1

1 Extraction of ultrashort DNA molecules from herbarium

2 specimens

- 3 Rafal M. Gutaker¹, Ella Reiter², Anja Furtwängler², Verena J. Schuenemann²³, Hernán
- 4 A. Burbano^{1,*}
- 5 Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck
- 6 Institute for Developmental Biology, Tuebingen 72076, Germany
- 7 ²Institute of Archaeological Sciences, University of Tuebingen, Tuebingen 72076, Germany
- 8 ³Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen
- 9 72076, Germany.
- 10 *Address correspondence to Hernán A. Burbano, Research Group for Ancient Genomics and
- 11 Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology. E-
- 12 mail: <u>hernan.burbano@tuebingen.mpg.de</u>
- 13 Keywords: ancient DNA; herbarium; DNA extraction; paleogenomics; next-
- 14 generation sequencing

16 Abstract

17	DNA extracted from herbarium specimens is highly fragmented and decays at a faster
18	rate than DNA from ancient bones. Therefore, it is crucial to utilize extraction
19	protocols that retrieve short DNA molecules. Improvements in extraction and library
20	preparation protocols for animal remains have allowed efficient retrieval of molecules
21	shorter than 50 bp. We adapted those improvements to extraction protocols for
22	herbarium specimens and evaluated their performance by shotgun sequencing, which
23	allows an accurate estimation of the distribution of fragment lengths. Extraction with
24	PTB buffer decreased median fragment length by 35% when compared to CTAB.
25	Modifying the binding conditions of DNA to silica allowed for an additional decrease
26	of 10%. We did not observe a further decrease in length when we used single-
27	stranded instead of double-stranded library preparation methods. Our protocol enables
28	the retrieval of ultrashort molecules from herbarium specimens and will help to
29	unlock the genetic information stored in herbaria.
30	Method summary

31 We optimized the extraction procedure for isolating ultrashort DNA fragments from

32 herbarium specimens through combination of PTB lysis buffer and modifications

33 previously used for ancient bones. We show the advantage of this protocol over others

34 by estimating the DNA fragment length through shotgun sequencing.

35

36 Since ancient DNA (aDNA) is highly fragmented, it is particularly important to

37 employ extraction protocols that retrieve ultrashort molecules (< 50 bp). It has been

38 shown that a recently developed extraction protocol for animal remains efficiently

39	recovers those molecules (1), which has allowed sequencing highly fragmented
40	hominin (2) and cave bear remains (1) that are hundreds of thousands of years old.
41	DNA retrieved from herbarium specimens is also highly fragmented because it decays
42	six times faster than in bones (3). Consequently, DNA from century-old herbarium
43	specimens is as short as that of thousands of years old animal remains. To take full
44	advantage of the genetic information stored in those samples it is important to
45	optimize the extraction of ultrashort molecules from desiccated plant tissue.
46	We assessed the impact of extraction and library preparation methods on the
47	distribution of DNA fragment lengths in 20 Arabidopsis thaliana herbarium
48	specimens, which were collected between 1839 and 1898 (Table S1). We used a
49	hierarchical experimental design that includes three different phases due to limited
50	availability of tissue per sample (Figure 1). In phase one and two we used 10 A.
51	thaliana samples (~20 mg of leaf tissue each), which were subjected to two different
52	extraction protocols (~10 mg of tissue per treatment), followed by double-stranded
53	library preparation. To compare the performance of double- and single-stranded
54	library preparation methods, in phase three we applied single-stranded library
55	preparation method to DNA extracts produced by the most efficient DNA extraction
56	protocol in phase two. In each phase we evaluated the performance of the methods by
57	sequencing the genomic libraries with the Illumina MiSeq platform (Table S2).
58	Extraction buffers used for ancient bones and teeth are commonly composed
59	predominantly or exclusively of EDTA and proteinase K (4), reagents that are not
60	optimal for DNA extraction from plant tissue. Hence, in the first phase we tested two
61	commonly used DNA extraction buffers for historical plant specimens, which contain
62	either cetyl-trimethyl ammonium bromide (CTAB), or a mixture of N-
63	phenacylthiazolium bromide (PTB) and dithiothreitol (DTT) (5) (Figure 1). CTAB is

4

64	a strong detergent that under high salt concentrations binds to polysaccharides and
65	aids their removal from the solution (6). Although CTAB is highly used in DNA
66	extractions from modern plants, it has been shown that it does not have a detectable
67	effect when applied to non-carbonized archaeobotanical remains (7). PTB is a
68	substance that cleaves glucose-derived protein cross-links (8) and can help to release
69	DNA trapped within sugar-derived condensation products (9); it has been effectively
70	used to retrieve DNA from archaeobotanical remains (10). DTT digests disulfide
71	bonds releasing thiolated DNA from cross-link complexes (11). In order to allow
72	better comparison of the CTAB and PTB protocols, we replaced the ethanol
73	precipitation step of the CTAB method with silica column binding (12) provided with
74	the DNeasy® Plant Mini Kit. Subsequently, libraries were prepared using a double
75	stranded DNA library protocol (13).
76	Based on qPCR measurements on unamplified libraries, the PTB protocol
	Based on qPCR measurements on unamplified libraries, the PTB protocol recover a higher number of unique library molecules than CTAB protocol (paired t-
76	
76 77	recover a higher number of unique library molecules than CTAB protocol (paired t-
76 77 78	recover a higher number of unique library molecules than CTAB protocol (paired t-test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median
76 77 78 79	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared
76 77 78 79 80	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher
76 77 78 79 80 81	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher proportion of damaged sites (lambda) (paired t-test $p = 1.3e-06$) (Figure 2C), which
76 77 78 79 80 81 82	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher proportion of damaged sites (lambda) (paired t-test $p = 1.3e-06$) (Figure 2C), which represents the fraction of bonds broken in the DNA backbone (14, 15). In addition,
76 77 78 79 80 81 82 83	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher proportion of damaged sites (lambda) (paired t-test $p = 1.3e-06$) (Figure 2C), which represents the fraction of bonds broken in the DNA backbone (14, 15). In addition, DNA molecules extracted with PTB buffer showed more cytosine (C) to thymine (T)
76 77 78 79 80 81 82 83 83	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher proportion of damaged sites (lambda) (paired t-test $p = 1.3e-06$) (Figure 2C), which represents the fraction of bonds broken in the DNA backbone (14, 15). In addition, DNA molecules extracted with PTB buffer showed more cytosine (C) to thymine (T) substitutions at the 5' end (paired t-test $p = 1.2e-06$; Figure 2G). C-to-T substitutions
76 77 78 79 80 81 82 83 83 84 85	recover a higher number of unique library molecules than CTAB protocol (paired t- test $p = 0.007$) (Figure 2F and Table S3). We found that PTB decreases the median fragment length by 35% (from 88 to 57 bp) (paired t-test $p = 2.8e-06$) when compared to CTAB (Figure 2A and 2B). This decrease in length was also manifested as a higher proportion of damaged sites (lambda) (paired t-test $p = 1.3e-06$) (Figure 2C), which represents the fraction of bonds broken in the DNA backbone (14, 15). In addition, DNA molecules extracted with PTB buffer showed more cytosine (C) to thymine (T) substitutions at the 5' end (paired t-test $p = 1.2e-06$; Figure 2G). C-to-T substitutions are typical damage patterns of aDNA and result from spontaneous deamination of C

88 by PTB and DTT, since there is a strong negative correlation between median

5

89	fragment length and C-to-T substitutions at first base ($R^2 = 0.44$; $p = 1.5e-07$; $N = 50$)
90	(Figure S4). Alternatively, the observed variation in fragment length distribution
91	could be explained by unknown chemical incompatibilities of lysis and binding
92	buffer, i.e. certain reagents could in principle reduce DNA-binding properties of the
93	buffer. Finally, in the CTAB protocol we apply a chloroform-isoamyl alcohol wash,
94	which could also reduce recovery of short molecules.
95	In the second phase, to further increase the recovery of short fragments, we
96	used PTB/DTT, which was the most successful extraction buffer in phase 1, and
97	evaluated two systems for binding DNA to silica. We tested DNeasy® mini spin
98	columns (Qiagen) in combination with the binding buffer used in the Plant Mini kit
99	and MinElute® silica spin columns in conjunction with a binding buffer optimized for
100	the recovery of short molecules from animal remains (1) (Figure 1). We found that the
101	latter method decreased the median fragment length by 10% (from 60 to 54 bp)
102	(paired t-test $p = 1.9e-04$), which shows that it is suitable to recover very short
103	sequences also from herbarium specimens (Figure 2A and B). The frequency of C-to-
104	T substitutions at the first base differed significantly between the two DNA binding
105	methods (paired t-test $p = 3.3e-03$) (Figure 2G), with a decrease in median fragment
106	length again being accompanied by an increase in C-to-T substitutions.
107	To investigate whether library preparation has an effect on fragment length
108	distribution, in the third phase we produced single-stranded DNA (ssDNA) libraries
109	using the extracts from the modified PTB/DTT extraction (18,19) and compared them
110	to the dsDNA libraries constructed from the modified PTB extraction material of

111 phase 2 (Figure 1). We did not observe a significant decrease of the median of the

112 fragment length distribution in ssDNA libraries (paired t-test p = 0.44) (Figure 2A and

B). Instead, the shape of the distribution changed towards larger numbers of longer

6

114	and shorter molecules at the cost of intermediate-size molecules, which is reflected in
115	decreased lambda (Figure 2C) and congruent with previous findings (19). Similarly to
116	Gansauge and Meyer (2013), we also detected a reduction of GC content in ssDNA
117	libraries when compared to dsDNA (Figure 2D). This phenomenon can be attributed
118	to a known bias in dsDNA libraries towards molecules with higher GC content
119	(20,21). We detected uniform GC content across the distribution of fragment lengths,
120	which suggests that the ssDNA library preparation protocol excels in reducing those
121	biases (Figure S8). In contrast to previous reports (19), the ssDNA library method did
122	not produce an increase in the proportion of endogenous DNA (Figure 2E, Figure S1,
123	S6). However, it has been suggested that increase in the proportion of endogenous
124	DNA occurs only when the initial content of endogenous DNA is lower than 10% (22,
125	23). Our A. thaliana samples have endogenous DNA between 16% and 94%, which
126	could explain why we did not detect a gain in endogenous DNA.
127	In summary, we demonstrate that the choice of extraction buffer has a great impact on
128	the length distribution of molecules recovered from herbarium specimens. Ultrashort
129	molecules are most efficiently retrieved using a combination of PTB/DTT mixture for
130	DNA extraction and the buffers and conditions suggested by Dabney et al. (2013) for
131	DNA binding. The two library preparation methods tested here appear to be equally
132	efficient in retaining short DNA fragments, however, while single stranded method
133	reduces GC bias in library it also decreases the fraction of endogenous DNA. We
134	present the DNA extraction protocol that increases the recovery of short fragments
135	and thus the accessibility of precious herbarium specimens for genetic analyses.

136

138 Author contributions

- 139 R.M.G, V.J.S, and H.A.B designed the experiments. R.M.G., E.R. and A.F.
- 140 performed the experiments. R.M.G analyzed the data. R.M.G and H.A.B wrote the
- 141 manuscript with contributions from all authors.

142 Acknowledgements

- 143 We thank curators from the Missouri Botanical Garden, University of Illinois,
- 144 National Museum of Natural History, West Virginia University, Harvard University
- and New York Botanical Gardens for kindly providing samples for this study; Marco
- 146 Thines, Charles B. Fenster and Matthew T. Rutter for sampling the herbarium
- 147 specimens; Daniel Koenig for advice in the experimental design; Patricia Lang,
- 148 members of the Research Group for Ancient Genomics and Evolutions, and especially
- 149 Matthias Meyer for comments on the manuscript. This work was funded by the
- 150 Presidential Innovation Fund of the Max Planck Society.

151 Competing interests

- 152 The authors declare no competing interests
- 153

154 **References**

155	1. Dabney, J., M. Knapp, I. Glocke, M.T. Gansauge, A. Weihmann, B. Nickel, C.
156	Valdiosera, N. Garcia, et al. 2013. Complete mitochondrial genome
157	sequence of a Middle Pleistocene cave bear reconstructed from ultrashort
158	DNA fragments. Proceedings of the National Academy of Sciences of the
159	United States of America 110:15758-15763.
160	2.Meyer, M., J.L. Arsuaga, C. de Filippo, S. Nagel, A. Aximu-Petri, B. Nickel, I.
161	Martinez, A. Gracia, et al. 2016. Nuclear DNA sequences from the Middle
162	Pleistocene Sima de los Huesos hominins. Nature 531:504-507.
163	3.Weiss, C.L., V.J. Schuenemann, J. Devos, G. Shirsekar, E. Reiter, B.A. Gould,
164	J.R. Stinchcombe, J. Krause, and H.A. Burbano. 2016. Temporal patterns
165	of damage and decay kinetics of DNA retrieved from plant herbarium
166	specimens. R Soc Open Sci 3:160239.
167	4. Rohland, N. and M. Hofreiter. 2007. Comparison and optimization of ancient
168	DNA extraction. Biotechniques 42:343-352.
169	5. Kistler, L. 2012. Ancient DNA extraction from plants. Methods in molecular
170	biology 840:71-79.
171	6.Rogers, S.O. and A.J. Bendich. 1985. Extraction of DNA from milligram amounts
172	of fresh, herbarium and mummified plant tissues. Plant molecular biology
173	5:69-76.
174	7. Wales, N., K. Andersen, E. Cappellini, M.C. Avila-Arcos, and M.T. Gilbert.
175	2014. Optimization of DNA recovery and amplification from non-carbonized
176	archaeobotanical remains. PloS one 9:e86827.

177	Q Vacan	C	\mathbf{V}	7hana	\mathbf{v}	7hang	٨	Va		Т	Downhogon	C	Talabbana I
177	o vasan.	. D	л.	Znang.	л.	Znang.	А.	. Na	Durniolu.	. J.	Bernnagen.		Teichberg, J.

- 178 Basgen, D. Wagle, et al. 1996. An agent cleaving glucose-derived protein
- 179 crosslinks in vitro and in vivo. Nature *382*:275-278.
- 180 9.Poinar, H.N., M. Hofreiter, W.G. Spaulding, P.S. Martin, B.A. Stankiewicz, H.
- 181 Bland, R.P. Evershed, G. Possnert, and S. Paabo. 1998. Molecular
- 182 coproscopy: dung and diet of the extinct ground sloth Nothrotheriops
- 183 shastensis. Science *281*:402-406.
- 184 10.Jaenicke-Despres, V., E.S. Buckler, B.D. Smith, M.T. Gilbert, A. Cooper, J.
- 185 Doebley, and S. Paabo. 2003. Early allelic selection in maize as revealed by
 186 ancient DNA. Science *302*:1206-1208.
- 187 11.Gill, P., A.J. Jeffreys, and D.J. Werrett. 1985. Forensic application of DNA
- 188 'fingerprints'. Nature *318*:577-579.
- 189 12.Palmer, S.A., Moore, J.D., A.J. Clapham, P. Rose and R.G. Allaby. 2009.
- 190Archaeogenomic evidence of ancient Nubian Barley evolution from six to
- 191 two-row indicates local adaptation. PloS one 4:e6301.
- 192 13.Meyer, M. and M. Kircher. 2010. Illumina sequencing library preparation for
- 193 highly multiplexed target capture and sequencing. Cold Spring Harbor
- 194 protocols 2010:pdb prot5448.
- 195 14.Deagle, B.E., J.P. Eveson, and S.N. Jarman. 2006. Quantification of damage in
- 196DNA recovered from highly degraded samples--a case study on DNA in
- 197 faeces. Frontiers in zoology 3:11.
- 198 15.Allentoft, M.E., M. Collins, D. Harker, J. Haile, C.L. Oskam, M.L. Hale, P.F.
- 199 **Campos, J.A. Samaniego, et al.** 2012. The half-life of DNA in bone:
- 200 measuring decay kinetics in 158 dated fossils. Proceedings. Biological
- 201 sciences / The Royal Society 279:4724-4733.

	10
202	16.Briggs, A.W., U. Stenzel, P.L. Johnson, R.E. Green, J. Kelso, K. Prufer, M.
203	Meyer, J. Krause, et al. 2007. Patterns of damage in genomic DNA
204	sequences from a Neandertal. Proceedings of the National Academy of
205	Sciences of the United States of America 104:14616-14621.
206	17.Brotherton, P., P. Endicott, J.J. Sanchez, M. Beaumont, R. Barnett, J. Austin,
207	and A. Cooper. 2007. Novel high-resolution characterization of ancient DNA
208	reveals C > U-type base modification events as the sole cause of post mortem
209	miscoding lesions. Nucleic acids research 35:5717-5728.
210	18. Meyer, M., M. Kircher, M.T. Gansauge, H. Li, F. Racimo, S. Mallick, J.G.
211	Schraiber, F. Jay, et al. 2012. A high-coverage genome sequence from an
212	archaic Denisovan individual. Science 338:222-226.
213	19.Gansauge, M.T. and M. Meyer. 2013. Single-stranded DNA library preparation
214	for the sequencing of ancient or damaged DNA. Nature protocols 8:737-748.
215	20.Green, R.E., J. Krause, A.W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N.
216	Patterson, H. Li, et al. 2010. A draft sequence of the Neandertal genome.
217	Science 328:710-722.
218	21.Briggs, A.W., J.M. Good, R.E. Green, J. Krause, T. Maricic, U. Stenzel, C.
219	Lalueza-Fox, P. Rudan, et al. 2009. Targeted retrieval and analysis of five
220	Neandertal mtDNA genomes. Science 325:318-321.
221	22.Bennett, E.A., D. Massilani, G. Lizzo, J. Daligault, E.M. Geigl, and T. Grange.
222	2014. Library construction for ancient genomics: single strand or double
223	strand? Biotechniques 56:289-290, 292-286, 298, passim.
224	23. Wales, N., C. Caroe, M. Sandoval-Velasco, C. Gamba, R. Barnett, J.A.

225 Samaniego, J.R. Madrigal, L. Orlando, and M.T. Gilbert. 2015. New

11

- 226 insights on single-stranded versus double-stranded DNA library preparation
- for ancient DNA. Biotechniques *59*:368-371.

12

229	Figure 1.	Experimental	design for	testing the	effect of DNA	extraction and
	.					

230 library preparation protocols on properties of sequenced libraries from

- 231 herbarium specimens. Experiments were conducted in three phases. In phase one we
- subject 10 herbarium specimens of Arabidopsis thaliana to extraction with two
- 233 different lysis buffers and compare sequencing results. In phase two we tested two
- 234 DNA-binding methods on second set of 10 A. thaliana specimens. In phase three we
- compared the libraries constructed with double- and single-stranded methods.

Figure 2. The effect of DNA extraction and library preparation protocols on

237 different properties of DNA sequencing libraries. The figure depicts the results

from experiments in phases 1-3 (Figure 1). (A) Distribution of fragment lengths of

239 merged reads mapped to the Arabidopsis thaliana reference genome. The y-axis

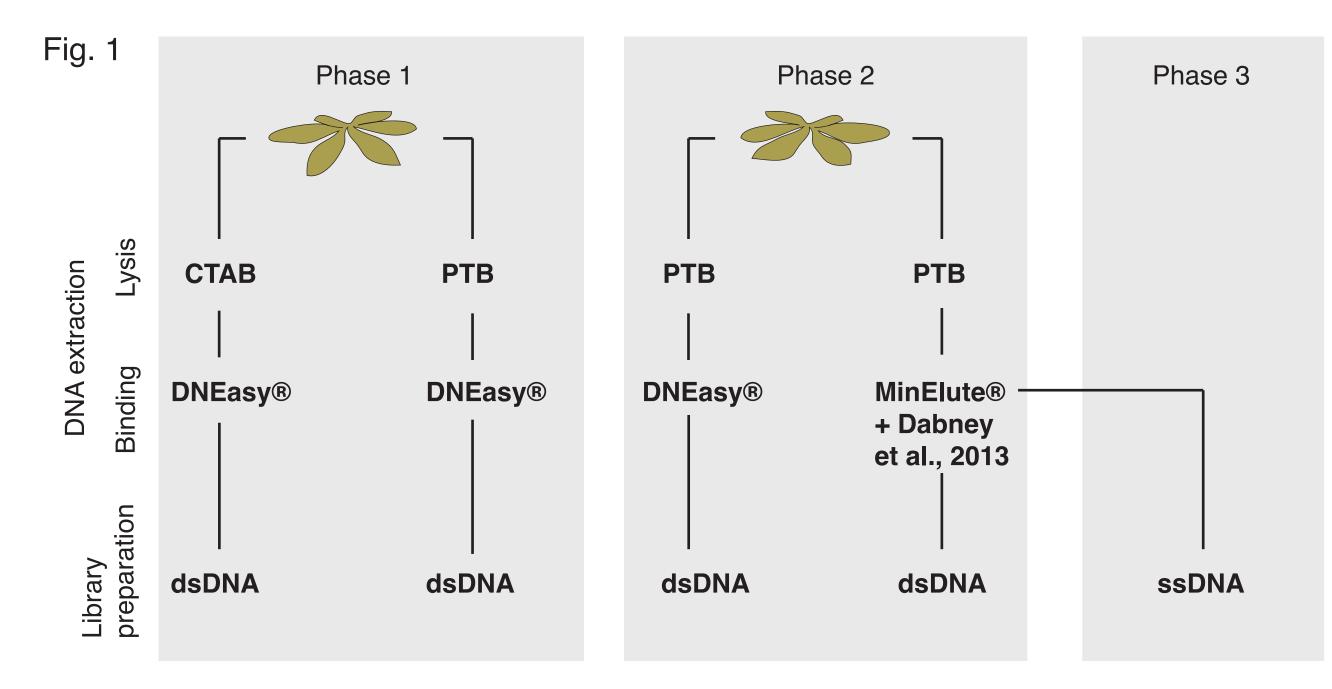
- shows the kernel density estimates. (B-G) Distributions represented as box and
- 241 whisker plots; medians are depicted by thick black lines, boxes represent data

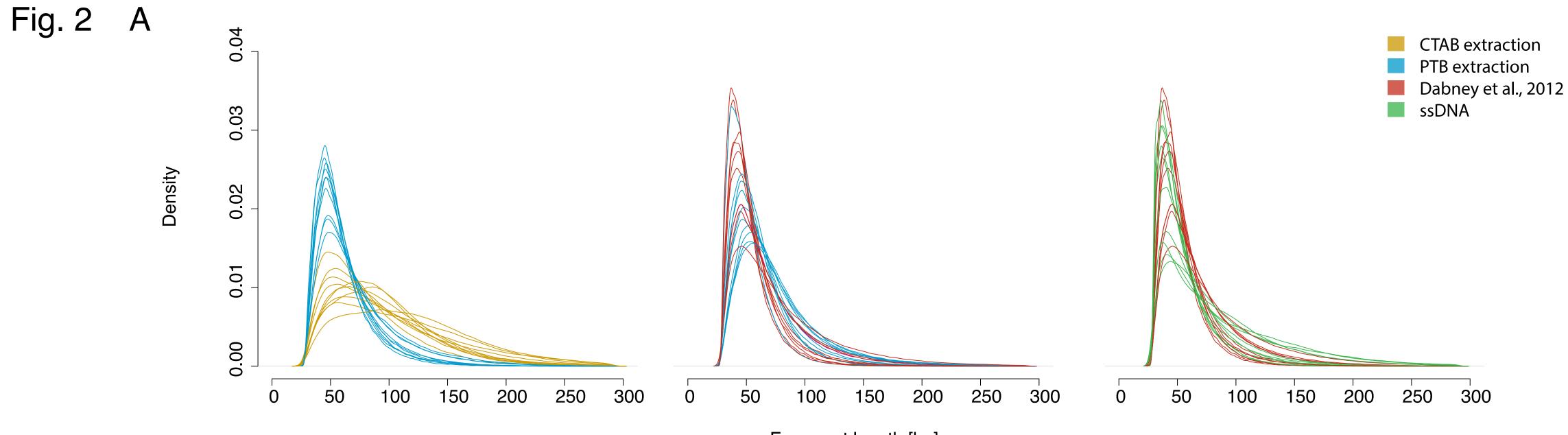
between quartile Q1 and Q3, whiskers extend to 1.5 times the interquartile range

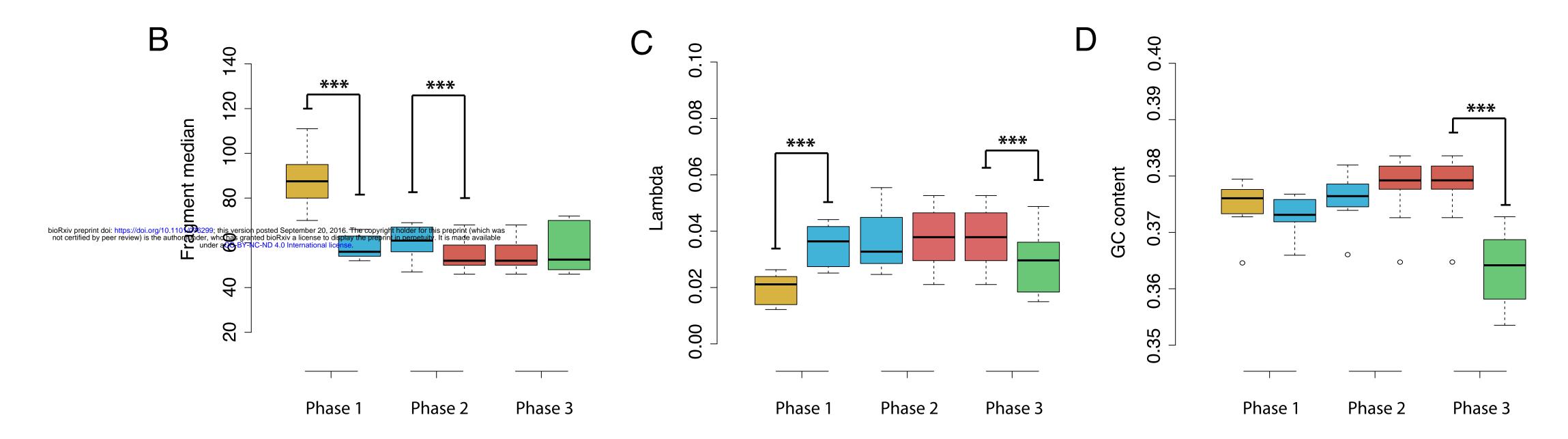
between Q1 and Q3, and points symbolize outliers. Comparisons within experiments

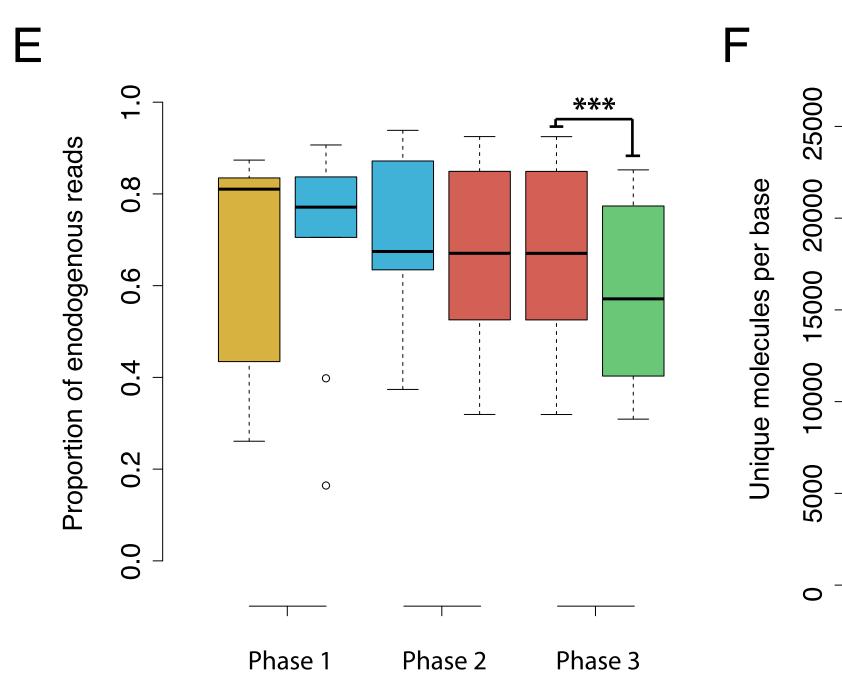
that result in significant differences in a paired t-test are connected with black lines

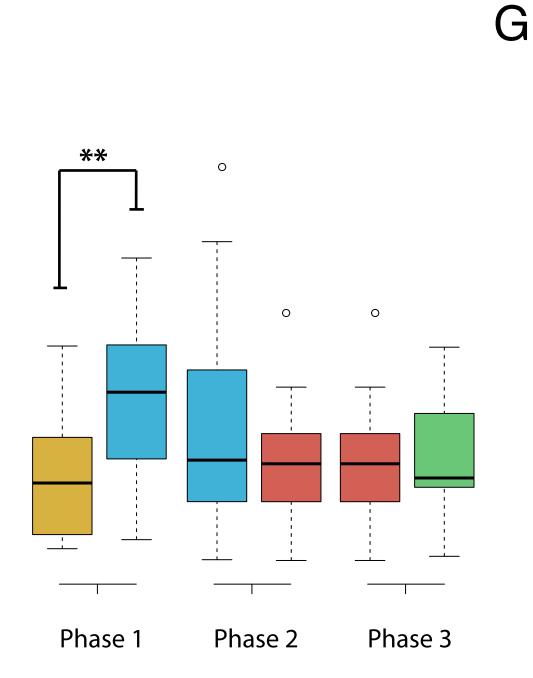
245 (****' indicates an alpha level of 0.005) (B) Fragment length medians. (C)

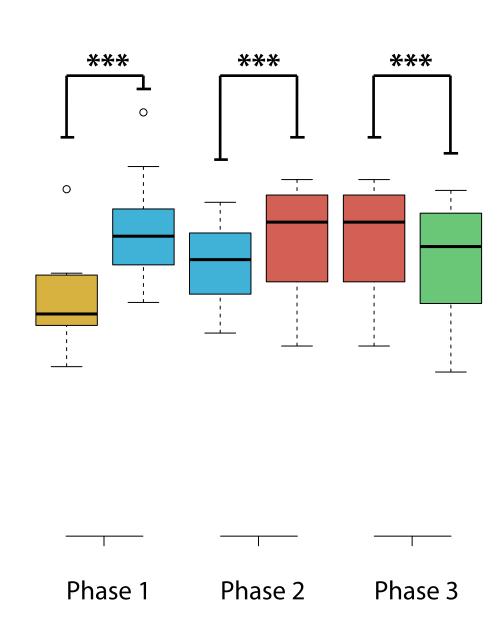

246 Proportion of broken DNA fragments (lambda). (D) Proportion of GC content. (E)


247 Proportion of endogenous DNA (proportion of reads mapped to A. thaliana reference


248 genome). (F) Number of unique molecules per base of A. thaliana reference genome


- 249 (molecule coverage of DNA extract) calculated from qPCR measurements on
- 250 unamplified libraries. (G) Percentage of cytosine to thymine substitutions at first base


at the 5' end.



Fragment length [bp]

0.05

0.04

0.03

0.02

0.01

00.00

Proportion of C to T