Figure 1A). We minimize a cost 
function using global search algorithm employing the fmincon local solver in MATLAB R2015a in 
order to minimize the intensity differences in the overlap (24). The cost function takes different 
forms depending on whether the overlap contains two (2x1 or 1x2) or four (2x2) tiles. For the 
case of the two adjacent sets of tiles the cost function is: 

𝐶 = 𝐸!!!" ∙ 𝑎!! − 𝑏!! − 𝐸!"!" ∙ 𝑎!" − 𝑏!"
!

!,!

 (4) 

where 𝐸!!!" and 𝐸!"!" denote the intensity of pixels at the edges of the two overlapping tiles, 
while 𝑎!" and 𝑏!" are the optimized parameters for their respective tiles. The resulting 
parameters are used to modify the tiles using Eq. 2. Importantly, the optimization underlies the 
constraints that 𝑎 must be greater than one, and 𝑏 must be greater than zero in order to avoid 
negative intensities, and reduce losses in precision. The cost function for the remaining cases is 
constructed similarly. To reduce the computational cost of the optimization, intensities in Eq. 4 
are binned to one-fourth resolution. 

Algorithm testing 
We validated the image processing pipeline on 24 late-stage Drosophila embryos expressing 
CD8::GFP under the engrailed enhancer. Engrailed is expressed in the posterior compartments 
of embryonic segments (25). This marker was chosen to test the method because bands of 
Engrailed expression are frequently larger than one field of view, allowing the effect of 
QuickStitch on large features to be studied. IHC was used to visualize cell boundaries (using 
DE-cadherin) in order to obtain cell-level morphological information and assess the ability of 
QuickStitch to correct vignetting in cases of small details. Further, measurements of gene 
regulatory molecules are important for understanding the mechanisms behind cell-signaling and 
other developmental processes. Doubly phospho-ERK (dpERK), the downstream target of the 
Epidermal Growth Factor Receptor (EGFR) pathway, is important for many developmental 
functions including embryonic compartment size homeostasis (26,27). dpERK was assayed, 
corrected and stitched in order to assess the ability of QuickStitch to correct vignetting of non-
homogeneous multi-cellular features that typically is at a lower intensity. 

 

RESULTS AND DISCUSSION 
Our recursive algorithm linearly normalizes adjacent transformed tiles to minimize the intensity 
difference of overlap pixel intensities (Figure 1A). The recursive nature of the algorithm results 
in linear scaling of the calculation time with sample size (Figure 1B). High-pass filtering is used 
by this application to decompose raw images into a summation of component images 
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characterized by differing frequencies. Normalization is needed because the high-pass filtering 
determines the shape of the vignetting artifact, but not the absolute intensity. 

The gold standard Rhodamine correction slide method did not remove vignetting artifacts from 
Drosophila embryo mosaics (Figure 2). QuickStitch was qualitatively more effective at removing 
vignetting artifacts from Drosophila embryo mosaics in three fluorescent channels with very 
different signals (Figure 3). By removing vignetting artifacts from cell-boundary images (Figure 
3C′), watershed segmentation applications such as Seedwater Segmenter (28) and custom 
segmentation software could quickly be used to segment cell boundaries for the whole embryo 
with fewer errors in automatic seed selection, as cellular minima occur in a narrower spatial 
range, and with fewer errors in boundary identification, as cell boundaries will exist in a narrower 
intensity range. The en>GFP signal (Figure 3B), which represents lineage-restricted 
compartments in the embryo, is an example of a large-scale pattern or structure within the 
tissue useful for cell classification. Cell-fate classification by thresholding en is dependent on a 
uniform signal, and will result in fewer classification errors with this correction (Figure 3B′). Even 
features with low intensities such as the spatial pattern of dpERK antibody staining (Figure 3A) 
were preserved through the normalization process. By correcting for vignetting, the pattern of 
dpERK activity across multiple tiles is much more apparent to the eye, and matches previous 
low resolution reports of dpERK expression (20,26). For example, after correction, the 
characteristic tracheal pit pattern is visible (Figure 2E, 2E′, (26)). This demonstrates the value of 
vignetting correction for observing phenomenon where the magnitude of the signal is 
comparable to the magnitude of vignetting artifacts such as high-magnification imaging of the 
low-intensity gradient of dpERK. 

QuickStitch is efficient and preferable over background segmentation algorithms in cases where 
the tissue makes up the majority of the field of view or where little background information is 
available such as histological imaging or confluent cell cultures. QuickStitch relies on the 
assumption that vignetting is a low-frequency phenomenon, and hence can be removed by 
using a FFT high-pass filter. A basic assumption of this method is that features are smaller than 
the cutoff frequency. This implementation was developed for two-dimensional z-projections of 
confocal stacks where z-slices do not have an overlap in the z direction. QuickStitch is open 
source (Supplemental Code), and is available online as a pre-compiled executable for 
Macintosh OS X Yosemite and Windows 8.1 operating systems and does not require a 
MATLAB license to use at: https://notredame.box.com/s/jib2qh1il10jerelhd8irmg0ghqno1bs. 
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Figure 1: Overview of image processing 
method. A) The flow diagram shows how a 
multi-tile mosaic is processed after vignetting 
correction to normalize tiles and enable 
subsequent stitching into a mosaic. Mosaics of 
size 2x2 or smaller are optimized to minimize 
the difference in the overlaps, as defined by Eq. 
3. Mosaics larger than 2x2 are subdivided into 
sub-mosaics in a 2x2 configuration, and each 
sub-mosaic is processed in a recursive instance 
of the script. The normalized sub-mosaics are 
then normalized through the 2x2 optimization 
using Eq. 3. As a result, no optimization is ever 
run with more than six independent parameters, 
and computation time of mosaics of any size 
scales nearly linearly with the number of 
overlaps. B) The correction was run on 
montages with dimensions MxM, with M ranging 
from 2 to 20 in multiples of two, where 6 (or a 
total of 36 tiles) represents the dataset tested in 
this study. The image used contained a linear 
gradient, divided into tiles with 10% overlap. The 
tiles were multiplied by a fourth order cosine 
function to simulate vignetting, and Gaussian 
noise with a standard deviation of 10% was 
applied. The resulting data showed a linear 
correlation between the number of tiles stitched 
and computation time. N = 5 for each condition, 
error bars represent standard deviation. 
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Figure 2. Low-pass filtering with inter-tile normalization results in reduction of inter-tile 
seams. A-D: stitched 6x5 mosaic of a stage 11 Drosophila embryo. A: No correction applied. B: 
Correction applied via rhodamine correction slide method. C: High-pass FHT filtering and 
normalization applied. D: High-pass Gaussian filtering and normalization was applied. Scale bar 
represents 100 µm. 
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Figure 3. Vignetting correction of a multiplexed immunofluorescent-stained Drosophila 
embryo. (A-E) Uncorrected and stitched confocal z-projections of a stage-11 Drosophila 
embryo. All three channels show vignetting. (A) For dpERK, which has a low signal, the effect is 
very strong. (B) Engrailed is localized in the posterior compartment of segments. (C) DE-
Cadherin marks the boundaries of cells. (A′-E′) The same images, corrected and normalized 
using our QuickStitch algorithm. Images have a resolution of 2436x1284 pixels, allowing for high 
precision cell-level analysis. (E′) Arrows represent the characteristic tracheal pit pattern where 
dpERK is highly concentrated at this stage of development that is revealed by QuickStitch. 
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SI INFORMATION:  Supplemental code 
 
% gridStitchingf.m 
% Pipeline for vignetting algorithm  
% May 8, 2014 
  
% dialogue box with multiple inputs 
function gridStitchingf(input, output, outputfilename, M, N, x, y, ... 
    OverlapPercent, CropPercent, numembs, numberSize, fluor,... 
    lowerBounds, upperBounds, x0, MFE, MI, ... 
    TolCon, TolFun, TolX, timeLimit, ST1, Trial, s) 
parpool('local'); 
%addpath([filesep 'Applications' filesep 'Fiji.app' filesep 'scripts']) 
%addpath(['scripts']) 
[executionPath,~,~] = fileparts(mfilename('fullpath')); 
javaaddpath ([executionPath filesep 'mij.jar']); 
tempPath = [executionPath filesep 'temp']; 
mkdir(tempPath); 
Miji(false); 
% add panel with default java path, should have matlab installation path 
% with option to change it 
%javaaddpath 
'/Users/peberts/Documents/MATLAB/matlab_R2014b_maci64/java/mij.jar'; 
%javaaddpath 
'/Users/peberts/Documents/MATLAB/matlab_R2014b_maci64/java/ij.jar'; 
%MIJ.start; 
  
[pathstr,name,ext] = fileparts(input);  
tf = false; 
x = length(name); 
  
cc1 = strfind(name, '{'); 
name_1 = name(1:cc1-1); 
cc2 = strfind(name, '}');   
name_2 = name(cc2+1:x); 
  
i_num = cc2-cc1-1; 
mkdir([output, filesep, outputfilename]) 
  
for k = 1:numembs 
     
   
  
%     x = 1; 
%         while tf == 0 
%             tf = isstrprop(name(x), 'digit'); 
%             x = x + 1; 
%         end 
%  
%     name2 = name(1:x-2); 
  
    channum = max(size(fluor)); 
  
    for m = 1:channum; 
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        for i = 1:M 
            for j = 1:N 
                %for s = s:((M*N)) 
                    name_3 = [name_1, sprintf(['%.', num2str(i_num), 'd'], 
s), '_w', num2str(m), 'Confocal ', num2str(fluor(m)),'_MIP']; 
  
%% Call FFT function  
                    inc_path = [pathstr, filesep, name_3, ext]; 
                    b = ['path=[', inc_path, ']']; 
                    MIJ.run('Open...', b);  
                    c = ['filter_large=100 filter_small=0 suppress=None 
tolerance=5']; 
                    MIJ.run('Bandpass Filter...', c); 
                    temp = MIJ.getCurrentImage; 
                    rawTiles(i, j, 1:size(temp,1),1:size(temp,2),m) = 
uint16(temp); 
                    if m == 1   
                        MIJ.run('Median...', 'radius=3'); 
                        rawTiles(i,j,:,:,m) = MIJ.getCurrentImage; 
                    end  
                    MIJ.run('Close All'); 
      
                    s = s+1; 
            end 
        end 
         
%% Call Optimization 
  
        r = rawTiles(:,:,:,:,m); 
        Global_Stitching_Optimization(r, m, M, N, x, y, OverlapPercent, 
CropPercent, ...  
        input, lowerBounds, upperBounds, x0, MFE, MI, TolCon, TolFun, TolX, 
... 
        timeLimit, ST1, Trial, name_1, numembs, s, tempPath, ... 
        numberSize, channum, fluor, k); 
         
  
%% Call Stitching 
        q = 1; 
  
            b = ['type=[Grid: row-by-row] order=[Right & Down                
] grid_size_x=' int2str(M),' grid_size_y=' int2str(N), ' tile_overlap=' 
num2str(OverlapPercent*100),' first_file_index_i=1 directory=[' tempPath, '] 
file_names=[', name_1, 'Channel - ', num2str(fluor(m)), ' Tile - {iiii}.tif] 
output_textfile_name=TileConfiguration.txt fusion_method=[Linear Blending] 
regression_threshold=0.30 max/avg_displacement_threshold=2.50 
absolute_displacement_threshold=3.50 subpixel_accuracy 
computation_parameters=[Save memory (but be slower)] image_output=[Fuse and 
display]']; 
            MIJ.run('Grid/Collection stitching', b);    
            temp = MIJ.getCurrentImage;  
            stitchedImage(1:size(temp,1),1:size(temp,2),m) = temp; 
            MIJ.run('Close All'); 
  
            Composite(:,:,k,m) = (stitchedImage(:,:,m)); 
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            rmdir(tempPath,'s'); 
            mkdir(tempPath);      
        s = s-(M*N); 
    end 
  s = s+(M*N); 
end  
     
    padding = 150; 
    [sizex, sizey, sizez, sizet] = size(Composite); 
    Composite2(padding:(sizex+padding-1),padding:(sizey+padding-1),:,:) = 
Composite; 
    Composite2(padding*2+sizex,padding*2+sizey,sizez,sizet) = 0; 
  
    Composite = Composite2; 
    clear Composite2; 
  
    for m = 1:channum 
        a = double(max(max(Composite(:,:,:,m)))); 
        c = double(Composite(:,:,:,m)); 
        b = (c./a)*65536; 
        s = [output, filesep, outputfilename, ' emb ', num2str(fluor(m)), 
'.tif']; 
        imwrite(uint16(b), [s]); 
    end 
     
delete(gcp) 
end 
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Primary recursive algorithm 
% Hand this function an M * N * x * y * 4 set of edge intensities (E) and 
% the function will make several decisions: if the matrix is sufficiently 
% small (2x1, 1x2, 1x1) it will directly call the optimization wrapper and 
% return a and b parameters in the form E* = aE - b that minimizes the 
% difference between corresponding E matricies. If the matrix is larger, it 
% recursively calls itself for each half of the matrix, obtains a and b 
% parameters, obtains E1* and E2* from the a, b and E values and returns 
% new parameters. This algorithm should not modify E1, E2, x and y global 
% variables, but instead call the wrapper to do so. 
  
% Unlike the optimization wrapper, this function returns an M x N matrix of 
% parameters for a and b. This function does not handle binning of edge 
% matricies, that is done in the main function. 
  
% try adding a label to the a and b values to pass throughout the 
% normalization 
  
function [ a, b ] = a_b_recursive( E ) 
  
%% Obtain the size parameters from input matrix 
  
[M, N, ~, y, ~] = size(E); %Determine tile layout 
  
xlength = round((M + 0.5) / 2); %Number of tiles if split in x direction 
ylength = round((N + 0.5) / 2); %Number of tiles if split in y direction 
  
if xlength > 2 
    xlength = xlength - mod(xlength, 2);  
end 
  
if ylength > 2 
    ylength = ylength - mod(ylength, 2);     
end 
  
%% Determine which algorithm to run depending on M x N dimensions of input 
matrix 
  
if M == 2 && N == 2 
     
    qq = E(1,1,:,:,2); 
    ww = E(2,1,:,:,3); 
    ee = E(2,2,:,:,4); 
    rr = E(1,2,:,:,1); 
    tt = E(2,1,:,:,4); 
    yy = E(2,2,:,:,1); 
    uu = E(1,2,:,:,2); 
    ii = E(1,1,:,:,3); 
     
    [ a, b ] = optimize_a_b_2x2(qq,ww,ee,rr,tt,yy,uu,ii); 
     
elseif M == 2 && N == 1 % Run optimization for 2x1 
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    [ a, b ] = optimize_a_b(E(1,1,:,:,2), E(2,1,:,:,4)); 
    a = a'; 
    b = b'; 
     
elseif M == 1 && N == 2 % Run optimization for 1x2 
     
    [ a, b ] = optimize_a_b(E(1,1,:,:,3), E(1,2,:,:,1)); 
     
elseif M == 1 && N == 1 % Optimization is finished for this tile 
     
    a = 1; 
    b = 0; 
     
else 
     
    [temp_a11, temp_b11] = a_b_recursive(E(1:xlength,1:ylength,:,:,:)); % 
Obtain parameters for left side tiles 
    [temp_a21, temp_b21] = a_b_recursive(E((xlength+1):M,1:ylength,:,:,:)); % 
Obtain parameters for right side tiles 
    [temp_a12, temp_b12] = a_b_recursive(E(1:xlength,(ylength+1):N,:,:,:)); % 
Obtain parameters for left side tiles 
    [temp_a22, temp_b22] = 
a_b_recursive(E((xlength+1):M,(ylength+1):N,:,:,:)); % Obtain parameters for 
right side tiles 
     
    % Overlap 1 (vertical top)   
    for j = 1:ylength 
        left_temp(:,:) = E(xlength,j,:,:,2) * temp_a11(xlength,j) - 
temp_b11(xlength,j); 
        right_temp(:,:) = E(xlength+1,j,:,:,4) * temp_a21(1,j) - 
temp_b21(1,j); 
        qq (:,((j-1)*y+1):(j*y)) = left_temp; 
        tt (:,((j-1)*y+1):(j*y)) = right_temp;  
    end 
     
    % Overlap 2 (horizontal right) 
    for i = 1:(M-xlength) 
        top_temp(:,:) = E(i+xlength,ylength,:,:,3) * temp_a21(i,ylength) - 
temp_b21(i,ylength); 
        bottom_temp(:,:) = E(i+xlength,ylength+1,:,:,1) * temp_a22(i,1) - 
temp_b22(i,1); 
        ww (:,((i-1)*y+1):(i*y)) = top_temp; 
        yy (:,((i-1)*y+1):(i*y)) = bottom_temp;  
    end 
  
    % Overlap 3 (vertical bottom) 
    for j = 1:(N-ylength) 
        left_temp(:,:) = E(xlength,j+ylength,:,:,2) * temp_a12(xlength,j) - 
temp_b12(xlength,j); 
        right_temp(:,:) = E(xlength+1,j+ylength,:,:,4) * temp_a22(1,j) - 
temp_b22(1,j); 
        uu (:,((j-1)*y+1):(j*y)) = left_temp; 
        ee (:,((j-1)*y+1):(j*y)) = right_temp;  
    end 
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    % Overlap 4 (horizontal left) 
    for i = 1:xlength 
        top_temp(:,:) = E(i,ylength,:,:,3) * temp_a11(i,ylength) - 
temp_b11(i,ylength); 
        bottom_temp(:,:) = E(i,ylength+1,:,:,1) * temp_a12(i,1) - 
temp_b12(i,1); 
        rr (:,((i-1)*y+1):(i*y)) = bottom_temp; 
        ii (:,((i-1)*y+1):(i*y)) = top_temp;  
    end 
     
    [super_a, super_b] = optimize_a_b_2x2(qq,ww,ee,rr,tt,yy,uu,ii); 
  
    a(1:xlength,1:ylength) = temp_a11 * super_a(1,1); 
    a((xlength+1):M,1:ylength) = temp_a21 * super_a(2,1); 
    a(1:xlength,(ylength+1):N) = temp_a12 * super_a(1,2); 
    a((xlength+1):M,(ylength+1):N) = temp_a22 * super_a(2,2);   
     
    b(1:xlength,1:ylength) = temp_b11 * super_a(1,1) + super_b(1,1); 
    b((xlength+1):M,1:ylength) = temp_b21 * super_a(2,1) + super_b(2,1); 
    b(1:xlength,(ylength+1):N) = temp_b12 * super_a(1,2) + super_b(1,2); 
    b((xlength+1):M,(ylength+1):N) = temp_b22 * super_a(2,2) + super_b(2,2);     
  
end 
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Optimization function for 2x1 overlap 
% This function returns the fitness of the solution for a combination of 
% parameters. It should not modify any global variables, but reads E from 
% the optimization wrapper and dimensions from the recursive algorithm 
% call. SA is the solution matrix in the form: [a11 a12 b11 b12]. 
  
% SA: [a1/a2 b1-b2] 
  
function [ SSR ] = optimization_overlaps( SA ) 
        
    global E1 E2; 
     
    SSR = sum(sum((E1 * SA(1) - E2 * SA(2) - SA(3) + SA(4)).^2)); 
     
end 
 

Wrapper for 2x1 overlap 
% The purpose of this function is to serve as a wrapper for the 
% optimization problem of two overlapping regions (E1 and E2). The function 
% takes in two regions and returns the a and b values which will result in 
% the most seamless fit of the two images. No other function should modify  
% E1 and E2. This function returns a and b as arrays of length 2. 
  
function [ a, b ] = optimize_a_b(matrix1, matrix2) 
  
    global E1 E2 output; 
    global lb ub x0 MFE MI TolCon TolFun TolX timeLimit ST1 Trial 
     
    [row, ~] = size(output); 
     
    E1 = matrix1; 
    E2 = matrix2; 
  
    problem.objective = @optimization_overlaps; 
    problem.nvars = 4; 
    problem.lb = [ones(1,2)*lb(1) ones(1,2)*lb(2)]; 
    problem.ub = [ones(1,2)*ub(1) ones(1,2)*ub(2)]; 
    problem.solver = 'fmincon'; 
    problem.x0 = [ones(1,2)*x0(1) ones(1,2)*x0(2)]; 
    problem.options = optimoptions('fmincon','Display','none'); 
    problem.options.MaxFunEvals = MFE; 
    problem.options.MaxIter = MI; 
    problem.TolCon = TolCon; 
    problem.TolFun = [ones(1,2)*TolFun(1) ones(1,2)*TolFun(2)]; 
    problem.TolX = TolX; 
     
    gs = 
GlobalSearch('MaxTime',timeLimit,'NumStageOnePoints',ST1,'NumTrialPoints',Tri
al,'Display','off'); 
     
    [solution,fval,flag,~,solutions] = run(gs, problem); 
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    output{row+1,1} = fval; 
    output{row+1,2} = solutions; 
     
    disp(['2x1 GS finished with flag: ' num2str(flag) ' GS run: ' 
num2str(row+1)]); 
     
    a = reshape(solution(1:2),[1, 2]); 
    b = reshape(solution(3:4),[1, 2]); 
     
    %if solution(1) > 1 
    %    a = [solution(1), 1]; 
    %else 
    %    a = [1 1/solution(1)]; 
    %end 
     
    %if solution(2) > 0 
    %    b = [solution(2), 0]; 
    %else 
    %    b = [0, -solution(2)];         
    %end 
     
end 
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Optimization function for 2x2 overlap 
% This function returns the fitness of the solution for a combination of 
% parameters. It should not modify any global variables, but reads E from 
% the optimization wrapper and dimensions from the recursive algorithm 
% call. SA is the solution matrix in the form: [a11 a12 b11 b12]. 
  
% SA: a, then b in form [11 21 12 22] 
  
function [ SSR ] = optimization_overlaps_2x2( SA ) 
        
    global E11 E12 E13 E14 E21 E22 E23 E24; 
     
    SSR = sum(sum((E11 * SA(1) - E21 * SA(2) - SA(5) + SA(6)).^2)); 
    SSR = SSR + sum(sum((E12 * SA(2) - E22 * SA(4) - SA(6) + SA(8)).^2)); 
    SSR = SSR + sum(sum((E13 * SA(4) - E23 * SA(3) - SA(8) + SA(7)).^2)); 
    SSR = SSR + sum(sum((E14 * SA(3) - E24 * SA(1) - SA(7) + SA(5)).^2)); 
     
end 
 

Wrapper for 2x2 overlap 
% The purpose of this function is to serve as a wrapper for the 
% optimization problem of two overlapping regions (E1 and E2). The function 
% takes in two regions and returns the a and b values which will result in 
% the most seamless fit of the two images. No other function should modify  
% E1 and E2. This function returns a and b as arrays of length 2. 
  
function [ a, b ] = optimize_a_b_2x2(q, w, e, r, t, y, u, i) 
  
    global E11 E12 E13 E14 E21 E22 E23 E24 output; 
    global lb ub x0 MFE MI TolCon TolFun TolX timeLimit ST1 Trial 
     
    E11 = q; 
    E12 = w; 
    E13 = e; 
    E14 = r; 
    E21 = t; 
    E22 = y; 
    E23 = u; 
    E24 = i; 
     
    [row, ~] = size(output); 
  
    problem.objective = @optimization_overlaps_2x2; 
    problem.nvars = 8; 
    problem.lb = [ones(1,4)*lb(1) ones(1,4)*lb(2)]; 
    problem.ub = [ones(1,4)*ub(1) ones(1,4)*ub(2)]; 
    problem.solver = 'fmincon'; 
    problem.x0 = [ones(1,4)*x0(1) ones(1,4)*x0(2)]; 
    problem.options = optimoptions('fmincon','Display','none'); 
    problem.options.MaxFunEvals = MFE; 
    problem.options.MaxIter = MI; 
    problem.TolCon = TolCon; 
    problem.TolFun = [ones(1,4)*TolFun(1) ones(1,4)*TolFun(2)]; 
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    problem.TolX = TolX; 
     
    gs = 
GlobalSearch('MaxTime',timeLimit,'NumStageOnePoints',ST1,'NumTrialPoints',Tri
al,'Display','off'); 
  
    [solution,fval,flag,~,solutions] = run(gs, problem); 
     
    output{row+1,1} = fval; 
    output{row+1,2} = solutions; 
     
    disp(['2x2 GS finished with flag: ' num2str(flag) ' GS run: ' 
num2str(row+1)]); 
     
    a = reshape(solution(1:4),[2 2]); 
    b = reshape(solution(5:8),[2 2]); 
     
end 
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