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Abstract

Brain Computer Interface (BCI), a direct pathway between the human brain
and computer, is one of the most pragmatic applications of EEG signal. The
electroencephalograph (EEG) signal is one of the monitoring techniques to ob-
serve brain functionality. Mental Task Classification (MTC) based on EEG
signals is a demanding BCI. Success of BCI system depends on the efficient
analysis of these signal. Empirical Mode Decomposition (EMD) is one of filter
based heuristic technique which is utilized to analyze EEG signal in recent past.
There are several variants of EMD algorithms which have their own merits and
demerits. In this paper, we have explored three variant of EMD algorithms
named Empirical Mode Decomposition (EMD),Ensemble Empirical Mode De-
composition (EEMD) and Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) on EEG data for MTC-based BCI. Features
are extracted from EEG signal in two phases; in the first phase, the signal is
decomposed into different oscillatory functions with the help of different EMD
algorithms and eight different parameters (features) are calculated for the each
function for compact representation in the second phase. These features are
fed up into Support Vector Machine (SVM) classifier to classify the different
mental tasks. We have formulated two different types of MTC, the first one
is binary and second one is multi-MTC. The proposed work outperforms the
existing work for both binary and multi mental tasks classification.

Index terms— Brain Computer Interface, Mental Tasks Classification, Feature
Extraction, Empirical Mode Decomposition, Electroencephalograph.
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1 Introduction

Human brain has the capability to distinguish two or more different tasks without
much effort. In literature, most of the research works have been suggested to distin-
guish between two different tasks at a given instant of time; a few research works deal
with multitask classification (Anderson et al., 2011; Donoghue, 2002; Li et al., 2014;
Palaniappan et al., 2002; Wang et al., 2012; Zhang et al., 2010) . There is a need of a
multiple mental task classification system that can distinguish more than two mental
tasks at a given instance of time. Such a BCI system is known as the multi-class
mental task classification system. As the number of chosen classes grows, it becomes
more difficult to classify a test sample correctly. The computational complexity of
the multi-class problem is much higher in comparison to a binary class problem.

The amplitude of the captured EEG signals is low. Hence, the signal in its raw
form is not helpful to distinguish multiple mental tasks at a given time. Given these
facts, classification of multiple mental tasks is considered to be a challenging problem.
However, limited BCI models (Li et al., 2014; Palaniappan et al., 2002; Zhang et al.,
2010) have been proposed to distinguish more than two tasks at a given instance of
time. Therefore in this study, we have formulated problem for the multi mental task
as well as binary mental task classification. One versus rest approach based support
vector machine (SVM) is used as a multi mental class classifier to build the decision
model. The overall flow chart of proposed model has been shown in Figure 1. Rest of

Figure 1: Schematic flow chart of the proposed model for Mental Task Classification

the paper is organized as follows: In section 2, the state of art of feature extraction
for BCI as well as multi-class BCI is given. Section 3 contains the brief description of
feature extraction. Experimental data and the related discussion are given in section
4, and finally section 5 draws the conclusion.

2 Related Works

In literature, various feature extraction techniques have been studied and suggested
for BCI (Bashashati et al., 2007). These feature extraction techniques can be grouped
into three major categories: (i) Temporal methods (ii) Frequency domain methods
and (iii) hybrid of temporal and frequency domain methods.
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The temporal methods are predominantly adaptive to describe neurophysiological
signals with an accurate and specific time information. The temporal variations of
the signal are characterized by the features in temporal method. In time domain,
amplitude of the signal or statistics measures like absolute mean, standard deviation
and kurtosis of the signal are used to characterize EEG signal(Bostanov, 2004; Hjorth,
1970; Motamedi-Fakhr et al., 2014; Vidaurre et al., 2009).

It is known that EEG signals consist of a set of explicit oscillations, which are
known as rhythms. Corresponding to different mental tasks, different rhythms are
associated with these EEG signals (Canolty and Knight, 2010; Keren et al., 2010;
Klimesch, 2012; Pfurtscheller and Da Silva, 1999; Sauseng et al., 2010). There is a
need to utilize frequency information embedded in the signal to represent the signal
more accurately. Power spectral analysis (density) has been used in literature to
extract accurate frequency content features and produce high frequency resolution
(Palaniappan et al., 2002).

However, the neurophysiological signal used in BCI have generally specific prop-
erties in both the temporal and frequency domain. Frequency spectrum of the EEG
signal is observed to vary over time, indicating that the EEG signal is a non-stationary
in nature. Short-time Fourier transform and wavelet transform are suggested meth-
ods to extract both frequency and temporal information based features from non-
stationary signal. Such methods for representation of the signal can capture sudden
temporal variations in the EEG signal. The Wavelet Transform (WT) (Daubechies,
1990; Mallat, 1989) is an effective technique which allows analysis of both time and
frequency contents of the signal simultaneously. WT is utilized in analysis of EEG sig-
nals in the fields of motor imagery and epileptic seizures, (Bostanov, 2004; Cvetkovic
et al., 2008; Hsu and Sun, 2009; Ocak, 2009), brain disorders, (Hazarika et al., 1997),
classification of human emotions (Murugappan et al., 2010), and non-motor imagery
(Cabrera et al., 2010). However, WT uses some fixed basis functions which makes it
non-adaptive (Huang et al., 1998) to the signal to be processed. Another method for
analyzing signals like EEG is Empirical Mode Decomposition (EMD)(Huang et al.,
1998),which is a data driven approach. This method is self-adaptive according to
the signal to be processed unlike to WT, where a fixed set of basis functions used.
It decomposes a signal into finite, well defined, low frequency and high frequency
components known as Intrinsic Mode Functions (IMFs) or modes. The EMD method
has been used to extract representative data for BCI (Diez, Mut, Laciar, Torres and
Avila, 2009; Gupta et al., 2015; Kaleem et al., 2010) to classify mental task.

This work explores the suitability of EMD and its variants to analyze the EEG
for binary as well as multi mental tasks classification problem. A non-parametric
statistical test is also carried out to validate the experimental findings.
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3 Proposed Approach

In this work, features are extracted from EEG signal in two steps: In the first phase,
EEG signal corresponding to a given channel is decomposed by Empirical Mode De-
composition (EMD) algorithms. In the second phase, statistical and uncertainty
parameters are calculated from each decomposed signal for a given channel, to rep-
resent the signal more compactly. Brief description of the variants of EMD and the
parameters used to create feature vector are discussed below.

3.1 Empirical Mode Decomposition (EMD)

EMD is a mathematical tool which is utilized to analyses a non-stationary and non-
linear signal. Under the assumption that any signal contains a series of different
intrinsic oscillation modes. EMD is used to decompose an incoming signal into its
different Intrinsic Mode Functions (IMF). An IMF is a continuous function which
satisfies the following conditions (Huang et al., 1998):

1. The number of extrema and the number of zero crossings are either equal, or
differ at most by one.

2. The mean value of the envelope defined by the local maxima and local minima
is zero at a given point.

The first condition implies that there is need of a narrow band requirement for a
signal to be a stationary Guassian process. The second condition is needed for ab-
staining instantaneous frequency from unwanted fluctuations induced by asymmetric
waveforms. The basic steps of EMD are given in Algorithm 1.

Algorithm 1: Algorithm for EMD

1 Input: Signal x(m);
2 For a given signal, x(m), identify all local maxima and minima;
3 Calculate the upper envelope by connecting all the local maxima points of the

signal using a cubic spline;
4 Repeat the same for the local minima points of the signal to find the lower

envelope;
5 Calculate the mean value of both envelopes, say m1;
6 Update the signal, x(m) = x(m)−m1;
7 Continue the steps 1 to 5, and consider x(m) as the input signal, until it can

be considered as an IMF as per the definition stated above;
8 The residue r1 is obtained by subtracting the first IMF (IMF1) from x(m) i.e.

r1 = x(m)− IMF1. The residual of this step becomes the signal x(m) for the
next iteration;

9 Iterate steps 2 to 8 on the residual rj; j = 1, 2, 3, . . . ,m in order to find all the
IMFs of the signal;
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The procedure terminates when the residual rj is either a constant value or a
function with a single optima value.
Thus, a signal x(m), can be represented as:

x(m) =
m∑
j=1

IMFj + rm (1)

According to Huang et al. (1998), there is one stopping criteria in T steps to further
produce IMFs based on standard deviation, can be defined as

SDi =
T∑
t=0

|IMFi+1(t)− IMFi(t)|2

IMFi(t)2
(2)

The decomposition process stops when the value of SDs is smaller than predefined
value.

3.2 Ensemble Empirical Mode Decomposition (EEMD)

One of the major problem with EMD method is frequent mode mixing. This problem
arises when a single IMF contains signal of widely different scale or a signal of same
scale obtained from different IMFs. To alleviate the problem of scale separation,
Wu and Huang (2009) have proposed a noise-assisted data analysis (NADA) method,
called Ensemble Empirical Mode Decomposition (EEMD). EEMD define true IMF
components as the mean of an ensemble of the trails which consists of signal plus
white noise with finite amplitude (Wu and Huang, 2009). Thus the signal x(m) in ith

trial can be represented as

xi(m) = x(m) + a0w
i(n), for i = 1, . . . l (3)

where wi(n) is the white noise in ith trial with unit variance and a0 amplitude. The
average kth IMF k can be defined as

IMF k =
1

l

l∑
i=1

IMF i
k (4)

The pragmatic concepts of EEMD are as follows:

1. The added collection of white noise cancels each other with the help of ensemble
mean, thus only signal can be one ingredient of the mixture of the signal and
white noise.

2. To search all possible solution, it is necessary to ensemble white noise of finite
amplitude with signal.
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3. To obtain true and physically meaning full answer of the EMD, it is necessary
to add noise to the signal.

3.3 Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN)

The problem of mode mixing in original EMD algorithm is successfully addressed by
EEMD by adding white noise into the signal, but this also leads to a problem that
noise is not fully segregated from the signal and the resultant different IMFs may
contain mixture of noise and signal. To resolve this problem, Yeh et al. (2010), have
proposed complementary ensemble EMD (CEEMD) algorithm in which positive and
negative white noise are added to the signal, so that these positive and negative noises
become complementary to each other and IMFs become free from noise.
The first residue can be calculated as:

r1(m) = x(m)− IMF1 (5)

where IMF1 is the first average IMF obtained by EEMD. The second average IMF
can be found as:

IMF =
1

l

l∑
i=1

E1

(
r1(m) + a0E1

(
wi(m)

))
(6)

After finding kth residue, for k = 2, . . . , K, the k + 1 average IMF can be defined as:

IMF k+1 =
1

l

l∑
i=1

E1

(
rk(m) + akEk

(
wi(m)

))
(7)

where Ek(.) is an operator to extract kth IMF from given signal by EMD algorithm.

4 Experimental Setup and Result

4.1 Dataset and constructing feature vector

In order to compare the efficacy of these EMD algorithms for mental task classification
experiments were performed on a publicly available EEG dataset. We have also
Compared the proposed model with the work of (Zhang et al., 2010) on the same
dataset for multi-mental task classification. This dataset consists the recordings of
EEG signals using seven electrode channels (namely C3, C4, P3, P4, O1, O2 and
EOG) from seven subjects with the recording protocols described below. Each subject
was asked to perform five different mental tasks as: Baseline task (relax: B); mental
Letter Composing task (L); Non trivial Mathematical task (M ); Visualizing Counting
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(C ) of numbers written on a blackboard and Geometric Figure Rotation (R) task.
Each of the recording session consists of five trials of each of the five mental tasks.

Each trial is of 10sec duration recorded with a sampling frequency of 250 Hz, which
resulted into 2500 samples points per trial. We have utilized data of all subjects
except Subject 4, due to some missing and incomplete information Faradji et al.
(2009). Detailed explanation can be found in the work of Keirn and Aunon (1990)
1. Six electrodes placed on the scalp at C3, C4, P3, P4, O1 and O2 are used for
extracting the feature for mental task classification as EOG gives only artifact. For
feature construction, the data of each task of each subject is sampled into half-second
segments, yielding 20 segments (signal) per trial for each subject as some researchers
have done (Palaniappan et al., 2002). The complete pipeline for constructing the
feature vector from each subject using all trial corresponding to each mental tasks
labels (B, L, M, C and R) is describe below:

1. The EEG signal corresponding to each task of a given subject is sampled into
half-second segments, yielding 20 segments (signal) per trial per channel.

2. In this way, corresponding to each channel, each of 20 segments are used to
generate the 4 IMFs using EMD algorithms.

3. To represent each of these IMFs per segment per channel compactly, eight
statistical or uncertainty parameters ( Root Mean Square (RMS), Variance,
Skewness, Kurtosis, Hurst Exponent (Hurst, 1951), Shannon Entropy, Central
Frequency, Maximum Frequency ) are calculated for a given subject. Some of
these parameters represent linear characteristics of the EEG signal and other
represent non-linear properties of EEG (Diez, Torres, Avila, Laciar and Mut,
2009; Gupta and Agrawal, 2012; Gupta et al., 2015). In this work, the param-
eters are selected empirically as every signal or data has the distinguishable
property in terms of a certain set of statistical parameters associated with the
signal or data as shown in Figure 2.

4. Hence, final feature vector obtained after concatenation of features from six
channels contains 192 parameters (4 IMFs corresponding to each segments × 8
parameters corresponding to each IMFs × 6 channels) for each task labels for
a given subject.

4.2 Result

The performance of the EMD and its variant has been evaluated in terms of classifica-
tion accuracy achieved with SVM classifier with one versus all approach. Grid search
is used to find optimal choice of regularization parameters. The average classification
accuracy of 10 runs of 10 cross-validations is quoted. To check the efficacy of the

1http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon
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Figure 2: Eight features obtained corresponding to all five mental tasks for channel
1 from IMF 1 using EEMD method for Subject 1.

proposed method, we have formulated three type of multi-mental task classification
problems viz. three class, four class and five class as well as binary mental task clas-
sification.
Binary Class Problem : We have used binary combination of these tasks as BC,
BL, BM, BR, CL, CM, CR, LM, LR and MR in this work.
Three Class Problem : In this problem, we have formed three-class mental tasks
problems by choosing three different mental tasks at a time from given five mental
tasks. There are ten different triplet mental task combinations for forming three class
problem given as: BCL, BCM, BCR, BLM, BLR, BMR,CLM, CLR, CMR and LMR.
Four Class Problem : Construction of four mental task classification problem has
been done by choosing four tasks at a time from the given five tasks. There are five
different four class problems namely BCLM, BCLR, BCMR, BLMR and CLMR.
Five Class Problem : For the formation of the five mental task classification prob-
lem, we have taken all five mental tasks at a time. Thus, we have the five-class mental
tasks classification problem as BCLMR.
Table 1 to Table 3 show the classification accuracy for the binary mental tasks clas-
sification problem of three different EMDs algorithms. The bold values show the
best and average classification accuracy for different subjects. From these Tables, it
is clear that among three EMDs algorithms, EEMD performs best for binary MTC.
Similar kind of observation can be seen for three class, four class and five class of
MTC, which have been shown from Table 4 to Table 10 respectively.

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 21, 2017. ; https://doi.org/10.1101/076646doi: bioRxiv preprint 

https://doi.org/10.1101/076646


Table 1: Classification accuracy of EMD for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 92.33 77.74 72.35 63.18 86.80 84.47 79.48
BL 84.35 65.85 77.50 61.47 67.33 77.00 72.25

BM 92.93 87.40 76.45 70.85 89.25 92.10 84.83
BR 96.78 98.35 66.05 75.92 88.60 99.05 87.46
CL 68.45 77.79 84.15 67.02 78.03 92.16 77.93

CM 96.50 83.05 66.85 77.50 98.78 93.26 85.99
CR 74.65 90.21 58.35 80.38 87.18 99.32 81.68
LM 98.25 92.15 81.58 74.32 87.25 98.95 88.75
LR 86.98 97.65 75.60 75.27 81.13 99.45 86.01

MR 97.75 88.35 67.50 79.40 84.55 82.25 83.30
Average 88.90 85.85 72.64 72.53 84.89 91.80 82.77

Table 2: Classification accuracy of EEMD for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 93.75 90.85 72.33 94.42 89.85 91.65 88.81
BL 86.48 71.55 79.53 82.65 71.03 82.70 78.99

BM 93.23 88.95 80.33 97.15 94.23 96.80 91.78
BR 96.83 98.20 68.70 96.70 93.98 98.80 92.20
CL 71.30 88.50 85.03 69.92 82.45 91.90 81.52

CM 96.63 86.90 65.63 76.35 99.43 96.40 86.89
CR 76.60 95.35 60.60 81.35 92.00 98.55 84.08
LM 98.25 94.30 82.88 73.52 91.75 98.30 89.83
LR 87.00 98.95 77.50 76.13 89.03 100.00 88.10

MR 97.73 90.15 62.58 80.37 87.73 87.50 84.34
Average 89.78 90.37 73.51 82.86 89.15 94.26 86.65
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Table 3: Classification accuracy of CEEMDAN for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 93.13 90.05 72.73 66.08 90.63 88.30 83.48
BL 86.20 71.30 78.93 62.85 73.10 81.00 75.56

BM 92.25 90.50 80.63 73.83 94.35 91.90 87.24
BR 97.60 99.20 67.73 78.40 94.08 98.25 89.21
CL 72.53 83.80 85.23 71.03 85.03 91.40 81.50

CM 97.03 87.20 67.63 75.47 99.68 95.30 87.05
CR 78.10 95.15 61.70 81.20 90.58 98.50 84.20
LM 97.43 93.45 81.38 73.70 92.10 98.75 89.47
LR 87.48 99.70 73.83 76.13 89.95 99.50 87.76

MR 98.18 90.60 64.50 81.38 88.80 84.30 84.63
Average 89.99 90.10 73.43 74.01 89.83 92.72 85.01

Table 4: Classification accuracy of EMD for three class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 61.67 59.34 66.72 51.50 64.35 70.24 62.30

BCM 87.38 72.41 56.80 56.83 82.02 83.41 73.14
BCR 76.82 74.21 51.05 57.93 76.30 83.48 69.96
BLM 81.22 66.87 66.87 54.50 66.72 78.63 69.13
BLR 74.67 71.17 61.98 58.62 66.28 82.53 69.21

BMR 92.53 82.90 56.07 64.66 76.32 80.97 75.57
CLM 75.00 74.03 62.60 61.64 75.00 86.00 72.38
CLR 62.25 73.83 56.62 63.90 71.02 86.83 69.07

CMR 80.07 79.45 49.07 66.76 78.67 80.93 72.49
LMR 87.92 84.07 60.15 63.83 72.12 83.83 75.32

Average 77.95 73.83 58.79 60.02 72.88 81.69 70.86
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Table 5: Classification accuracy of EEMD for three class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 65.15 68.57 69.17 76.24 69.20 78.50 71.14

BCM 87.75 82.30 57.98 79.78 87.88 88.00 80.62
BCR 80.70 83.63 53.93 82.77 83.62 90.17 79.14
BLM 84.05 68.27 71.07 77.84 75.72 83.47 76.74
BLR 77.85 76.07 64.98 80.04 73.28 85.47 76.28

BMR 93.00 83.17 56.18 83.92 85.15 84.10 80.92
CLM 77.78 81.27 62.50 62.77 81.62 92.00 76.32
CLR 66.65 81.53 59.57 65.49 80.47 90.80 74.08

CMR 82.65 81.87 46.88 66.51 86.02 86.03 74.99
LMR 88.32 88.37 58.18 64.90 81.60 86.00 77.89

Average 80.39 79.50 60.05 74.03 80.46 86.45 76.81

Table 6: Classification accuracy of CEEMDAN for three class mental task classifica-
tion.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 64.58 67.77 69.38 51.84 69.30 77.50 66.73

BCM 86.63 82.87 58.27 56.71 87.22 84.93 76.10
BCR 80.90 81.20 52.65 60.24 84.35 88.53 74.65
BLM 83.42 68.67 69.95 54.79 76.30 82.93 72.68
BLR 77.63 75.00 64.45 57.57 72.83 87.43 72.49

BMR 92.60 85.97 57.18 67.00 84.53 80.33 77.94
CLM 77.62 78.73 62.13 62.84 82.30 89.37 75.50
CLR 66.42 76.30 58.85 66.56 79.57 90.63 73.05

CMR 83.32 84.90 49.27 67.38 85.75 85.43 76.01
LMR 88.32 87.70 57.52 64.70 82.88 85.23 77.73

Average 80.14 78.91 59.97 60.96 80.50 85.23 74.29

Table 7: Classification accuracy of EMD for four class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 65.03 57.28 55.18 49.81 63.00 70.92 60.20
BCLR 66.80 68.21 48.19 56.21 64.46 76.97 63.47

BCMR 74.96 65.08 53.36 53.33 60.95 72.00 63.28
BLMR 76.48 67.72 45.76 54.80 71.01 74.64 65.07
CLMR 56.50 58.59 48.64 52.48 60.90 71.13 58.04

Average 67.95 63.37 50.23 53.33 64.07 73.13 62.01
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Table 8: Classification accuracy of EEMD for four class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 69.54 65.05 57.11 67.96 71.08 78.55 68.21
BCLR 71.40 75.95 46.85 57.10 75.93 83.63 68.48

BCMR 77.36 68.73 54.25 69.86 71.28 78.20 69.95
BLMR 78.60 75.80 45.16 70.50 79.00 79.70 71.46
CLMR 61.66 65.60 52.76 69.70 68.40 80.53 66.44

Average 71.71 70.23 51.23 67.02 73.14 80.12 68.91

Table 9: Classification accuracy of CEEMDAN for four class mental task classifica-
tion.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 67.63 63.73 55.36 49.09 70.66 74.90 63.56
BCLR 69.23 74.13 47.91 57.83 75.98 80.98 67.67

BCMR 77.48 69.70 54.48 52.44 72.05 76.53 67.11
BLMR 78.05 76.90 45.64 55.27 79.16 76.65 68.61
CLMR 60.55 64.25 53.00 50.52 67.28 79.40 62.50

Average 70.59 69.74 51.28 53.03 73.03 77.69 65.89

Table 10: Classification accuracy for all five class mental task classification of all
feature extraction method.

Task-Combination Feature Extraction methods Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average

BCLMR

EMD 59.60 56.71 44.53 53.26 57.47 66.41 56.33
EEMD 65.23 63.00 44.69 62.04 67.47 74.26 62.78

CEEMDAN 63.85 62.92 46.93 48.45 67.81 71.40 60.23
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4.3 Comparison of the proposed model for multi mental task
classification problem

In this subsection, we have discussed and compared the proposed approach with the
work of Zhang et al. (2010) multi mental task classification. Table 11 shows the
comparison of the work of Zhang et al. (2010) for multi-mental task classification.

Table 11: Comparison table of classification accuracy achieved for multi mental task
classification of the work of Zhang et al. (2010) with proposed approach.

Two class classification Three class classification Four class classification Five class classification
Zhang et al. (2010) A B C A B C A B C A B C
Sub1 77.60 85.90 83.80 63.90 75.30 70.90 54.40 66.60 60.50 47.60 60.40 55.40
Sub2 62.90 67.50 66.20 46.50 53.80 47.90 37.90 45.40 38.30 31.90 39.90 33.60
Sub3 69.40 72.50 71.50 54.10 59.40 57.00 45.30 52.10 49.80 39.30 46.30 43.70
Proposed approach EMD EEMD CEEMDAD EMD EEMD CEEMDAD EMD EEMD CEEMDAD EMD EEMD CEEMDAD
Sub1 88.90 89.78 89.99 77.95 80.39 80.14 67.95 71.71 70.59 59.60 65.23 63.85
Sub2 85.85 90.37 90.10 73.83 79.50 78.91 63.37 70.23 69.74 56.71 63.00 62.92
Sub3 72.64 73.51 73.43 58.79 60.05 59.97 50.23 51.23 51.28 44.53 44.69 46.93

In the Table 11, methods A, B and C are the schemes used by Zhang et al.
(2010) based on asymmetry ratio for calculation of different number of frequency
band powers using 75-dimensional, 90-dimensional and 42-dimensional feature vector,
respectively. From this Table, it is clear that our approach outperforms in terms of
average classification accuracy for all the three subject for all the multi mental tasks
classification problem.

4.4 Discussion

Since EEG signal having non-linear and non-stationary property, thus there is a need
of an algorithm which can capture such properties of the signal. EMD is such an
algorithm which can capture tempo-spectral information of the signal. After decom-
posing the signal in high and low frequency components, it is important to extract
some statistical and uncertainty parameters from this decomposed signal for compact
representation in terms features which can help in differentiating one mental state
to another. In addition, there are two improved version of EMD algorithm named
as EEMD and CEMDAN algorithm, which can capture tempo-spectral information
even from noise assist signal.

Figure 3 to Figure 6 represent the average classification over all tasks combination
for all the possible combination of mental tasks of all subjects. From these Figures, it
is clear that EEMD algorithm outperforms. It is also observed that for the Sub 1, Sub
2 and Sub 7, the distinguishing capacity of the classification model to differentiate
the two or more mental tasks simultaneously is better than other subjects, from the
extracted features by the EMDs algorithms.
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Figure 3: Bar chart for the average classification accuracy over all binary mental tasks
for all six subjects.

Figure 4: Bar chart for the average classification accuracy over all three class mental
tasks for all six subjects.

Figure 5: Bar chart for the average classification accuracy over all four class mental
tasks for all six subjects.
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Figure 6: Bar chart for the average classification accuracy over all five class mental
tasks for all six subjects.

4.5 Statistical Test

We have utilized a two way, non-parametric statistical test known as Friedman test
(Derrac et al., 2011; Friedman, 1937) to find out the significant difference among
these three EMD methods for EEG signal. The Table 12 shows the average Friedman
ranking of the methods for different combination of metal tasks classification problem,
which shows that EEMD method outperform among three methods for all the possible
metal tasks classification problem.

The performance of different EMD methods (in this work) is studied with respect
to control method i.e. best performer from the Friedman’s ranking (which is EEMD).
The test statistics for the comparison of mth method to nth method, z, is given as

z =
Rm −Rn√

k(k+1)
6N

(8)

where Rm and Rn are the average ranking of the methods, k and N are the num-
ber of methods (algorithms) and experiments respectively. However, these p values
so obtained are not suitable for comparison with the control method. Instead, ad-
justed p values (Derrac et al., 2011) are computed which take into account the error
accumulated and provide the correct correlation. For this, a set of post-hoc proce-
dures are defined and adjusted p values are computed. For pair-wise comparisons,
the widely used post-hoc methods to obtain adjusted p values are (Derrac et al.,
2011): Bonferroni-Dunn, Holm, Hochberg and Hommel procedures. Table 13 shows
the various value of adjusted p values obtained from aforementioned methods. From
this Table, it is clear that there is statistical difference between EEMD and other two
methods.
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Table 12: Average Rankings of the algorithms

Algorithm Ranking
method Binary Class Three Class Four Class Five Class
EMD 3.00 3.00 3.00 2.93
EEMD 1.03 1.01 1.03 1.17
CEEMDAN 1.97 1.99 1.97 1.90

Table 13: Adjusted p-values

Class Combinations Algorithm unadjusted p pBonf pHolm pHoch pHomm

Binary Class EMD 4.16E-44 8.33E-44 8.33E-44 8.33E-44 8.33E-44
CEEMDAN 2.99E-11 5.99E-11 2.99E-11 2.99E-11 2.99E-11

Three Class EMD 5.69E-45 1.14E-44 1.14E-44 1.14E-44 1.14E-44
CEEMDAN 4.22E-12 8.44E-12 4.22E-12 4.22E-12 4.22E-12

Four Class EMD 4.16E-44 8.33E-44 8.33E-44 8.33E-44 8.33E-44
CEEMDAN 2.99E-11 5.99E-11 2.99E-11 2.99E-11 2.99E-11

Five Class EMD 1.49E-35 2.97E-35 2.97E-35 2.97E-35 2.97E-35
CEEMDAN 2.44E-7 4.89E-7 2.44E-7 2.44E-7 2.44E-7

5 Conclusion

Classification of EEG signal for any purpose requires detail analysis of the signal,
i.e. intrinsic properties of the signal. This work presented a comprehensive study
of the variants of EMD algorithm to find intrinsic characteristics of the EEG signal
for mental task classification. After decomposing the signal through the EMDs algo-
rithms, 8 parameters were calculated from each segment of the decomposed signal to
form the feature vector from the signal. SVM is utilized for classification purpose.
Experimental results showed that EEMD algorithm perform best among three EMD
algorithms. Statistical analysis are also performed to investigate whether three EMD
algorithms statistically different or not for MTC.

In the future work, we would like to explore some advance decomposition methods
for the EEG signal. To further reduce the dimensionality Feature selection approach
can be investigated to improve the classification performance for MTC. It is also
interesting to investigate some new set of parameters associated to the signals which
can help in distinguishing different mental states more accurately.
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