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 2 

Abstract  1 

 2 

Structural rearrangements have long been recognized as an important source of genetic variation with 3 

implications in phenotypic diversity and disease, yet their evolutionary dynamics are difficult to 4 

characterize with short-read sequencing. Here, we report long-read sequencing for 12 strains representing 5 

major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative 6 

Saccharomyces paradoxus. Complete genome assemblies and annotations generate population-level 7 

reference genomes and allow for the first explicit definition of chromosome partitioning into cores, 8 

subtelomeres and chromosome-ends. High-resolution view of structural dynamics uncovers that, in 9 

chromosomal cores, S. paradoxus exhibits higher accumulation rate of balanced structural 10 

rearrangements (inversions, translocations and transpositions) whereas S. cerevisiae accumulates 11 

unbalanced rearrangements (large insertions, deletions and duplications) more rapidly. In subtelomeres, 12 

recurrent interchromosomal reshuffling was found in both species, with higher rate in S. cerevisiae. Such 13 

striking contrasts between wild and domesticated yeasts reveal the influence of human activities on 14 

structural genome evolution. 15 
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 3 

Introduction 1 

Understanding how genetic variation translates into phenotypic diversity is a central theme in genomic 2 

studies. With the rapid advancement of sequencing technology in recent decades, genetic variation in 3 

large natural populations has been extensively explored for human (The 1000 Genomes Project 4 

Consortium 2010) and several important model organisms such as yeast (Liti et al. 2009a; Bergström et 5 

al. 2014; Strope et al. 2015; Gallone et al. 2016), fruitfly (Mackay et al. 2012; Huang et al. 2014) and 6 

Arabidopsis (Cao et al. 2011; The 1001 Genomes Consortium 2016). However, our current knowledge of 7 

natural genetic variation is heavily biased towards single nucleotide variants (SNVs), although it is 8 

increasingly appreciated that structural variants (SVs) (i.e. inversions, translocations, and large insertions, 9 

deletions and duplications) might contribute more to the overall genetic differences and have far more 10 

significant evolutionary and functional consequences (Feuk et al. 2006; Weischenfeldt et al. 2013). For 11 

example, inversion and translocation can facilitate adaptation and speciation by suppressing local 12 

recombination in heterozygotes, which creates genetic barrier to gene flow and promotes fast 13 

differentiation between subpopulations (Rieseberg 2001). Large insertion, deletion and duplication, on 14 

the other hand, can sometimes cause diseases by altering the dosage of gene products (Weischenfeldt et 15 

al. 2013). Therefore, population and comparative studies on the landscape and dynamics of structural 16 

rearrangements are needed to understand the evolutionary balance between genome stability and 17 

plasticity as well as its functional implications in adaptation and disease. 18 

The major challenge of studying structural rearrangements at the genomic level lies in the limited power 19 

and resolution of detecting rearrangement variants with traditional capillary and short-read sequencing 20 

data. Moreover, many structural rearrangement are embedded in complex genomic regions that are 21 

repetitive and highly dynamic, which further exacerbate this problem. For example, subtelomeric regions 22 

are known hotspots of rampant interchromosomal reshuffling which significantly contribute to inter-23 

individual genetic variation and phenotypic diversity of eukaryotic organisms (Pryde et al. 1997; Mefford 24 

and Trask 2002; Eichler and Sankoff 2003; Dujon 2010). However, the detailed landscape and 25 
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evolutionary dynamics of such subtelomeric reshuffling has remained elusive due to the difficulty in 1 

assembling these regions. The newly available long-read sequencing technology represented by PacBio 2 

and Oxford Nanopore can generate very long reads (>10 kb) with high throughput, thereby constituting 3 

powerful tools for detecting and characterizing complex structural rearrangements (Goodwin et al. 2016). 4 

Recent applications of long-read sequencing technology in several reference genome sequencing projects 5 

has proved to be quite successful, producing highly continuous genome assemblies with most of complex 6 

regions correctly resolved, even for large mammalian genomes (Chaisson et al. 2014; VanBuren et al. 7 

2015; Gordon et al. 2016). 8 

The baker’s yeast S. cerevisiae has long been used as an important model system in biological studies, 9 

illuminating almost every aspect of molecular biology and genetics. Its genome was the first to be fully 10 

sequenced and completely assembled in eukaryotes (Goffeau et al. 1996). However, it was only recently 11 

that the rich genetic variation and phenotypic diversity in natural yeast populations began to be 12 

appreciated (Liti 2015). Our first population genomics study on the partially domesticated S. cerevisiae 13 

and its closest wild relative S. paradoxus uncovered strong population differentiation in both species, 14 

which is well-correlated with their geographic origins and phenotypic diversity (Liti et al. 2009a; 15 

Warringer et al. 2011). In a following study based on high-coverage short-read sequencing, we found a 16 

surprising enrichment of genome content variation (i.e. the presence/absence of genetic materials) in the 17 

S. cerevisiae population despite much lower levels of SNVs as compared to the S. paradoxus population 18 

(Bergström et al. 2014). Here, we applied PacBio sequencing to 12 representative strains of both species, 19 

with the aim of generating a high-resolution view of the landscape and evolutionary dynamics of 20 

structural rearrangements in their genome evolution. To our knowledge, this is the first study in 21 

eukaryotes that goes beyond the scope of single reference genome sequencing and brings the PacBio 22 

sequencing technology to the population level. We generated high quality de novo assemblies for both 23 

nuclear and mitochondrial genomes with exceptional continuity and completeness. We further partitioned 24 

nuclear chromosomes into cores, subtelomeres and chromosome-ends to assess the structural dynamics 25 

within each partition separately. The comparison of these complete genomes coupled with explicit 26 
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genome partitioning allowed us to generate a comprehensive view of structural dynamics for these two 1 

closely related species with unprecedented resolution. Our analysis highlights the influence of human 2 

activity on shaping structural genome evolution. Moreover, we report several non-canonical structures of 3 

chromosome-ends as well as lineage-specific structural rearrangements and introgression in 4 

mitochondrial genomes. In addition, we used two case studies of complex multi-allelic loci to illustrate 5 

how the precisely characterized structural rearrangements based on our complete genome assembly and 6 

annotation can be further connected to phenotypic diversity. Finally, we believe our collection of high 7 

quality annotated assemblies can serve as alternative reference genomes to guide future genomic and 8 

functional studies in yeasts. 9 

 10 

Results 11 

Complete genome assemblies across the S. cerevisiae and S. paradoxus 12 

subpopulations provide new population-level reference genomes 13 

We selected seven S. cerevisiae and five S. paradoxus strains (Table S1) to represent previously identified 14 

evolutionary distinct subpopulations of these two species (Liti et al. 2009a; Bergström et al. 2014). For 15 

each strain, we sequenced its haploid (or homozygous diploid) genome using deep PacBio (the P6-C4 16 

chemistry) (100-300x) and Illumina (200-500x) sequencing (Table S2). The raw PacBio de novo 17 

assemblies of both nuclear and mitochondrial genomes exhibited compelling quality in terms of both 18 

completeness and accuracy. Most chromosomes were assembled into single contigs with telomeric ends 19 

correctly assembled. We compared our assembly of the S. cerevisiae reference strain S288c with 20 

previously reported assemblies based on various sequencing technologies (PacBio, Oxford Nanopore, and 21 

Illumina MiSeq) (Kim et al. 2014; Goodwin et al. 2015). Our PacBio assembly outperformed other 22 

assemblies in terms of completeness, especially for the challenging genomic regions (e.g. Ty 23 

retrotransposable elements, telomeres and subtelomeres) (Figure S1). To further boost the assembly 24 
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quality, we performed manual gap filling by referring to assemblies generated for the same strain in the 1 

early phase of this project using the older PacBio chemistry (P4-C2). We also carried out error correction 2 

based on the Illumina read alignments to minimize the remaining sequencing errors (Table S3 and S4). 3 

For each final assembly, we conducted comprehensive annotation for various genomic features, including 4 

centromeres, protein-coding genes, tRNAs, Ty retrotransposable elements, core X-elements, Y'-elements 5 

and mitochondrial RNAs (Table S5-S7). 6 

Our final genome assemblies show outstanding completeness and accuracy compared with the current S. 7 

cerevisiae and S. paradoxus reference genomes. In general, the genome-wide dotplot comparison between 8 

these two reference genomes and our PacBio assemblies of the same strains (S288c for S. cerevisiae and 9 

CBS432 for S. paradoxus) revealed clean colinearity for both nuclear and mitochondrial genomes, 10 

suggesting comparable quality at this resolution (Figure 1A and 1B). While we noticed a few 11 

discrepancies when zooming into individual chromosome, further analyses suggested that most, if not all, 12 

of these discrepancies were due to assembly problems in the current reference genomes. For example, we 13 

found five bona-fide Ty1 insertions on S288c chrIII in our assembly but not in the current S. cerevisiae 14 

reference genome (Figure 1A, inset). These Ty1 insertions were further confirmed both by previous 15 

studies (Wheelan et al. 2006; Shibata et al. 2009; Hoang et al. 2010) and by our own long-range PCR 16 

amplifications. In the original S. cerevisiae reference genome sequencing project, chrIII was sequenced 17 

from several closely related but not identical strains (Oliver et al. 1992), which might explain the 18 

inconsistency. Likewise, we found a clear mis-assembly on chrIV (Figure 1B, inset) in the current S. 19 

paradoxus reference genome for the strain CBS432, which is confirmed both by the cross-comparison 20 

among different S. paradoxus strains and by the read mapping using Illumina reads and previously 21 

generated Sanger reads (Liti et al. 2009a). Moreover, we checked a few known cases of copy number 22 

variation (CNV) (e.g. Y’-elements (Liti et al. 2005), the CUP1 (Bergström et al. 2014) and ARR 23 

(Bergström et al. 2014) gene clusters) and structural rearrangements (e.g. those in the Malaysian S. 24 

cerevisiae UWOPS03-461.4 (Marie-Nelly et al. 2014)) and they were all correctly recaptured in our 25 

assemblies, which further proves the quality of our assemblies. 26 
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The final assembly sizes of these 12 strains ranged from 11.75 to 12.16 Mb for the nuclear genome 1 

(Figure 1C and Table S8) and from 69.95 kb to 87.37 kb for the mitochondrial genome (Figure 1D and 2 

Table S9). The CNV of Y’- and Ty elements in different strains substantially contributed to the nuclear 3 

genome size differences (Figure 1C and Table S8). For example, we observed strain-specific enrichment 4 

of full-length Ty1 in the reference S. cerevisiae S288c, Ty4 in the South American S. paradoxus 5 

UFRJ50876 and Ty5 in the European S. paradoxus CBS432 whereas no full-length Ty was found in the 6 

Malaysian S. cerevisiae UWOPS03-461.4 (Table S6). Similarly, >30 copies of Y’-element were found in 7 

the S. cerevisiae SK1 but none in the Far East Asian S. paradoxus N44 (Table S5). As for the size 8 

variation among mitochondrial genomes, the dynamic distribution of group I and group II introns (in 9 

COB1, COX1 and rnl) have clearly played an important role (Figure D and Table S9-S10). Despite the 10 

large-scale interchromosomal rearrangements in one S. cerevisiae (UWOPS03-461.4) and two S. 11 

paradoxus (UFRJ50816 and UWOPS91-917.1) strains, all the 12 strains maintained 16 nuclear 12 

chromosomes with one centromere on each chromosome, in contrast to the chromosome reduction 13 

observed in other post-whole genome duplication (post-WGD) Saccharomycotina yeasts (Gordon et al. 14 

2011). 15 

 16 

Contrasting molecular evolutionary rates and diversification timescales between S. 17 

cerevisiae and S. paradoxus  18 

A robust phylogeny is a prerequisite for making reliable evolutionary inferences. We used a concatenated 19 

multi-loci matrix of 4,531 one-to-one orthologous nuclear genes to construct a maximum likelihood (ML) 20 

phylogenetic relationship of the 12 strains, together with six other Saccharomyces sensu stricto species as 21 

outgroups. The resulting phylogeny is consistent with our prior knowledge about these strains (Figure 22 

1E). In summary, the seven S. cerevisiae strains and the five S. paradoxus strains were unambiguously 23 

clustered into their respective species clades, which together formed a monophyletic group separated from 24 

the outgroup species. The S. paradoxus clade was further partitioned into two early-diversified 25 
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continental groups: the Eurasian group represented by CBS432 (European) and N44 (Far East Asian), and 1 

the American group represented by UWOPS91-917.1 (Hawaiian), YPS138 (North American) and 2 

UFRJ50816 (South American). The phylogenetic relationship presented here is highly robust, as all the 3 

internal nodes have 100% fast-bootstrapping support. We also constructed individual ML gene trees for 4 

all the 4,531 one-to-one orthologs and summarized them into a single coalescent-based consensus species 5 

tree. This revealed exactly identical topology as the concatenated tree with a normalized quartet score of 6 

0.92. Taken together, these results suggest the inferred phylogeny is highly robust, thereby laying a solid 7 

foundation for our downstream evolutionary analysis. 8 

In addition to the topology, we also examined the branch lengths of this phylogenetic tree as well as the 9 

chronogram generated by molecular dating to gain insights into the evolutionary rates and timescales of 10 

the two species. We found the entire S. cerevisiae lineage to have evolved faster than the S. paradoxus 11 

lineage as indicated by their overall longer branch lengths (from the common ancestor of the two species 12 

to each tip of the tree) (Figure 1E). We further confirmed such rate difference in molecular evolution by 13 

Tajima’s relative rate test (Tajima 1993) for all S. cerevisiae versus S. paradoxus strain pairs by using S. 14 

mikatae as the outgroup (p-value < 1E-5 for all pairwise comparisons). The molecular dating analysis 15 

(Figure S2) suggests the S. cerevisiae strains have diversified much more recently than their S. paradoxus 16 

counterparts, which was further supported by our synonymous substitution rate (dS) calculation (Figure 17 

S3). The cumulative diversification time for the five S. paradoxus strains is 3.88 times of that for the 18 

seven S. cerevisiae strains, suggesting a much longer time span for accumulating evolutionary changes in 19 

S. paradoxus during its diversification. 20 

 21 

Explicit partitioning of nuclear chromosomes into cores, subtelomeres and 22 

chromosome-ends  23 

Conceptually, the linear nuclear chromosomes can be partitioned into three distinct domains: internal 24 

chromosomal cores, interstitial subtelomeres and terminal chromosome-ends. However, the boundaries 25 
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 9 

between these domains had never been explicitly demarcated due to the lack of a rigid subtelomere 1 

definition. Here, we capitalize on the cross-comparison of multiple complete genome assemblies to 2 

strictly define yeast subtelomeres for the two closely related species that we studied. For each 3 

subtelomere, we located its proximal boundary based on the sudden loss of synteny conservation on the 4 

corresponding chromosome across the 12 strains and demarcated its distal boundary using the yeast-5 

specific telomere-associated sequences, i.e. the core X- and Y'-elements (See Materials and Methods for 6 

details) (Figure S4). The partitioning for the left arm of chromosome I (chrI-L) is illustrated in Figure 2. 7 

Note that the strict gene synteny conservation is immediately lost after the GDH3 gene, which marks the 8 

boundary between the chromosomal core and the subtelomere for this chromosome arm (Figure 2). All 9 

chromosomal cores, subtelomeres, and 358 out of 384 of chromosome-ends across the 12 strains were 10 

thus defined (Table S11-13 and Supplementary data 1-2). For the remaining 26 chromosome-ends, 11 

neither core X/Y'-elements nor telomeric repeats (TG1-3) could be found, suggesting incomplete 12 

assemblies.  13 

As a validation of our chromosome partitioning, all yeast genes defined as essential in the S. cerevisiae 14 

strain S288c fell into the chromosomal cores in all strains and all known subtelomeric duplication blocks 15 

in S288c (http://www2.le.ac.uk/colleges/medbiopsych/research/gact/images/clusters-fixed-large.jpg) 16 

were fully enclosed in our defined S288c subtelomeres. Furthermore, the genes from our defined 17 

subtelomeres show consistently higher rates of molecular evolution and CNV accumulation than those 18 

from the cores (Wilcoxon rank sum test, p-value = 3.66E-3 for the dN/dS comparison within S. 19 

paradoxus and p-value <2.2E-16 for all the other comparisons) (Figure S5). All these observations fit 20 

well with the known biological properties of the cores and subtelomeres. Admittedly, we may 21 

underestimate the size of subtelomeres for those chromosomes with extremely high synteny conservation 22 

extending all the way to the chromosome-ends (exemplified in the later section). However, we argue that 23 

such terminal regions with high synteny conservation deviate from the highly dynamic nature of typical 24 

subtelomeres and should therefore be classified as cores.  25 

We assigned the orthologous relationships between our defined subtelomeres from different strains based 26 
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on the ancestral chromosomal identity of the chromosomal cores that they are attached to, which accounts 1 

for the large-scale interchromosomal rearrangements that have occurred in some strains (Table S12). For 2 

example, we named the subtelomere located on the right arm of chrXI in UWOPS03-461.4 as the “chr07-3 

L subtelomere” since this subtelomere, together with its flanking chromosomal core, came from the left 4 

arm of the ancestral chromosome 7 (chr07-L) (Figure S6). Such accurately assigned subtelomere 5 

orthology together with our explicit chromosome partitioning allows us to treat each chromosomal 6 

domain separately and to have in-depth examination of their respective evolutionary dynamics. 7 

 8 

Contrasting patterns of structural rearrangements between the two species in 9 

chromosomal cores 10 

Structural rearrangements can be balanced (e.g. inversion, reciprocal translocation, and transposition) or 11 

unbalanced (e.g. large novel insertion, deletion, and duplication) depending on whether the actual amount 12 

of genetic material is affected (Feuk et al. 2006). We systematically identified both types of structural 13 

rearrangements in the chromosomal cores of the 12 strains, with a focus on events in which protein-14 

coding genes are involved. The identified structural rearrangements were further mapped back to the 15 

strain phylogeny to reconstruct their evolutionary history. 16 

We identified 35 balanced rearrangements in total, including 26 inversions, six reciprocal translocations, 17 

two transpositions and one massive rearrangement (Figure 3A and Supplementary data 3). All but one 18 

event occurred after the onset of diversification in each species, with most events occurring in the S. 19 

paradoxus lineage and very few in the S. cerevisiae lineage. Even when factoring in the difference in the 20 

cumulative diversification time of these two lineages, S. paradoxus still shows faster accumulation of 21 

balanced rearrangements than S. cerevisiae, with a 1.93-fold difference in rates. Of the 26 inversions, six 22 

are tightly packed into a ~200 kb region on chrVII of the South American S. paradoxus UFRJ50816, 23 

indicating a strain-specific inversion hotspot (Figure 3B). Another three inversions occurring 24 

independently in two S. cerevisiae (SK1 and YPS128) and one S. paradoxus (UFRJ50816) strains are 25 
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located in a known “flip-flop” region surrounded by two inverted homologous segments (Philippsen et al. 1 

1997; Wei et al. 2007; KH Wolfe, personal communication), suggesting a potential scenario of balancing 2 

selection acting on this inversion (Supplementary data 3). All the six reciprocal translocations occurred in 3 

S. paradoxus strains, with five in UFRJ50816 (South American) and one in UWOPS91-917.1 (Hawaiian) 4 

(Figure 3C). One transposition is shared by all the seven S. cerevisiae strains while the other likely 5 

occurred in the common ancestor of the North American (YPS138) and South American (UFRJ50816) S. 6 

paradoxus. The interchromosomal rearrangement found in the Malaysian S. cerevisiae UWOPS03-461.4 7 

is particularly striking, in which chrVII, chrVIII, chrX, chrXI, and chrXIII were completely reshuffled, 8 

confirming a recent observation for this strain based on chromosomal contact data (Marie-Nelly et al. 9 

2014) (Figure 3C). We coined the term “massive rearrangement” to describe such dramatic genome 10 

reconfiguration, as it cannot be explained by typical reciprocal translocations. This may result from a 11 

single catastrophic event resembling the chromothripsis observed in tumor cells (Stephens et al. 2011; 12 

Zhang et al. 2013) or from multiple independent events separated in time. The massive rearrangement in 13 

the Malaysian S. cerevisiae UWOPS03-461.4 and the rapid accumulation of inversions and translocations 14 

in the South American S. paradoxus UFRJ50816 resulted in extensively altered genome configurations, 15 

which explain the reproductive isolation of these two lineages (Liti et al. 2006; Cubillos et al. 2011). 16 

Finally, as previously observed in yeasts with larger divergence scales (Fischer et al. 2000; Kellis et al. 17 

2003), the breakpoints of these balanced rearrangements are clearly associated with tRNAs and Tys, 18 

highlighting the roles of these elements in triggering genome instability. 19 

Considering unbalanced structural rearrangements, we identified eight novel insertions, 19 deletions, four 20 

dispersed duplications and at least seven tandem duplications (Figure 3A and Supplementary data 4). 21 

There are another two cases (one dispersed duplication and one insertion/deletion) of which the 22 

evolutionary history cannot be confidently determined due to potentially multiple independent origins or 23 

secondary deletions (Supplementary data 4). Although these numbers can be slightly underestimated 24 

given that we only count unambiguous cases in our analysis, our identified unbalanced structural 25 

rearrangements clearly outnumbered those balanced ones, as recently found in Lachancea yeasts 26 
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(Vakirlis et al. 2016). In contrast to the balanced rearrangements, we found the unbalanced ones to be 1 

much more evenly distributed across the strains in both species despite the much shorter cumulative 2 

diversification time of S. cerevisiae. We estimated that the accumulation rate of unbalanced 3 

rearrangements in S. cerevisiae is 4.6 times of that in S. paradoxus during the respective diversification of 4 

these two species. The unbalanced structural rearrangements also occurred at a much smaller genomic 5 

scale compared to the balanced ones, with at most a few genes involved in each event. We found that the 6 

breakpoints of these unbalanced rearrangements (except for the tandem duplications) were also 7 

associated with Tys and tRNAs, echoing our observation for balanced rearrangements. The genes CUP1, 8 

RSC30, ENA1/2/5, and TDH3 are involved in tandem duplications, with the case at the CUP1-RSC30 9 

locus being especially intriguing. The CUP1 and RSC30 genes were tandemly duplicated in three S. 10 

cerevisiae strains (DBVPG6765, S288c and Y12) with different duplication segments, at least between 11 

Y12 and the other two strains (Figure 3D). This likely suggests a scenario of convergent evolution driven 12 

by selection for copper tolerance in independently domesticated beverage producing lineages as 13 

previously suggested (Warringer et al. 2011). Finally, we found genes involved in unbalanced 14 

rearrangements to be significantly enriched for gene ontology (GO) terms related to the binding, 15 

transporting and detoxification of metal ions (e.g. Na+, K+, Cd2+ and Cu2+) (Table S14), suggesting these 16 

events likely to be adaptive. 17 

 18 

High resolution view of structural plasticity and evolutionary dynamics in 19 

subtelomeres 20 

Our complete assemblies and explicitly defined subtelomere boundaries allowed us to examine the 21 

structural plasticity and evolutionary dynamics of subtelomeres with unprecedented resolution. The 22 

subtelomere sizes are highly variable across different strains and chromosome arms, ranging from 0.13 to 23 

76 kb (median = 15.6 kb) (Figure 4A and Supplementary data 2). While the very short subtelomeres (e.g. 24 

the chr04-R and chr11-L subtelomeres) can be explained by the widespread high degree of synteny 25 
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conservation extending all the way to the chromosome-ends, those exceptionally long subtelomeres can 1 

instead be caused by multiple mechanisms. For example, the chr15-R subtelomere of the European/Wine 2 

S. cerevisiae DBVPG6765 has been drastically elongated by a 65 kb genomic segment that was 3 

horizontally transferred from Torulaspora microellipsoides (Marsit et al. 2015) (Figure 4B and Figure 4 

S7A). The chr07-R subtelomere of the European S. paradoxus CBS432 was extended by the tandem 5 

duplications of MAL31-like and MAL33-like genes as well as the addition of a terminal segment 6 

containing the ARR cluster (Figure 4C and Figure S7B). The chr15-L subtelomere of the South American 7 

S. paradoxus UFRJ50816 increased its size by duplications of subtelomeric segments from two other 8 

chromosomes (Figure 4D and Figure S7C). Inversions have also occurred in subtelomeres, including one 9 

affecting the HMRA1-HMRA2 gene cluster in UFRJ50816 (Figure 4E) and another affecting an MAL11-10 

like gene in the European S. paradoxus CBS432 (Figure 4F).  11 

The enrichment of segmental duplications via ectopic sequence reshuffling is a common feature of 12 

eukaryotic subtelomeres. Here, we identified such subtelomeric duplication blocks based on pairwise 13 

comparisons of different subtelomeres within the same strain (Supplementary data 5). Figure 5A 14 

illustrates an example showing duplication blocks shared among three subtelomeres (from chr01-L, 15 

chr01-R and chr08-R) in the S. cerevisiae reference strain S288c. In total, we identified 173 pairs of 16 

subtelomeric duplication blocks across the 12 strains, with 8-26 pairs for each strain (Table S15). Among 17 

the 16 pairs of subtelomeric duplication blocks previously identified in S288c, we recaptured all the 12 18 

major pairs, leaving the remaining four pairs too small to pass our filtering criteria. Interestingly, the 19 

Hawaiian S. paradoxus UWOPS91-917.1 has the most subtelomeric duplication blocks and half of them 20 

are strain-specific, suggesting unique subtelomeric evolution in this strain. For all duplication blocks, we 21 

noticed that the duplicated segments always maintained the same centromere-telomere orientation, 22 

supporting a mechanism of double-strand break (DSB) repair as previously suggested in other species 23 

(Linardopoulou et al. 2005; Fairhead and Dujon 2006). We further summarized those 173 pairs of 24 

duplication blocks based on the orthologous subtelomere pairs that were involved. This led to 75 unique 25 

duplicated subtelomere pairs, 59 of which are new compared to what was previously identified in S288c. 26 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2016. ; https://doi.org/10.1101/076562doi: bioRxiv preprint 

https://doi.org/10.1101/076562


 

 14 

We found 31 (41.3%) of these unique pairs to be shared between strains or even between species with 1 

highly dynamic strain-sharing patterns, most (87.1%) of which cannot be explained by the strain 2 

phylogeny (Figure 5B and Supplementary data 6). This suggests a constant gain and loss process of 3 

subtelomeric duplication throughout evolutionary history. 4 

Given such highly dynamic nature of subtelomeric reshuffling, we investigated to what extent those 5 

orthologous subtelomeres could reflect the intra-species phylogeny. We measured the proportion of 6 

conserved orthologous subtelomeres in all strain pairs within the same species and performed hierarchical 7 

clustering accordingly (Figure 5C). While the clustering on S. paradoxus strains correctly recapitulated 8 

their true phylogeny, our parallel analysis in S. cerevisiae turned out to be very noisy, with only the 9 

relationship of the most recently diversified strain pair (DBVPG6044 vs. SK1) being correctly recovered. 10 

The fact that the distantly related European/Wine (DBVPG6765) and Sake (Y12) S. cerevisiae strains 11 

were clustered together indicates likely convergent subtelomere evolution during their respective 12 

domestication. The proportion of conserved orthologous subtelomeres between S. cerevisiae strains 13 

(56.3%-81.3%) is comparable to that between S. paradoxus strains (50.0%-81.3%), despite the much 14 

smaller diversification timescales of S. cerevisiae. Therefore, the contrasting result between the two 15 

species from our clustering analysis implies potentially more rapid subtelomeric reshuffling in S. 16 

cerevisiae than in S. paradoxus during their respective diversifications. Indeed, we found a 4.3-fold rate 17 

difference in subtelomere reshuffling between the two species (Wilcoxon rank sum test, p-value = 2.52E-18 

4; see Methods for details about rate estimation) (Figure 5D), which explains the substantial erosion of 19 

true phylogenetic signals in the subtelomere evolution of S. cerevisiae. Interestingly, the most recently 20 

diversified strain pairs in both species (DBVPG6044 vs. SK1 in S. cerevisiae and YPS138 vs. 21 

UFRJ50816 in S. paradoxus) showed exceptionally high subtelomeric reshuffling rates compared with 22 

the other strain pairs within the same species (the outliers in Figure 5D), suggesting possible accelerated 23 

subtelomere reshuffling in the incipient phase of strain diversification. The frequent reshuffling of 24 

subtelomeric sequences can have drastic impacts on subtelomeric gene content both qualitatively and 25 

quantitatively. For example, four genes (PAU3, ADH7, RDS1, and AAD3) were lost in the Sake S. 26 
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cerevisiae (Y12) due to a single chr08-L to chr03-R subtelomeric duplication event (Figure S8). 1 

Therefore, the more rapid subtelomere reshuffling in S. cerevisiae could have important functional 2 

implications. 3 

 4 

Non-canonical chromosome-end structures at native telomeres 5 

S. cerevisiae chromosome-ends are characterized by two telomere associated sequences: the core X- and 6 

Y'-elements (Louis 1995). The core X-element is present in almost all chromosome-ends, whereas the Y'-7 

element is highly variable in terms of both presence/absence and copy numbers across different 8 

chromosome-ends and strains. The typical structure of S. cerevisiae chromosome-ends can be 9 

summarized into two general types: 1) with a single core X-element but no Y’-elements and 2) with a 10 

single core X-element followed by one or several distal Y'-elements (Louis 1995). S. paradoxus 11 

chromosome-ends also contain core X- and Y’-elements (Liti et al. 2009b), but their detailed structures 12 

have not been systematically characterized in a genome-wide fashion due to the lack of complete 13 

assemblies. Across our 12 strains, most (~85%) chromosome-ends have one of the two typical structures 14 

previously characterized in S. cerevisiae but we also discovered several non-canonical structures that 15 

have not been described before (Table S13). For example, we found several examples of tandem 16 

duplications of the core X-element in both species. Such core X-element duplications are unlikely to be 17 

assembly artifacts given that we also detected them in the S. cerevisiae reference genome (chrVIII-L and 18 

chrXVI-R) with degenerated proximal copies. In most cases, the proximal duplicated copies of the core-19 

X element were degenerated but we also found two examples where intact duplicated copies were 20 

retained: the chrXII-R end in the Sake S. cerevisiae Y12 and the chrIII-L end in the European S. 21 

paradoxus CBS432. The latter case is especially striking, where six copies (including three complete 22 

ones) of the core X-element were tandemly arranged. Even more surprisingly, we discovered five 23 

chromosome-ends consisting of only Y'-element (one or more copies) but no core X-element, despite the 24 

importance of the core X-element in maintaining genome stability (Marvin et al. 2009a, 2009b). For 25 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2016. ; https://doi.org/10.1101/076562doi: bioRxiv preprint 

https://doi.org/10.1101/076562


 

 16 

example, the chrV-L ends in S. cerevisiae DBVPG6044 and SK1 have one and three Y'-elements 1 

respectively without any trace of the core X-elements. The discoveries of these non-canonical 2 

chromosome-end structures offer a new paradigm to investigate the functional role of the core X-3 

elements. 4 

 5 

Lineage-specific structural rearrangements and introgression in the S. paradoxus 6 

mitochondrial genomes 7 

The mitochondrial genome constitutes a natural genetic compartment that is replicated and transmitted 8 

independently from the nuclear genome. Despite its pivotal evolutionary and functional importance, 9 

sequencing and assembling the yeast mitochondrial genome has always been challenging due to its highly 10 

repetitive and AT-rich genome composition. Obtaining complete mitochondrial genome assemblies from 11 

our long-read sequencing gave us a great opportunity to investigate the structural dynamics of the 12 

mitochondrial genome with high resolution and accuracy. We found a high degree of collinearity in S. 13 

cerevisiae mitochondrial genomes for all pairwise comparisons, even between the most distantly related 14 

strains (e.g. DBVPG6044 vs. S288c) (Figure 6A). In contrast, the S. paradoxus mitochondrial genomes 15 

show lineages-specific structural rearrangements in several strains. The two Eurasian strains (CBS432 16 

and N44) share a transposition of the entire COX3-rnpB-rns segment, in which rns was further inverted 17 

either before or after the transposition (Figure 6B-D). Independent tandem duplications of the OLI1-18 

VAR1 segment and rnpB were found in the South American (UFRJ50816) and Hawaiian (UWOPS91-19 

917.1) S. paradoxus respectively (Figure 6E and Table S9). In addition, it seems that the COB gene was 20 

recently transposed to its current mitochondrial genomic position in S. cerevisiae and S. paradoxus prior 21 

to the divergence of the two species given the gene orders in the two outgroups. 22 

The phylogenetic tree inferred from the six one-to-one mitochondrial orthologs (ATP6, ATP8, COB, 23 

COX1, COX2 and COX3) deviates from the phylogeny based on nuclear genes, although the relationships 24 

between those most closely related strains (e.g. DBVPG6044 vs. SK1 and DBVPG6765 vs. S288c in S. 25 
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cerevisiae as well as CBS432 vs. N44 in S. paradoxus) are the same. The low topology consensus across 1 

different gene loci (normalized quartet score = 0.594) suggests a highly heterogeneous phylogenetic 2 

history of mitochondrial genes across different loci. Together with the drastically dynamic 3 

presence/absence pattern of mitochondrial group I and group II introns (Table S10), this supports the idea 4 

of extensive cross-strain recombination in yeast mitochondrial evolution (Wu et al. 2015a). According to 5 

this mitochondrial phylogeny, the Eurasian S. paradoxus lineage (CBS432 and N44) was clustered 6 

together with the seven S. cerevisiae strains before joining with the other S. paradoxus strains, which 7 

reinforces the argument for mitochondrial introgression from S. cerevisiae to the Eurasian S. paradoxus 8 

lineage (Wu and Hao 2015) (Figure 6E). In addition, we noticed that the COX3 gene in the South 9 

American S. paradoxus UFRJ50816 started with GTG rather than the typical ATG start codon in our 10 

assembly, which was further confirmed by the Illumina reads. This suggests either an adoption of an 11 

alternative nearby ATG start codon (e.g. the one 45 bp downstream) or a rare case of near-cognate start 12 

codon as used by bacteria (Blattner et al. 1997; Cole et al. 1998) and Candida yeast (Abramczyk et al. 13 

2003).  14 

 15 

Fully resolved structural rearrangements illuminate complex phenotypic traits 16 

Structural rearrangements are expected to account for a substantial fraction of phenotypic variation but 17 

the lack of complete assemblies have prevented a deep understanding of structural variation–phenotype 18 

associations. Here we used the CUP1 locus and ARR cluster as case studies to illustrate how the fully 19 

resolved structural rearrangements based on complete assemblies can illuminate complex phenotypic 20 

traits. The CUP1 gene encodes a copper scavenging short metallothionein that keeps the intracellular 21 

level of free copper extremely low and mediates copper tolerance. Across our 12 strains, this gene was 22 

tandemly amplified into four, seven, and 11 copies in three S. cerevisiae strains (DBVPG6765, Y12 and 23 

S288c respectively) while maintaining the ancestral single copy configuration in all the other strains 24 

(Figure 7A). Consistent with previous observations (Warringer et al. 2011), such copy number variation 25 
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matched well with the strain growth rates in high copper concentration conditions (CuCl2: 0.38 mM) 1 

(Figure 7B). In general, higher copy number of CUP1 translates into faster growth (i.e. shorter generation 2 

time) in copper, although Y12 with seven copies appears to grow slightly faster than S288c with 11 3 

copies (including one pseudogene copy), which could be explained by differences in the amplification 4 

segment and/or the overall genetic backgrounds. The ARR cluster contains three consecutive subtelomeric 5 

genes (ARR1, ARR2 and ARR3) that function collectively to provide arsenic resistance. Despite their 6 

tricky genomic locations (only a few kb from the core-X element), we successfully characterized the 7 

exact genomic arrangement of the ARR cluster in all the 12 strains (Figure 7C). Consistent with our 8 

previous estimates based on read mapping coverage (Bergström et al. 2014), the ARR cluster was 9 

duplicated in the European S. paradoxus CBS432 while completely lost in two S. cerevisiae (SK1 and 10 

UWOPS03-461.4) and two S. paradoxus (N44 and UWOPS91-917.1) strains (Figure 7C). Our growth 11 

rate assay confirmed the link between ARR cluster loss and extreme susceptibility to arsenic (3 mM 12 

arsenite, As[III]) (Figure 7D). Despite having two copies of the ARR cluster, CBS432 grew poorly in 13 

arsenic. Since no strongly deleterious mutation was detected in either gene or copy, the arsenic sensitivity 14 

of CBS432 should derive from its genetic background. The As[III] sensitivity of the South American S. 15 

paradoxus UFRJ50816 could potentially be explained by the pseudogenization of its ARR2, although it is 16 

only known to protect against pentavalent arsenic, As[V] (Mukhopadhyay et al. 2000). The genes 17 

immediately proximal to the ARR cluster are located at the chr16-R subtelomere in all the 12 strains, 18 

implying that this subtelomere should be the ancestral location for the ARR cluster. In the West African S. 19 

cerevisiae DBVPG6044, ARR became relocated to the chr03-R subtelomere. In the European S. 20 

paradoxus CBS432, the two duplicated ARR clusters were redistributed to the chr02-R and chr07-R 21 

subtelomeres respectively. In the two American S. paradoxus (YPS138 and UFRJ50816), the ARR cluster 22 

was shifted to the ch13-L subtelomere with an inverted orientation.  23 

To quantify how different genomic arrangements of the ARR cluster can affect fitness in arsenic (As[III]), 24 

we performed quantitative trait locus (QTL) mapping using 826 phased outbred lines (POLs) derived 25 

from an advanced intercross of the North American (YPS128) and West African (DBVPG6044) S. 26 
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cerevisiae strains (see Methods for details). The linkage analysis accurately mapped a large-effect QTL at 1 

the chr03-R subtelomere (the location of ARR in DBVPG6044), but no contribution to arsenic variation 2 

from the YPS128 ARR on the chr16-R subtelomere (Figure 7E). This profile is consistent with the 3 

relocation of an active ARR cluster to the chr03-R subtelomere in DBVPG6044 and the presence of 4 

deleterious mutations predicted to inactivate the ARR cluster in YPS128 (Cubillos et al. 2011; Bergström 5 

et al. 2014). The combined effect of genotype and copy number can be fully decomposed by knowing the 6 

correct subtelomere structure and segregation pattern (Figure 7F). 7 

 8 

Discussion 9 

The landscape of genetic variation is shaped by multiple evolutionary processes, including mutation, 10 

drift, recombination, gene flow, natural selection and demographic history. The combined effect of these 11 

different factors can vary considerably both across the genome and between species, resulting in different 12 

patterns of evolutionary dynamics. The complete genome assemblies that we generated for multiple 13 

representative strains from both domesticated and wild yeasts provide a valuable dataset to explore such 14 

patterns with unprecedented resolution. 15 

Considering the dynamics across the genome, it has been observed in many organisms (e.g. fruitfly 16 

(Anderson et al. 2008), Arabidopsis (Kuo et al. 2006) and human (Linardopoulou et al. 2005)) that 17 

eukaryotic subtelomeres usually exhibit exceptional variability in comparison with the internal 18 

chromosomal cores. The high evolutionary dynamics of subtelomeres are often manifested by rapid 19 

molecular evolution, extensive copy number variation (CNV), and rampant interchromosomal 20 

reshuffling, as previously showed in yeasts (Brown et al. 2010; Bergström et al. 2014; Louis and Haber 21 

1990; Fairhead and Dujon 2006; Anderson et al. 2015). Our whole genome comparison both within and 22 

between species corroborated all these previous findings and further highlighted the pronounced 23 

distinction between the cores and subtelomeres with a focus on structural genome evolution. In contrast 24 

to the evolutionarily static chromosomal cores with limited and mostly tractable rearrangement events, 25 
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subtelomeres showed extreme plasticity and a constant gain and loss of interchromosomal reshuffling, of 1 

which the detailed evolutionary history cannot be confidently reconstructed. Such ectopic reshuffling 2 

among different subtelomeres can substantially change the content and diversity of the gene repertoire in 3 

this highly variable region and even create novel recombinant genes with adaptive potentials (Anderson 4 

et al. 2015). Given that the subtelomeric genes are highly enriched in mediating interactions with external 5 

environments (e.g. stress response, nutrient uptake and catabolism, and metal/toxin transport) (Ames et 6 

al. 2010; Brown et al. 2010; Bergström et al. 2014), it is tempting to speculate that the accelerated 7 

subtelomeric evolution at both gene and structural level is at least partially a reflection of selection for 8 

evolvability and the capacity for fast adaptation to ecological changes. 9 

While the evolutionary dynamics across the genome is more related to the intrinsic properties of different 10 

genomic domains (e.g. cores vs. subtelomeres), external factors such as selection and demographic 11 

history hold the key roles in shaping lineage-specific genome dynamics. The ecological niches and recent 12 

evolutionary history of S. cerevisiae have been associated with human activities, with many strains 13 

isolated from human-associated environments like breweries, bakeries and even clinical patients (Liti 14 

2015). Consequently, both natural and artificial selection significantly influenced the genome evolution 15 

of these strains, resulting in improved alcoholic fermentation (Fay and Benavides 2005) and enhanced 16 

pathogenicity (Muller et al. 2011; Strope et al. 2015), which are adaptive for their respective niches. In 17 

addition to introducing novel selection schemes, human activities also help to promote migration, and 18 

consequently mixture and crossbreeding of S. cerevisiae strains from different geographical locations and 19 

ecological niches (Hyma and Fay 2013). Consistent with this notion, previous phylogenetic and 20 

population structure analyses on S. cerevisiae uncovered many mosaic strains with mixed genetic 21 

backgrounds (Liti et al. 2009a). In contrast, the wild-living S. paradoxus shows well-differentiated 22 

lineages with geographically defined population structure (Koufopanou et al. 2006; Liti et al. 2009a) and 23 

partial reproductive isolation between strains from different lineages (Sniegowski et al. 2002; Liti et al. 24 

2006). All currently identified S. paradoxus strains were isolated from natural habitats with no evident 25 

human interference, which provides an ideal control relative to S. cerevisiae to examine the influence of 26 
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human activities in shaping genome evolution. Here, we summarized the major differences in the 1 

evolutionary dynamics of these two species during their respective diversification (Figure 8). In nuclear 2 

chromosomal cores, S. cerevisiae strains show much lower rate of accumulating balanced structural 3 

rearrangements compared with S. paradoxus strains. This pattern is likely explained by the mixture and 4 

crossbreeding between different S. cerevisiae subpopulations during their recent association with human 5 

activities, which would considerably impede the fixation of balanced structural rearrangements in 6 

different subpopulations. In contrast, the geographical isolation of different S. paradoxus subpopulations 7 

would be favored for the fixation of balanced rearrangements in different subpopulations (Leducq et al. 8 

2016). As for unbalanced rearrangements in chromosomal cores, we observed an opposite pattern, in 9 

which the S. cerevisiae strains exhibit higher rate of accumulating such changes than their S. paradoxus 10 

counterparts. A strong association was further found between genes affected by unbalanced 11 

rearrangements and the cellular adaptation to metal ion stress, which collectively indicates a significant 12 

role of selection in shaping this pattern. Compared with S. paradoxus, S. cerevisiae strains are evolving 13 

under a much wider spectrum of selection regimes and thus will likely favor accumulating more adaptive 14 

changes in strains from different ecological niches. Consistent with this notion, the more rapid 15 

interchromosomal reshuffling in S. cerevisiae than in S. paradoxus is probably also a consequence of 16 

selection given the functional importance of subtelomeric genes in promoting adaptation. In both core 17 

and subtelomeres, we observed consistently higher rates of molecular evolution and CNV accumulation 18 

in S. cerevisiae strains, which provide further supports to this argument (Figure S5). In addition, we 19 

found that the mitochondrial genomes of the S. cerevisiae strains maintained high degrees of collinearity, 20 

whereas those of the S. paradoxus strains showed lineage-specific structural rearrangements and 21 

introgression, suggesting distinct mitochondrial evolution between the two species. Taken together, many 22 

of these observed differences between S. cerevisiae and S. paradoxus reveal the influence of human 23 

activities on structural genome evolution. 24 

 25 
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Materials and Methods 1 

Strain sampling, preparation and DNA extraction 2 

Based on previous population genomics surveys (Liti et al. 2009a), we sampled seven S. cerevisiae and 3 

five S. paradoxus strains (all in haploid form or homozygous diploids) to represent the main evolutionary 4 

lineages. Our strain sampling also includes the reference strains for S. cerevisiae (S288c) and S. 5 

paradoxus (CBS432) as well as another popular S. cerevisiae lab strain (SK1), which were also used for 6 

quality control of our sequencing, assembly, annotation and downstream analysis.  7 

All the strains were taken from our strain collection stored at -80°C and cultured on YPD plates. Single 8 

colony for each strain was picked and cultured in 5 mL YPD liquid at 30°C 220 rpm overnight. The DNA 9 

extraction was carried out using the MasterPure™ Yeast DNA Purification Kit (Epicentre, WI, USA) 10 

following the manufacturer's protocol. 11 

 12 

PacBio sequencing and raw assembly 13 

The sequencing center at the Wellcome Trust Sanger Institute (Cambridge, UK) performed library 14 

preparation and sequencing using the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing 15 

technology. The raw PacBio reads were generated by the PacBio RS II platform with the P6-C4 16 

chemistry and were processed and assembled using the standard SMRT analysis pipeline (v2.3.0). The de 17 

novo assembly was carried out following the standard hierarchical genome-assembly process (HGAP) 18 

assembly protocol with Quiver polishing (Chin et al. 2013).  19 

 20 

Assembly evaluation and manual refinement 21 

We retrieved the reference genome assemblies (including both the nuclear and mitochondrial genome) of 22 

S. cerevisiae (The Saccharomyces Genome Database (SGD) version of strain S288c) from SGD 23 
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(http://downloads.yeastgenome.org/sequence/S288C_reference/) (version R64-1-1). We obtained the 1 

reference nuclear genome assembly of S. paradoxus (strain CBS432) from the Saccharomyces Genome 2 

Resequencing Project (SGRP) data depository 3 

(ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/misc/para2/ref/genome.fa) and its mitochondrial 4 

genome assembly from NCBI Genbank (accession number: JQ862335).  5 

For each polished PacBio assembly, we first used RepeatMasker (v4.0.5) to soft-mask all the repetitive 6 

regions (option: -species fungi -xsmall -gff). The soft-masked assemblies were subsequently aligned to 7 

the reference genome using the nucmer program from the MUMmer (v3.23) package (Kurtz et al. 2004) 8 

for chromosome assignment. For most chromosomes, we have a single contig covering the entire 9 

chromosome. For the cases where assembly gaps occurred in the middle of chromosomes, we performed 10 

manual gap closing by referring to the assemblies that we generated in the pilot phase of this project. The 11 

only gap that we were unable to close is the highly repetitive rDNA array (usually consisting 100-200 12 

tandem copies) on chrXII. The S. cerevisiae reference genome used a 17,357 bp sequence of two 13 

tandemly arranged rDNA copies to represent this complex region. For our assemblies, we trimmed off the 14 

partially assembled rDNAs at this gap and re-linked the two contigs with 17,357 bp Ns to keep 15 

consistency.  16 

The mitochondrial genomes of the 12 strains were recovered by single contigs in the raw HGAP 17 

assemblies. We further circularized them and reset their starting position as the ATP6 gene using 18 

Circlator (v1.1.4) (Hunt et al. 2015).  19 

 20 

Illumina sequencing, reads mapping, and error correction 21 

In addition to the PacBio sequencing, we also sequenced each strain with deep Illumina paired-end 22 

sequencing (~200X-500X) at Institut Curie (Paris, France). We examined the raw Illumina reads via 23 

FastQC (v0.11.3) and performed adapter-removing and quality-based trimming by trimmomatic (v0.33) 24 

(Bolger et al. 2014) (trimming options: ILLUMINACLIP:adapters.fa:2:30:10 SLIDINGWINDOW:5:20 25 
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MINLEN:36). For each strain, the trimmed reads were mapped to the corresponding PacBio assemblies 1 

by BWA (v0.7.12) (Li and Durbin 2009). The resulting reads alignments were subsequently processed by 2 

samtools (v1.2) (Li et al. 2009), picard tools (v1.131) (http://broadinstitute.github.io/picard/) and GATK 3 

(v3.5-0) (McKenna et al. 2010). The Pilon pipeline (v1.12) (Walker et al. 2014) was further used to 4 

polish the PacBio assemblies by correcting remaining sequencing errors based on the Illumina reads 5 

alignments. The Pilon-corrected assemblies were used as the final assemblies for our downstream 6 

analysis. 7 

 8 

Sequencing error rate evaluation for the final PacBio assemblies 9 

Eight of our 12 strains have been previously sequenced using Illumina technology with moderate-to-high 10 

depth (Bergström et al. 2014). We retrieved the raw reads of this study and aligned them to our PacBio 11 

assemblies (both before and after Pilon correction) following the same protocol described above. The 12 

SNPs and Indels were called by FreeBayes (v1.0.1-2) (Garrison and Marth 2012) (option: -p 1) to assess 13 

the performance of Pilon correction and estimate the remaining error rate in our final assemblies. The raw 14 

SNP and Indel calls were further filtered by the vcffilter tool from vcflib 15 

(https://github.com/vcflib/vcflib) with the filter expression: "QUAL > 30 & QUAL / AO > 10 & SAF > 0 16 

& SAR > 0 & RPR > 1 & RPL > 1". 17 

 18 

Assembly completeness comparison for different annotation features 19 

We compared our S288c PacBio assembly with three published S. cerevisiae assemblies based on 20 

PacBio, Oxford Nanopore and Illumina MiSeq sequencing technologies respectively (Kim et al. 2014; 21 

Goodwin et al. 2015). We aligned these three assemblies as well as our S288c PacBio assembly to the S. 22 

cerevisiae reference genome using the nucmer program from the MUMmer (v3.23) package (Kurtz et al. 23 

2004). The nucmer alignments were filtered by delta-filter (from the same package) (option: -1). We 24 
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converted the output file to the “BED” format and use bedtools (v2.15.0) (Quinlan and Hall 2010) to 1 

calculate the intersection between our genome alignment and various annotation features (e.g. 2 

chromosomes, genes, retrotransposable elements, telomeres, etc) of the S. cerevisiae reference genome. 3 

The percent coverage of these annotation features by different assemblies was summarized accordingly.  4 

 5 

Centromeres annotation 6 

For S. cerevisiae, centromere annotation of the reference genome is available from SGD and the 7 

corresponding sequences were retrieved as the queries. For S. paradoxus, the query sequences were 8 

collected from three different studies (Kellis et al. 2003; Liti et al. 2009a; Bensasson 2011), which 9 

covered 15 centromeres. All these S. cerevisiae and S. paradoxus centromere queries were searched 10 

against our PacBio assemblies by Exonerate (v2.2.0) (Slater and Birney 2005) (options: --showvulgar no 11 

--showcigar no --showalignment no --showtargetgff yes --bestn 1). The chrVIII centromere in S. 12 

paradoxus was not annotated in any of those previous studies. For this centromere, we used Dr. 13 

Bensasson’s yeast centromere annotation script (available from GitHub: 14 

https://github.com/dbensasson/bensasson11) to perform de novo annotation based on consensus sequence 15 

profile of yeast centromeres. All annotated centromeres were further verified based on their flanking 16 

genes. Several chromosomes from the strain UWOPS03-461.4, UFRJ50816 and UWOPS91-917.1 are 17 

involved in large-scale interchromosomal rearrangements. These rearranged chromosomes were 18 

numbered based on the identity of the centromeres that they are containing. 19 

 20 

Annotation of the protein coding genes and tRNA genes 21 

For nuclear genes, we set up an integrative pipeline that combines three existing annotation tools to form 22 

an evidence-leveraged final annotation. First, we used the RATT package (Otto et al. 2011) to directly 23 

transfer the S. cerevisiae reference genome annotation to our annotated genome based on whole genome 24 
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alignment. The “RATT.config_euk” file shipped with RATT was used for our transfer. The seqret 1 

program from the EMBOSS package (Rice et al. 2000) was used for format conversion between the “gff” 2 

and “embl” formats. A custom Perl script was used to further convert the seqret’s gff output file to 3 

properly formatted gff3 file. Furthermore, we used the Yeast Genome Annotation Pipeline (YGAP) 4 

online pipeline (Proux-Wéra et al. 2012) to annotate our genome assemblies with default option (except 5 

the option “ordering scaffolds by size”). YGAP is a pipeline specifically designed for annotating yeast 6 

genomes based on gene sequence homology and synteny conservation curated in the Yeast Gene Order 7 

Browser (YGOB) database. A custom Perl script was used to convert the YGAP annotation output to gff3 8 

format while removing dubious open reading frames (ORFs) labeled by the YGAP pipeline. These 9 

dubious ORFs might be frameshifted or untranslable or overlapping with other ORFs. Also, we noticed 10 

that some ORFs annotated by YGAP might be out-of-frame (i.e. the annotated genomic coordinates went 11 

beyond the actual scaffold length) or redundant. These ORFs were further removed by our Perl script. 12 

Finally, we used the Maker pipeline (v2.31.8) (Holt and Yandell 2011) to perform de novo gene 13 

discovery with EST/proteome alignment support. For the Maker pipeline, repeatmasking was first 14 

performed by RepeatMasker (v4.0.5) with configuration options of “model_org=fungi” and 15 

“softmask=1”. Ab initio gene prediction was performed by SNAP (release 2013-11-29) (Korf 2004) and 16 

AUGUSTUS (v3.1.0) (Stanke et al. 2004) respectively with pre-trained gene prediction parameters. For 17 

SNAP, the pre-trained HMM parameter file was downloaded from GitHub 18 

(https://github.com/hyphaltip/fungi-gene-prediction-19 

params/blob/master/params/SNAP/saccharomyces_cerevisiae_S288C.hmm). For AUGUSTUS, we used 20 

the parameter file for Saccharomyces that shipped with AUGUSTUS. In complementary to ab initio gene 21 

prediction, the Maker pipeline also performs EST/protein alignment to further assess the automatically 22 

predicted gene models. For the EST data, we retrieved it from FungiDB 23 

(http://fungidb.org/common/downloads/release-3.2/Scerevisiae_/fasta/). For protein data, we combined 24 

the proteomes from several sources: the S. cerevisiae proteome from SGD 25 

(http://downloads.yeastgenome.org/sequence/S288C_reference/orf_protein/), the protein sequences of 26 
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characterized non-reference S. cerevisiae ORFs documented in SGD, the protein sequences of non-1 

reference S. cerevisiae ORFs identified in previous studies (Novo et al. 2009; Bergström et al. 2014; 2 

Song et al. 2015), the proteomes of S. paradoxus (strain CBS432), S. mikatae (strain IFO1815), S. 3 

kudriavzevii (strain IFO1802), S. kudriavzevii (strain ZP591), and S. bayanus var. uvarum (strain 4 

CBS7001) based on Scannell et al. (Scannell et al. 2011), the proteome of S. arboricolus (strain H6) 5 

based on Liti et al. (Liti et al. 2013), and the proteome of S. eubayanus (strain FM1318) based on Baker 6 

et al. 2015 (Baker et al. 2015). These EST and protein sequences were aligned with the PacBio genome 7 

assemblies using blastn and blastx respectively (both from the NCBI-BLAST+ package (v2.2.30+) 8 

(Camacho et al. 2009)) and further polished by exonerate (v2.2.0) (Slater and Birney 2005). Other custom 9 

settings that we used for the Maker pipeline include: “min_contig=10000, min_protein=30, 10 

split_hit=1500, single_exon=1, single_length=250 and correct_est_fusion=1”. The gene annotations 11 

produced by RATT, YGAP, and Maker together with the EST and proteome alignment evidence 12 

generated by Maker were further leveraged by EVidenceModeler (EVM) (Haas et al. 2008) to form a 13 

final integrative version of annotation. The annotation for the CUP1 and ARR cluster was further 14 

manually curated. Several genes with incomplete ORFs were also manually checked and labeled as 15 

pseudogenes if verified. In our final annotation results, ORFs overlapping with Ty retrotransposable 16 

elements, X-elements and Y’-elements were further removed. For each annotated protein-coding gene, 17 

the CDS and protein sequences were extracted using custom Perl script. We also annotated tRNA genes 18 

by tRNAscan-SE (v1.3.1) (Lowe and Eddy 1997) via the Maker pipeline. 19 

As for mitochondrial genomes, we performed the annotation by using MFannot 20 

(http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl). The exon-intron boundaries of 21 

each annotated gene were manually curated based on BLAST and the 12-way whole genome alignment 22 

generated by mVISTA (Frazer et al. 2004).  23 

 24 
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Annotation of the Ty retrotransposable elements 1 

To systematically annotate Ty retrotransposable elements, we adopted a previously described custom 2 

library that contains S. cerevisiae Ty1-Ty5 and S. paradoxus Ty3p (Carr et al. 2012) to feed into 3 

RepeatMasker (v4.0.5) as custom library for Ty elements identification. REannotate (Pereira 2008) 4 

(v17.03.2015) was subsequently used to process the RepeatMasker output with options “-g -k <clustalw> 5 

-f <fuzzy_file1> -d 10000 -t ” for Ty defragmentation. We defined the fuzzy file to treat Ty1-LTR and 6 

Ty2-LTR equivalently in the defragmentation process due to their high sequence identity and frequent 7 

recombination. The identified full-length Ty1 and Ty2 were manually curated based on their sequence 8 

alignment. We performed this Ty annotation in a two-pass manner, in which the internal sequences and 9 

LTRs of the representative full-length S. paradoxus Tys annotated in the first pass were further added 10 

into our Ty library before initiating the second pass. All the truncated Tys and soloLTRs were further 11 

curated based on the blastn search against our Ty library (cutoffs: identity >= 70%, aln_length >= 100 12 

bp). 13 

 14 

Annotation of the core X-elements 15 

We retrieved core X-element sequences for the S. cerevisiae reference genome according to the 16 

annotation from SGD and aligned them using MUSCLE (v3.8.31) (Edgar 2004). Based on the alignment, 17 

we built an HMM profile for the core X-element using the hmmbuild program (option: --dna) from the 18 

HMMER package (v3.1b2) (Eddy 1998). This HMM profile was searched against our PacBio assemblies 19 

by nhmer (from the same package) (options: -E 1e-3 --tblout) to identify the core X-element. 20 

 21 

Annotation of the Y’-elements  22 

We retrieved the Y’-element sequences of the S. cerevisiae reference genome based on the feature 23 

annotation from SGD. There are two major classes of Y’-element for S. cerevisiae, the short version and 24 
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the long version, differed by several large indels (Louis and Haber 1992). We aligned all the retrieved Y’-1 

element sequences by MUSCLE (v3.8.31) (Edgar 2004). Based on this alignment, we selected the chrIX-2 

L Y’-element as the representative query for our search. The search was performed by BLAT (Kent 3 

2002) (option: -maxIntron=1000) with subsequent filtering by pslCDnaFilter (options: -minId=0.9 -4 

minAlnSize=1000 -bestOverlap -filterWeirdOverlapped). 5 

 6 

Orthology group identification 7 

For nuclear protein coding genes, we used proteinortho (v5.11) (Lechner et al. 2011) to identify gene 8 

orthology for all of our sequenced strains together with the well-annotated S. cerevisiae reference 9 

proteome from SGD (with dubious ORFs excluded) as well as the proteomes of other six sensu stricto 10 

species: S. mikatae (strain IFO1815T), S. kudriavzevii (strain IFO1802T), S. kudriavzevii (strain ZP591), 11 

S. arboricolus (strain H6), S. eubayanus (strain FM1318) and S. bayanus var. uvarum (strain CBS7001). 12 

The orthology identification took into account both sequence similarity and synteny conservation (the 13 

PoFF feature (Lechner et al. 2014) of proteinortho). The SGD systematic gene names were further 14 

mapped to our annotated protein coding genes according to the identified orthology.  15 

 16 

Phylogenetic reconstruction  17 

For nuclear genes, we performed the phylogenetic analysis based on those one-to-one orthologs that are 18 

shared across all 18 strains (seven S. cerevisiae + five S. paradoxus + six outgroups) using two 19 

complementary approaches (the concatenated sequence tree approach and the consensus gene tree 20 

approach). For each ortholog, we used MUSCLE (v3.8.1551) (Edgar 2004) to generated protein sequence 21 

alignment and used PAL2NAL (v14) (Suyama et al. 2006) to build codon alignment based on the 22 

corresponding protein sequence alignment. For the concatenated sequence approach, we generated a 23 

concatenated codon alignment of all individual orthology groups and fed it into RAxML (v8.2.6) 24 
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(Stamatakis 2014) for maximum likelihood (ML) tree building. The entire codon alignment was further 1 

partitioned by the first, second and third codon positions. The GTRGAMMA model was used for 2 

phylogenetic inference. The rapid bootstrapping method built in RAxML was used to assess the stability 3 

of internal nodes (option: -# 100 for 100 rapid bootstrap searches). The final ML tree was visualized in 4 

FigTree (v1.4.2) (http://tree.bio.ed.ac.uk/software/figtree/). For the consensus gene tree approach, we 5 

built individual gene trees with RAxML using the method as we used for the concatenated tree. 6 

Subsequently, we used ASTRAL (v4.7.12) (Mirarab et al. 2014) to estimate consensus species tree based 7 

on the topology of individual gene trees. The normalized quartet score was calculated to assess the 8 

reliability of the final species tree given individual gene trees. For mitochondrial genes, we performed the 9 

phylogenetic analysis based on the six one-to-one orthologous genes (ATP6, ATP8, COB, COX1, COX2 10 

and COX3) following the same protocol.  11 

 12 

Relative rate test 13 

To test the rate heterogeneity between S. cerevisiae and S. paradoxus in molecular evolution, we 14 

constructed 3-way sequence alignment by sampling one strain for each species together with S. mikatae 15 

as the outgroup. The sequences were drawn from the concatenated protein alignment built from one-to-16 

one orthologs in the nuclear genome. The extracted sequences were fed into MEGA (v6.06-mac) 17 

(Tamura et al. 2013) for Tajima’s relative rate test (Tajima 1993). We conducted this test for all possible 18 

S. cerevisiae versus S. paradoxus strain pairs. 19 

 20 

Molecular dating 21 

Since no yeast fossil records can be used for reliable calibration, we performed the molecular dating 22 

analysis based on a relative time scale. We used the phylogenetic tree constructed from one-to-one 23 

orthologs in the nuclear genome as the input and performed least-square based fast dating with LSD (To 24 
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et al. 2016) (options: -c -v -s). We specified S. bayanus var. uvarum CBS7001 and S. eubayanus FM1318 1 

as outgroups for this analysis. Based on the resulting chronogram, we further summed up the lengths of 2 

all branches in the corresponding species-specific clade as the cumulative diversification time for the S. 3 

cerevisiae and S. paradoxus strains respectively. 4 

 5 

Conserved synteny blocks identification 6 

We used the SynChro program from the CHROnicle package (version: January 2015) (Drillon et al. 7 

2013, 2014) to identify conserved synteny blocks. We prepared the input files for SynChro with custom 8 

Perl scripts to provide information about various annotated features (centromere, protein-coding genes, 9 

tRNAs, and Tys) together with the genome assembly and proteome sequences. SynChro subsequently 10 

performed all possible pairwise comparisons to identify synteny blocks shared in the given strain pair. 11 

Multiple plots were also generated by SynChro for easy visualization of the identified synteny blocks. 12 

 13 

Subtelomere definition and chromosome partitioning 14 

Yeast subtelomeres are known for a few general properties such as low gene density, low synteny 15 

conservation, and silent chromatin state. An often-used definition is 20-30 kb from the chromosome-16 

ends. However, this definition seems arbitrary in a sense that it treats all subtelomeres indiscriminately. 17 

In this study, we defined yeast subtelomeres based on the change of gene synteny conservation profile 18 

across the 12 strains. For each chromosome arm, we examined the syntenic blocks shared across all the 19 

12 strains and used the most distal syntenic blocks to define the distal boundary for the chromosomal 20 

cores (Table S11). In parallel, we defined the proximal boundary of the chromosome-end region for this 21 

chromosome arm based on the first occurrence of yeast telomere associated sequences (i.e. core X- and 22 

Y’-element). The region between these two boundaries was defined as the corresponding subtelomere 23 

with 400 bp interstitial transition zones on both sides (Figure S3). Each defined subtelomere was named 24 
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according to the ancestral chromosome identity of the core region that it attaches to. 1 

 2 

Identification of balanced and unbalanced structural rearrangements 3 

We identified balanced genome rearrangements (inversion, translocation, and transposition) by the 4 

ReChro from the CHROnicle package (version: January 2015) (Drillon et al. 2013, 2014). We set the 5 

synteny block stringency parameter delta=1 for the main analysis. A complementary run was performed 6 

with delta=0 to identify single gene inversions. As for unbalanced genome rearrangements (large 7 

insertion, deletion and duplication), we first generated whole genome alignment for every strain pair by 8 

nucmer (Kurtz et al. 2004) (options: -maxmatch -c 500) and submitted the results to the Assemblytics 9 

web server (http://assemblytics.com/) (Nattestad and Schatz 2016) for identifying all potential insertions, 10 

deletions and duplications/contractions in the corresponding pairwise comparison. All candidates 11 

identified by Assemblytics were further compared with our gene annotation by bedtools intersect 12 

(Quinlan and Hall 2010) (options: -wo -F 0.9) to only keep those candidates that are overlapping with 13 

protein coding genes. All post-filtered balanced and unbalanced structural rearrangements were manually 14 

checked with chromosome-scale dotplots using Gepard (v1.30) (Krumsiek et al. 2007) for final 15 

verification. Here we only focused on those structural rearrangements occurred in core regions since the 16 

rampant ectopic subtelomeric reshuffling would introduce considerable noise into our synteny-based 17 

detection. All verified core-region rearrangements were mapped to the phylogeny of the 12 strains based 18 

on the maximum parsimony principle. 19 

 20 

Gene ontology analysis 21 

The CDS sequences of all SGD reference genes (with dubious genes excluded) were BLAST against 22 

NCBI non-redundant (nr) database using blastx (E-value cutoff = 1E-3) and further annotated by 23 

BLAST2GO (v.3.2) (Conesa et al. 2005; Götz et al. 2008) to generate gene ontology (GO) mapping for 24 
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the genome-wide background gene set. For all the genes involved in unbalanced structural 1 

rearrangements, their corresponding orthologs in the SGD reference gene set (when available) was used 2 

to compile a non-redundant test gene set. We performed Fisher’s exact test (Fisher 1922) to detect 3 

significantly enriched GO terms of our test gene set relative to the genome-wide background. False 4 

discovery rate (FDR) (cutoff: 0.05) (Benjamini and Hochberg 1995) was used for multiple correction. 5 

 6 

Molecular evolutionary rate and CNV estimation 7 

For the one-to-one orthologs in each strain pair, we calculate synonymous substitution rate (dS), 8 

nonsynonymous substitution rate (dN) and nonsynonymous-to-synonymous substitution rate ratio 9 

(dN/dS) using the yn00 program from the PAML package (v4.8a) (Yang 2007). Yang & Nielsen (2000) 10 

model (Yang and Nielsen 2000) was used for this calculation. As for measuring copy number variation 11 

(CNV), we calculated the proportion of genes involved in CNV (i.e. those are not one-to-one orthologs) 12 

in the two compared strains. We denoted this measurement as PCNV, a quantity analogous to the P-13 

distance in sequence comparison. The Poisson distance correction was further applied to account for 14 

multiple changes at the same gene loci. The Poisson corrected distance DCNV can be given as 𝐷!"# =15 

−ln  (1 − 𝑃!"#). Then the CNV accumulation rate (RCNV) can be calculated as 𝑅!"# = 𝐷!"#/2𝑇, in 16 

which T is the diversification time of the two compared strains obtained from our molecular dating 17 

analysis. The calculation values for dN/dS, CNV proportion, and CNV accumulation rate were further 18 

summarized by “core genes” and “subtelomeric genes” based on our genome partitioning described 19 

above. 20 

 21 

Subtelomeric homology search 22 

For each defined subtelomeric region, we hard masked all the Ty-related features (full-length Ty, 23 

truncated Ty and Ty soloLTRs) involved and then used the masked sequence to search against all the 24 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2016. ; https://doi.org/10.1101/076562doi: bioRxiv preprint 

https://doi.org/10.1101/076562


 

 34 

other subtelomeric regions to detect shared sequence homology. The search was performed by BLAT 1 

(Kent 2002) (options: -noHead -stepSize=5 -repMatch=2253 -minIdentity=80 -t=dna -q=dna -2 

mask=lower -qMask=lower). We further used pslCDnaFilter (options: -minId=0.9 -minAlnSize=1000 -3 

bestOverlap -filterWeirdOverlapped) to filter out trivial signals and used pslScore to calculate sequence 4 

alignment score for those filtered BLAT matches. Since the alignment scores for a given subtelomere pair 5 

are not exactly symmetrical, we considered the average score between the two ordered pairs in such 6 

cases. Such subtelomeric homology search was carried out for both within-strain and cross-strain 7 

comparison and subtelomere pairs with strong homology (BLAT alignment score >= 5000 and sequence 8 

identity >= 90%) were considered.  9 

 10 

Hierarchical clustering analysis and reshuffling rate calculation for orthologous 11 

subtelomeres 12 

For all the strains within the same species, we performed pairwise comparisons of their subtelomeric 13 

regions to identify conserved orthologous subtelomeres in any given strain pairs based on homology 14 

search described above. For each strain pair, the proportion of conserved orthologous subtelomeres was 15 

calculated as a measurement of the overall subtelomere conservation between the two compared strains. 16 

Such measurements were converted into a distance matrix, based on which the hierarchical clustering 17 

analysis was further performed by R (v3.1) (R Developement Core Team 2015). We measured the 18 

reshuffling rate of orthologous subtelomeres (Rreshuffling) similarly to how we calculated the CNV 19 

accumulation rate (RCNV). For any given strain pair, we first calculated the proportion of the non-20 

conserved orthologous subtelomeres in this strain pair as Preshuffling, then the subtelomeric reshuffling rate 21 

Rreshuffling can be calculated as 𝑅!"#!!""#$%& = −ln  (1 − 𝑃!"#!!""#$%&)/2𝑇, in which T is the diversification 22 

time of the two compared strains. 23 

 24 
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Phenotyping the growth rates of yeast strains in copper- and arsenite-rich medium 1 

The homozygous diploid versions of the 12 strains were pre-cultured in Synthetic Complete (SC) 2 

medium for overnight to saturation. To examine their conditional growth rates in copper- and arsenite-3 

rich environment, we mixed 350 µl conditional media (CuCl2 (0.38 mM) and arsenite (As[III], 3 mM) for 4 

the two environment respectively) with 10 µl saturated culture to the wells of Honeycomb plates 5 

(9502550, Bioscreen). Oxygen permeable films (Breathe-easy, BEM-1, Diversified Biotech) were placed 6 

on top of the plates to enable a uniform oxygen distribution throughout the plate. The automatic screening 7 

was done with Bioscreen analyser C (Thermic Labsystems Oy, Finland) at 30°C for 72 hours, measuring 8 

in 20 minute intervals using a wide-band filter at 420-580 nm (Warringer and Blomberg 2003). Growth 9 

data pre-processing and phenotypic trait extraction was performed by PRECOG (Fernandez-Ricaud et al. 10 

2016).  11 

 12 

Linkage analysis in diploid S. cerevisiae hybrids 13 

A total of 826 phased outbred lines (POLs) were constructed and phenotyped in the same fashion as 14 

previously described (Hallin et al. 2016). Briefly, the strains YPS128 and DBVPG6044 were mated and 15 

advanced intercrossed lines were created by successive sporulation and crossing. The resulting haploid 16 

advanced intercrossed lines were sequenced and further crossed in a number of combinations to yield the 17 

826 POLs used for the analysis. The POL diploid genotypes can be accurately inferred from the haploid 18 

advanced intercrossed lines. Phenotyping of the POLs, each with four replicates, was performed using 19 

Scan-o-Matic (Zackrisson et al. 2016) on solid agar plates (0.14% Yeast Nitrogen Base, 0.5% ammonium 20 

sulphate, 2% (w/v) glucose and pH buffered to 5.8 with 1% (w/v) succinic acid, 0.077% Complete 21 

Supplement Mixture (CSM, Formedium™), 2% agar) supplemented with one out of four different 22 

arsenite concentrations (0, 1, 2, and 3mM). Using the deviations between the POLs and their estimated 23 

parental as phenotypes to combat population structure issues (Hallin et al. 2016), QTLs were mapped 24 

using the scanone() function in R/qtl (Broman et al. 2003) with the marker regression method. 25 
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Figure 1. Complete genome assemblies and phylogenetic framework. (A) Dotplot comparison between the S. cerevisiae reference genome 2 
(strain: S288c; version: SGD R64-1-1) (X-axis) and our S288c PacBio assembly (Y-axis). Sequence homology signals were depicted in red 3 
(forward match) or blue (reverse match). The two insets show the zoomed-in plot for chromosome III (chrIII) and the mitochondrial genome 4 
(chrmt) respectively. The three black arrows indicate the Ty-containing regions (containing 5 full-length Ty1) missing in the S. cerevisiae 5 
reference assembly. (B) Dotplot for the comparison between the S. paradoxus reference genome (strain: CBS432) (X-axis) and our CBS432 6 
PacBio assembly (Y-axis), color coded as in panel A. The two insets show the zoomed-in plot for chromosome 04 (chr04) and the mitochondrial 7 
genome (chrmt) respectively. The black arrow indicates the misassembly on chr04 in the S. paradoxus reference genome. (C-D) Cumulative 8 
sequence length of different annotated genomic features relative to the overall size of the de novo assembled nuclear genomes (panel C) and 9 
mitochondrial genomes (panel D). (E) The phylogenetic relationship of the seven S. cerevisiae strains (highlighted in light blue) and five S. 10 
paradoxus strains (highlighted in light red) sequenced in this study. Six strains from other closely related Saccharomyces sensu stricto species 11 
were used as outgroups. The maximum likelihood (ML) tree is based on the concatenated protein sequence matrix of 4,531 one-to-one orthologs 12 
across these 18 strains. All the internal nodes have 100% fast-bootstrap support. The inset shows the detailed relationship of the seven S. 13 
cerevisiae strains using cladogram. 14 
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 1 
Figure 2. Explicit chromosome partitioning for nuclear chromosomes. In this illustrated example, we partitioned the left arm of chromosome 2 
1 (chrI-L) into the core (light green), subtelomere (light yellow) and chromosome-end (pink) based on synteny conservation and yeast telomere 3 
associated sequences (the core X- and Y’-elements). The cladogram (left side) depicts the phylogenetic relationship of the 12 strains, while gene 4 
maps (right side) illustrate syntenic conservation in the core region with gene names within syntenic block underlined. Genes are colored in light 5 
orange, Ty-related features (all soloLTRs in the plotted region) in light purple, core X-elements, Y’-elements and TG1-3-repeats are shown in red, 6 
yellow and green respectively. 7 
 8 

 9 
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Figure 3. Structural rearrangements in the nuclear chromosome cores. (A) Balanced (left side) and unbalanced (right side) structural 2 
rearrangements occurred along the evolutionary history of the 12 strains. (B) The six clustered inversions on chrVII of the South American S. 3 
paradoxus UFRJ50816. (C) Genome organization of the strains UWOPS03-461.4, UFRJ50816 and UWOPS91-917.1 relative to that of S288c. 4 
The strain S288c is free from large interchromosomal rearrangement, and could therefore represent the ancestral genome organization. White 5 
diamonds indicate centromere position. (D) Dotplots showing tandem duplications of the CUP1-RSC30 locus in S288c, DBVPG6765, and Y12. 6 
The genic regions of CUP1 and RSC30 gene are highlighted in red. 7 
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 2 
Figure 4. Subtelomere length plasticity and structural rearrangements. (A) Length variation of the 32 orthologous subtelomeres across the 12 3 
strains. The orthologous subtelomeres are assigned based on the ancestral chromosomal identity of the core regions that they are attached to. (B) 4 
Dotplot for the chr15-R subtelomere comparison between the S. cerevisiae DBVPG6765 and S288c. The much longer DBVPG6765 chr15-R 5 
subtelomere is explained by a previously reported 65-kb eukaryote-to-eukaryote horizontal gene transfer (HGT) event. (C) Dotplot for the chr07-6 
R subtelomere comparison between the S. paradoxus CBS432 and N44. The much longer chr07-R subtelomere in CBS432 is explained by a 7 
series of tandem duplications of the MAL31-like and MAL33-like genes and an addition of the ARR-containing segment from the ancestral chr16-8 
R subtelomere. (D) Dotplot for the chr15-L subtelomere comparison between the S. paradoxus UFRJ50816 and YPS138. The much longer chr15-9 
L subtelomere in UFRJ50816 is explained by the relocated subtelomeric segments from the ancestral chr10-L and chr03-R subtelomeres 10 
respectively. (E) Dotplot for the chr03-R subtelomere comparison between the S. paradoxus UFRJ50816 and YPS138 reveals an inversion 11 
occurred at the HMR locus in UFRJ50816. (F) Dotplot for the chr03-R subtelomere comparison between the S. paradoxus CBS432 and N44 12 
reveals an inversion occurred at an MAL11-like locus in CBS432. Please note that the region coordinates for B-F are based on the extracted 13 
subtelomeric regions rather than the full chromosomes.  14 
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Figure 5. Evolutionary dynamics of subtelomeric duplications. (A) An example of subtelomeric duplication blocks shared among the chr01-L, 2 
chr01-R and chr08-R subtelomeres in S. cerevisiae S288c. The grey blocks denote their shared homologous regions with >= 90% nucleotide 3 
sequence identity. (B) Subtelomeric homology signal shared across the seven S. cerevisiae strains, the five S. paradoxus strains and all the 12 4 
strains (from left to right respectively). For each pairwise subtelomere combination, the number of strains showing strong sequence homology 5 
(BLAT score >= 5000 and identity >= 90%) for this specific subtelomere-pair was counted and visualized using heatmaps. (C) Hierarchical 6 
clustering based on proportion of conserved orthologous subtelomeres in cross-strain comparisons within S. cerevisiae and within S. paradoxus 7 
respectively. (D) Subtelomere reshuffling rates within S. cerevisiae (Sc-Sc) and within S. paradoxus (Sp-Sp). The y-axis is in a log-10 scale.  8 
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Figure 6. Comparative mitochondrial genomics. (A) Pairwise comparison for the mitochondrial genome of S288c and DBVPG6044 from S. 2 
cerevisiae. (B) Pairwise comparison for the mitochondrial genome of CBS432 and YPS138 from S. paradoxus. The transposition of COX3 and 3 
the inversion of rns are highlighted in the plot. (C) Pairwise comparison for the mitochondrial genome of S. cerevisiae S288c and S. paradoxus 4 
CBS432. The transposition of COX3 and the inversion of rns are highlighted in the plot. (D) Pairwise comparison for the mitochondrial genome 5 
of S. cerevisiae S288c and S. paradoxus YPS138. (E) Protein-coding gene arrangement in the mitochondrial genome across the 12 sampled 6 
strains. The phylogenetic tree shown on the left is based on the concatenated protein sequence of the six one-to-one mitochondrial genes (ATP6, 7 
ATP8, COB, COX1, COX2, and COX3). The numbers at the internal nodes are the rapid bootstrap value showing statistical supports for the 8 
corresponding node. The detailed gene arrangement in each strain is shown on the right. 9 
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 2 
Figure 7. Structural rearrangements account for complex phenotypic variation. (A) Copy number and gene arrangement of the CUP locus 3 
across the sequenced strains. The asterisk on the copy number denotes the involvement of pseudogene. (B) Generation time of the 12 strains in 4 
high copper concentration condition correlates with CUP1 copy number. (C) Copy number and gene arrangement of the ARR cluster. The asterisk 5 
on the copy number denotes the involvement of pseudogene. The subtelomere location of the ARR cluster is highly variable. (D) Generation time 6 
of the 12 strains in arsenic condition. (E) The rearrangement that relocates the ARR cluster to the chr03-R subtelomere in the West African S. 7 
cerevisiae DBVPG6044 is consistent with the QTL mapping by linkage analysis. This analysis was performed using the recently described 8 
phased outbred lines (POLs) technology (Hallin et al. 2016) derived from the North American (YPS128) and West African (DBVPG6044) S. 9 
cerevisiae. (F) Phenotypic distribution of 826 POLs for generation time in arsenic condition partitioned for genotype positions at the chr03-R and 10 
chr16-R subtelomere and inferred copies of ARR clusters (underneath the plot). 11 
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 5 
Figure 8. Contrasting evolutionary dynamics across the genome and between species. The evolutionary dynamics of S. cerevisiae and S. 6 
paradoxus during their respective diversifications are summarized with regard to molecular evolution (dN/dS), copy number variation (CNV), 7 
balanced and unbalanced structural rearrangements. Note that CNV is the result of unbalanced structural rearrangements.  8 
 9 
 10 
 11 

 12 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2016. ; https://doi.org/10.1101/076562doi: bioRxiv preprint 

https://doi.org/10.1101/076562


 

 54 

 1 
Figure S1. Percentage of genomic features annotated in the S. cerevisiae reference genome covered by different S. cerevisiae assemblies. 2 
Our PacBio assembly (strain S288c, underscored) shows all-around best completeness when compared with other S. cerevisiae assemblies from 3 
previous studies (Kim et al. 2014; Goodwin et al. 2015) using Illumina MiSeq (strain W303), PacBio (strain 9464), and Oxford Nanopore (strain 4 
W303) technologies. The strain W303 and 9464 sequenced by previous studies are phylogenetically very close to S288c. The difference in 5 
assembly completeness is especially pronounced for repetitive features such as those related to telomeres. 6 
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 1 
Figure S2. Molecular dating for the evolutionary history of the Saccharomyces sensu stricto yeasts. The number at each internal node 2 
denotes the corresponding diversification or divergence time in relative measurement. The scale at the bottom denotes the relative time frame. 3 
The S. bayanus var. uvarum strain CBS7001 and S. eubayanus strain FM1318 were not included in this plot because they were used as outgroups 4 
for this analysis. 5 
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 5 
Figure S3. Synonymous substitution rates (dS) in both within- and cross-species comparisons. Three comparison scales were examined: 6 
within S. cerevisiae (Sc-Sc), within S. paradoxus (Sp-Sp) and between the two species (Sc-Sp). 7 
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 13 
Figure S4. Natural variation of chromosome-end structures. The chromosome-end structures list here are based on Table S13. Numbers in 14 
parenthesis denotes the copy number of X- or Y’-elements that the corresponding chromosome-end structure could have.  15 
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 5 
 6 
Figure S5. Pronounced contrasts between cores and subtelomeres in evolutionary dynamics. Nonsynonymous to synonymous substitution 7 
rate ratios (dN/dS), proportions of genes involved in copy number variation (CNV), and accumulation rates of CNV in both cores and 8 
subtelomeres were shown in A-C. Three comparison scales were examined: within S. cerevisiae (Sc-Sc), within S. paradoxus (Sp-Sp) and 9 
between the two species (Sc-Sp). The y-axes for proportions of genes involved in CNV (B) and accumulation rates of CNV (C) are in log-10 10 
scales.  11 
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 13 
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 4 
Figure S6. Naming rationale of the subtelomeric region based on its ancestral identity to account for large interchromosomal 5 
rearrangements occurred in the Malaysian S. cerevisiae UWOPS03-461.4 and the South American and Hawaiian S. paradoxus 6 
(UFRJ50816 and UWOPS91-917.1 respectively). In this example, the current chrXI (named based its centromere) of UWOPS03-461.4 contains 7 
material from both ancestral chr07 and chr11 due to a large interchromosomal rearrangement. We used grey blocks to denote the homologous 8 
relationship of different section of the current UWOPS03-461.4 chrXI relative to the ancestral chr07 and chr11. 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2016. ; https://doi.org/10.1101/076562doi: bioRxiv preprint 

https://doi.org/10.1101/076562


 

 60 

 1 
 2 
 3 
 4 
 5 

 6 
 7 
Figure S7. Detailed gene maps explaining the three cases of subtelomere size expansion. These three cases (A, B and C) correspond to Figure 8 
4B, 4C, and 4D respectively. 9 
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Figure S8. Gene loss due to a subtelomeric duplication event in the chr03-R subtelomere of the S. cerevisiae strain Y12. Four genes (PAU3, 12 
ADH7, RDS1, and AAD3) (highlighted in red) in the ancestral chr03-R (displayed here based on S288c) were lost in Y12 due to the subtelomeric 13 
duplication event from chr08-L subtelomere. Homologous regions with sequence identity >90% were highlighted in grey blocks. 14 
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