
Bioinformatics, YYYY, 0–0 
doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 
Application Note 

 

Genome Analysis 

GenomeScope: Fast reference-free genome profiling 
from short reads 
Gregory W. Vurture1,†, Fritz J. Sedlazeck2,†, Maria Nattestad1, Charles J. Underwood1, Han 
Fang1,3, James Gurtowski1 and Michael C. Schatz1,2,* 
1Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA, 2Johns Hopkins University, Baltimore, 21218, MD, 
USA 3Stony Brook University, Stony Brook, 11794, NY, USA 
*To whom correspondence should be addressed. †The authors wish it to be known that, in their opinion, the first two authors 
should be regarded as joint First Authors 

Associate Editor: XXXXXXX 
Received on XXXXX; revised on XXXXX; accepted on XXXXX  

Abstract 
Summary: GenomeScope is an open-source web tool to rapidly estimate the overall characteristics of a genome, includ-
ing genome size, heterozygosity rate, and repeat content from unprocessed short reads. These features are essential for 
studying genome evolution, and help to choose parameters for downstream analysis. We demonstrate its accuracy on 324 
simulated and 16 real datasets with a wide range in genome sizes, heterozygosity levels, and error rates. 
Availability	and	Implementation:	http://genomescope.org, https://github.com/schatzlab/genomescope.git 
Contact:	mschatz@jhu.edu 
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 
1 Introduction  
High throughput sequencing enables the sequencing of novel genomes 
on a daily basis. However, even the most basic characteristics of these 
genomes, such as their size or heterozygosity rate, may be initially un-
known, making it difficult to select appropriate analysis methods e.g. 
read mapper, de novo assembler, or SNP caller (Smolka, et al., 2015). 
Determining these characteristics in advance can reveal if an analysis is 
not capturing the full complexity of the genome, such as underreporting 
the number of variants or failure to assemble a significant fraction of the 
genome. Experimental methods are available for measuring some of 
these properties, although can require significant cost and labor.  

A few computational approaches are now available for estimating 
the genome size from unassembled sequencing reads (Chikhi and 
Medvedev, 2014; Melsted and Halldorsson, 2014) and some genome 
assemblers internally compute related statistics to guide the algorithm 
(Bankevich, et al., 2012; Gnerre, et al., 2011). These methods follow 
earlier work to infer the length of BAC sequences from shotgun Sanger 
sequencing that analyze the frequency of sequences in the reads (Li and 
Waterman, 2003).  However, only a few methods are available for meas-
uring more complex characteristics such as the rate of heterozygosity and 
these methods can be difficult to use or interpret. Simpson (2014) pro-
posed a computational method to estimate some of these properties from 

sequencing reads using de novo assembly techniques. However, this 
method is computationally intensive and can be difficult to interpret as 
results are reported relative to the assembly graph, such as the variant-
induced branch rate rather than the more direct rate of heterozygosity. 
The GCE method (Liu, et al., 2013) also attempts to determine genome 
size and heterozygosity rate, but is not fully automated and requires users 
to manually specify several cutoffs. It also uses a Poisson coverage mod-
el that can lead to poor estimates with real sequencing data, and the 
heterozygosity model is limited to genomes without repetitive sequences. 
 
2 Methods 
Here we introduce GenomeScope to estimate the overall genome charac-
teristics (total and haploid genome length, percentage of repetitive con-
tent, and heterozygosity rate) as well as overall read characteristics (read 
coverage, read duplication, and error rate) from raw short read sequenc-
ing data. The estimates do not require a reference genome and they can 
be automatically inferred via a statistical analysis of the k-mer profile. 
The k-mer profile (sometimes called k-mer spectrum) measures how 
often k-mers, substrings of length k, occur in the sequencing reads and 
can be computed quickly using tools such as Jellyfish (Marcais and 
Kingsford, 2011) or approximated using faster streaming approaches 
(Melsted and Halldorsson, 2014). The profiles reflect the complexity of 
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the genome: homozygous genomes have a simple Poisson profile while 
heterozygous ones have a characteristic bimodal profile (Kajitani, et al., 
2014). Repeats add additional peaks at even higher k-mer frequencies, 
while sequencing errors and read duplications distort the profiles with 
low frequency false k-mers and increased variances (Kelley, et al., 2010; 
Miller, et al., 2011).  

Aware of these possible complexities, GenomeScope fits a mixture 
model of four evenly spaced negative binomial distributions to the k-mer 
profile to measure the relative abundances of heterozygous and homozy-
gous, unique and two-copy sequences (Supplemental Eq. 2). Ge-
nomeScope uses a mixture model of negative binomial model terms 
rather than Poisson terms since real sequencing data is often over-
dispersed compared to a Poisson distribution (Miller, et al., 2011). The 
model fitting is computed using a non-linear least squares estimate as 
implemented by the nls function in R (Bates and Watts, 1988). To make 
the model fitting more robust, GenomeScope attempts several rounds of 
model fitting excluding different fractions of low frequency k-mers that 
are likely caused by sequencing errors, and adjusting for the ambiguity in 
determining the correct heterozygous and homozygous peak. The final 
set of parameters is selected as those parameters that minimize the resid-
ual sum of squares errors (RSSE) of the model relative to the observed k-
mer profile. Afterwards, sequence errors and higher copy repeats are 
identified by k-mers falling outside the model range, and the total ge-
nome size is estimated by normalizing the observed k-mer frequencies to 
the average coverage value for homozygous sequences, excluding likely 
sequencing errors. See Supplementary Note 1 for a detailed description 
of the model and fitting procedure.  

GenomeScope is available open-source as a command line R appli-
cation and also as an easy-to-use web application. Either version has 
minimum user requirements, consisting of (1) a text file of the k-mer 
profile computed by Jellyfish or other tools, (2) the value used for k, and 
(3) the length of the sequencing reads. Either the command line or online 
version of GenomeScope typically completes in less than 1 minute with 
modest RAM requirements, and outputs publication quality figures as 
well as text files with the inferred genome properties. If the modeling 

fails to converge, typically because of low coverage or low quality reads, 
the k-mer profile is plotted without the model parameters displayed so 
users can inspect the likely causes.  

 
3 Results  
We first applied GenomeScope to analyze 324 simulated data sets vary-
ing in heterozygosity (0.1%, 1%, 2%), average rate of read duplication 
(1, 2, 3), sequencing error rate (0.1%, 1%, 2%), coverage (100x, 50x, 
25x, 15x) and organism (E.coli, A. thaliana, D. melanogaster) (Supple-
mentary Table 3, Supplementary Note 2). A subset of the results for A. 
thaliana are displayed in Figure 1A (left), and show that the Ge-
nomeScope results are highly concordant with the true simulated rates 
over many conditions. The results were also highly concordant to a 
standard short-read variant analysis pipeline using BWA-MEM (Li, 
2013) and SAMTools (Li, et al., 2009) or through whole genome align-
ment using DnaDiff (Phillippy, et al., 2008) of the original and mutated 
reference sequence.  

We next evaluated ten E.coli datasets where genuine sequencing 
reads from two divergent strains were synthetically mixed together (Fig-
ure 1A, middle). This allowed us to evaluate GenomeScope on real 
sequencing reads where the finished genome sequences, and hence their 
heterozygosity rates, could be precisely computed. We find high con-
cordance to the results of the whole genome alignment of the reference 
genomes, although mapping the reads and calling variants resulted in 
artificially lower rates of heterozygosity because the short reads failed to 
map over the most heterozygous and repetitive regions. We also note that 
DnaDiff tends to underreport the rate of heterozygosity, especially if one 
genome is appreciably larger than the other, as it bases its estimate on 
those regions of the genomes that can be confidently aligned to each 
other while GenomeScope performs a more comprehensive genome-
wide analysis (Supplementary Note 3). 

Finally, we applied GenomeScope to six different genuine plant 
and animal data sets up to 1.1Gbp in size with significant levels of heter-
ozygosity and an assembled reference genome (Supplementary Note 4). 
Since the available references were haploid, it was not possible to vali-

 
Figure 1. (A) GenomeScope heterozygosity, total genome size, and unique genome size estimates: (left) twenty seven simulated A. thaliana datasets 
with vary amounts of heterozygosity, sequencing error or read duplications; (middle) ten synthetic mixtures of real E. coli sequencing data; and (right) 
six genuine plant and animal sequencing datasets: L. calcarifer (Asian seabass), D. melanogaster (fruit fly), M. undulates (budgerigar), A. thaliana Col-
Cvi F1 (thale cress), P. bretschneideri (pear), C. gigas (Pacific oyster). Also displayed are the true simulated values (Simulated), the results from a map-
ping and variant calling pipeline (Mapping), and a whole genome alignment (DnaDiff) where available. (B) GenomeScope k-mer profile plot of the A. 
thaliana dataset showing the fit of the GenomeScope model (black) to the observed k-mer frequencies (blue). The unusual peak of very high frequency 
k-mers (~10,000x coverage) were determined to be highly enriched for organelle sequences. 
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date the results with whole genome alignment, but they were compared 
to the short read mapping results. The results are generally concordant, 
although the GenomeScope heterozygosity estimates were modestly 
higher than those from read mapping, similar to the E. coli results caused 
by short read mapping deficiencies, and most discrepant for the lowest 
quality draft genomes.  

When examining real sequencing data, we introduced a parameter 
to exclude extremely high frequency k-mers (default: 1,000x or greater), 
since those often represented organelle sequences or spike-in sequences 
occurring hundreds to thousands of times per cell in A. thaliana that 
artificially inflated the genome size (Figure 1b; Supplemental Note 
1.3.2). After accounting for the artificially high copy sequences, the 
inferred genome sizes of the real data sets were 99.7% accurate as con-
firmed by orthogonal technologies, such as the established reference 
genomes or flow cytometry when available (Supplementary Note 4). 

4 Discussion 
We have shown on 340 data sets that GenomeScope is a fast, relia-

ble and accurate method to estimate the overall genome and read charac-
teristics of data sets without a reference genome. Using the web applica-
tion, users can upload their k-mer profile and seconds later Ge-
nomeScope will report the genomic properties and generate high quality 
figures and tables. As such, we expect GenomeScope to become a rou-
tine component of all future genome analysis projects. 

 For most genomes and for the experiments shown here, we rec-
ommend using k=21, as this length is sufficiently long that most k-mers 
are not repetitive but is short enough that the analysis will be more ro-
bust to sequencing errors. Extremely large (haploid size >>10GB) and/or 
very repetitive genomes may benefit from larger values of k to increase 
the number of unique k-mers. Accurate inferences requires a minimum 
amount of coverage, at least 25x coverage of the haploid genome or 
greater, otherwise the model fit will be poor or not converge (Supple-
mental Note 2). GenomeScope also requires relatively low error rate 
sequencing, such as Illumina sequencing, so that most k-mers do not 
contain errors. For example, a 2% error rate is supported as it corre-
sponds to an error only every 50bp on average, which is greater than the 
typical k-mer size used. However, raw single molecule sequencing reads 
from Oxford Nanopore or Pacific Biosciences, which currently average 
5-20% error, are not supported as an error will occur on average every 5 
to 20 bp and thus infer with nearly every k-mer (Goodwin, et al., 2016). 
Finally, GenomeScope is only appropriate for diploid genomes because 
the heterozygosity model it uses only considers the possibility for two 
alleles. In principle the analysis could be extended to higher levels of 
ploidy by considering additional peaks in the k-mer profile.  

Future work remains to extend GenomeScope to support polyploid 
genomes and genomes that have non-uniform copy number of their 
chromosomes, such as aneuploid cancer genomes or even unequal num-
bers of sex chromosomes. In these scenarios the reported heterozygosity 
rate will represent the fraction of bases that are haploid (copy number 1) 
versus diploid (copy number 2) as well as any heterozygous positions in 
the other chromosomes. Addressing these conditions will require extend-
ing the k-mer model to higher copy number states. 
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