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Summary 

Alternative splicing changes are frequently observed in cancer and are starting to be recognized 

as important signatures for tumor progression and therapy. However, their functional impact and 

relevance to tumorigenesis remains mostly unknown. We carried out a systematic analysis to 

characterize the potential functional consequences of alternative splicing changes in thousands 

of tumor samples. This analysis revealed that a subset of alternative splicing changes affect 

protein domain families that are frequently mutated in tumors and potentially disrupt protein–

protein interactions in cancer-related pathways. Moreover, there was a negative correlation 

between the number of these alternative splicing changes in a sample and the number of 

somatic mutations in drivers. We propose that a subset of the alternative splicing changes 

observed in tumors may represent independent oncogenic processes that could be relevant to 

explain the functional transformations in cancer and some of them could potentially be 

considered alternative splicing drivers (AS-drivers).  
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Introduction 
Alternative splicing provides the potential to generate diversity at RNA and protein levels from 

an apparently limited number of loci in the genome (Yang et al., 2016). Besides being a critical 

mechanism during development, cell differentiation, and regulation of cell-type-specific functions 

(Norris and Calarco, 2012), alternative splicing is also involved in multiple pathologies, including 

cancer (Chabot and Shkreta, 2016). Many alternative splicing changes recapitulate cancer-

associated phenotypes by promoting angiogenesis (Vorlova et al, 2011), inducing cell 

proliferation (Yanagisawa et al., 2008), or avoiding apoptosis (Karni et al., 2007). Alternative 

splicing changes may originate from somatic mutations that disrupt splicing regulatory motifs in 

exons and introns (Jung et al., 2015; Supek et al., 2014), as well as through mutations or 

expression changes in core and auxiliary splicing factors, which impact the splicing of cancer-

related genes (Bechara et al., 2013; Darman et al., 2015; Madan et al., 2015; Zong et al., 2014). 

Alterations in alternative splicing are also emerging as relevant targets of therapy (Lee and 

Abdel-Wahab, 2016). For instance, lung tumors with an exon skipping in the proto-oncogene 

MET respond to MET-targeted therapies despite not having any other activating alteration in this 

gene (Frampton et al., 2015; Paik et al., 2015). Alternative splicing is also important in drug 

resistance. For example, a proportion of non-responders to BRAF-targeted therapy express a 

BRAF isoform lacking exons 4–8, which encompass the RAS binding domain (Poulikakos et al., 

2011). Similarly, alternative splicing of CD19 in relation to the aberrant activity of the splicing 

factor SRSF3 impairs immunotherapy in leukemia (Sotillo et al., 2015). Thus, specific alterations 

in splicing induce functional impacts that provide a selective advantage to tumor cells and could 

represent targets of therapy.  

 

Despite the prevalence of alternative splicing in tumors and its relation to therapy, tumor 

progression and metastasis (Lee and Abdel-Wahab, 2016; Lu et al., 2015; Trincado et al., 

2016), its functional impacts have not been exhaustively described. Alternative splicing changes 

can confer radical functional changes (Wang et al., 2005), remodel the network of protein–

protein interactions in a tissue-specific manner (Buljan et al., 2012; Ellis et al., 2012), and 

expand the protein interaction capabilities of genes (Yang et al., 2016). Here we present a 

systematic evaluation of the potential functional impacts of alternative splicing changes in 

cancer samples. We described splicing changes in terms of transcript isoforms switches per 
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tumor sample and determined the protein features and protein–protein interactions they 

affected. Our analysis revealed a set of isoform switches that affect protein domains from 

families frequently mutated in tumors, remodel the protein interaction network of cancer drivers, 

and tend to occur in patients with low number of mutations in cancer drivers. Furthermore, a 

subset of them has driver-like properties, hence could play a role in the neoplastic process 

independently of or in conjunction with mutations in cancer drivers.  

Results 

Patient-specific definition of isoform switches across multiple cancer types 

To determine the potential functional impacts of alternative splicing in cancer, we analyzed the 

expression of human transcript isoforms in 4,542 samples from 11 cancer types from TCGA 

(Supplemental Experimental Procedures). We described splicing changes using transcript 

isoforms, as they represent the endpoint of transcription and splicing, and ultimately determine 

the functional capacity of cells. For each gene and each patient sample we calculated the 

differential transcript isoform usage between the tumor and normal samples. An isoform switch 

was defined as a pair of transcripts, the tumor and the normal isoforms, such that the change in 

relative abundance in a single patient in both isoforms was higher than the observed variability 

across normal samples. Moreover, the involved gene must not show differential expression 

between tumor and normal. Additionally, we discarded switches with a significant association 

with stromal or immune cell content (Supplemental Experimental Procedures). The final set of 

switches identified and that we kept for further analysis had a mean change in relative 

abundance of 54% and a standard deviation of 7%. 

In all patients we found a total of 8,122 different isoform switches in 6,442 genes that described 

consistent changes in the transcriptome of the tumor samples and that would not be observable 

by simply measuring gene expression changes (Figure 1A) (Table S1). These switches 

occurred in 4443 patients; each switch in 5 or more patients, with the majority (75%) occurring 

in 10 or more patients (Table S1). Using SUPPA (Alamancos et al., 2015) we calculated the 

relation with local alternative splicing events (Supplemental Experimental Procedures). From the 

8122 switches, 5667 (69.7%) were mapped to one or more local alternative splicing events. 
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Compared with the expected proportion of event types, we observed an enrichment of 

alternative 5’ss, alternative first exon and retained intron, and a depletion of alternative 3’ss, 

alternative last exon, mutually exclusive exons and exon-cassette (Figure S1A). Mapping the 

tumor isoform to either form of the event, we observed that retained intron events are 

predominantly retained, in agreement with previous observations (Dvinge and Bradley, 2015); 

whereas exon-cassette events were predominantly skipped (Figure S1B). Interestingly, 30,3% 

of the switches were not mapped to any event, indicating that transcripts provide a wider 

spectrum of RNA variation compared to local alternative splicing events.  

 

Isoform switches in cancer are frequently associated with protein feature 

losses 

We next studied the proteins encoded by the transcripts involved in switches. Interestingly, 

annotated proteins in tumor isoforms tended to be shorter than proteins in normal isoforms 

(Figure S1C). Moreover, while for most switches — 6,937 (85,41%) — both transcript isoforms 

coded for protein, the rest had a significantly higher proportion of cases with only the normal 

isoform as protein-coding, 732 (9.01%) vs. 231 (2.8%) (Binomial test p-value < 2.2e-16, using 

0.5 as expected frequency) (Table S1), suggesting that isoform switches in tumors are 

associated with the loss of protein coding capacity. To determine the potential functional impact 

of the isoform switches, we calculated the protein features they affected. Out of the 6,937 

switches with both isoforms coding for protein, 5,047 (72.7%) involved a change in at least one 

of the following features: Pfam domains, Prosite patterns, general disordered regions, and 

disordered regions with potential to mediate protein–protein interactions (Figure S1D). 

Interestingly, there was a significant enrichment in protein features losses when compared with 

a set of 100 sets of simulated switches, controlling for isoform expression (Figure 1B). This 

enrichment was observed despite the fact that for simulated switches the normal protein isoform 

also tended to be longer than the tumor protein isoform (Figure S1E). This indicates that isoform 

switches in cancer are strongly associated with the loss of protein function capabilities.  

We focused on the 6004 (73.9%) isoform switches that had a gain or loss in at least one protein 

feature, which we named functional switches, as they were likely to impact gene activity (Table 

S1). These functional switches included 729 (8.9%) and 228 (2.8%) cases for which only the 
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normal or the tumor isoform, respectively, coded for a protein with one or more protein features. 

Interestingly, cancer drivers were enriched in functional switches (Fisher’s exact test p-value = 

2.0e-05, OR = 1.9) (Figure S1F). Among the top switches in cancer drivers we identified one in 

RAC1, which was linked before to tumor initiation and progression (Zhou et al., 2012) and which 

we predicted to gain an extra Ras family domain; and one in TP53 we predicted to change to a 

non-coding isoform (Figure 1C). 

To characterize how functional switches affected protein function, we calculated the enrichment 

in gains or losses of specific domain families with respect their proportions in a reference 

proteome. To ensure that this was attributed to a switch and not to the co-occurrence of two 

domains, we requested a minimum of two switches in different genes affecting the domain. We 

detected 220 and 41 domain families exclusively lost or gained, respectively, and 13 that were 

both gained and lost, more frequently than expected by chance (Table S2). Domain families that 

were significantly lost included those involved in regulation of protein activity (Figure 1D), 

suggesting effects on protein-protein interactions. To further characterize these functional 

switches, we calculated the proportion of oncogenes or tumor suppressors that contained 

domain families enriched in gains or losses, compared with the reference proteome. From the 

69 cancer drivers with domains enriched in gains, 58 (84%) corresponded to oncogenes 

(Fisher’s exact test p-value = 0.0066, OR = 0.4). Although tumor suppressors were not enriched 

in domain losses, domain families enriched in gains occurred more frequently in oncogenes 

than in tumor suppressors (Wilcoxon test p-value = 9e-04). These results suggest a similarity 

between our functional isoform switches and oncogenic mechanisms in cancer.  

Isoform switches and somatic mutations affect similar domain families 

We conducted various comparisons using our switches and cis-occurring mutations from whole 

exome (WES) and whole genome (WGS) sequencing data (Supplemental Experimental 

Procedures). The frequencies of genes or samples with functional switches were similar to 

those with protein-affecting mutations (PAMs), but smaller than the frequencies for all mutations 

from WGS data (Figures S2A and S2B), indicating a similar prevalence of switches and PAMs 

but not for switches and WGS mutations. Since we calculated switches per patient, we were 

able to study how these distributed across patients (Supplemental Experimental Procedures). 

The top cases according to the co-occurrence of WGS somatic mutations with switches across 
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patients included a switch in the cancer driver CUX1, although only in 7 patients (Figure S2C 

and S2D); whereas the top cases according to the number of patients with mutations and 

switches included TP53 as well as FAM19A5, DST and FBLN2, which we already described as 

isoform switches before (Sebestyén et al., 2015) (Figures S2E and S2F). In agreement with the 

observed low association of mutations and switches (Figure S2G), the number of genes with 

PAMs and functional switches tended to be inversely correlated (Figure 2A), suggesting a 

complementarity between PAMs and switches affecting protein domains.  

We explored this complementarity by checking if mutations and switches affected the same 

molecular mechanisms. First, we calculated domain families enriched in PAMs and found 76 

domain families across 11 tumor types enriched in mutations (Table S2), which were more 

frequent in cancer drivers compared to non-drivers (Wilcoxon test p-value < 2.2e-16), in 

agreement with recent reports (Yang et al., 2015). Then, we compared the domain families 

enriched in mutations with those enriched in gains or losses through switches, we found an 

overlap of 15 domain families, which was higher than expected by chance given the domains 

affected by the 6,004 functional switches and the 5,307 domain families observed in the 

reference proteome (Fisher’s test p-value = 5.6e-06, OR = 4.7). From the domain families 

enriched in mutations, 7 showed enrichment in losses, 6 showed enrichment in gains, and 2 

showed enrichment in both (Figure 2B) (Tables S2). The gains included Cadherin domains 

related to switches in CHD8, CDH26, FAT1, FAT2 and FAT3, whereas the losses included the 

Calcium-binding EGF domain, which is affected by various switches, including one in NOTCH4. 

A notable case was the loss of the TP53 DNA-binding domain and the tetramerization motif. 

Although it occurred in a single switch, its recurrence in 123 patients highlights the relevance of 

TP53 alternative splicing (Bourdon, 2007). 

We questioned if the similarity was beyond the coincidence of single domain families, and could 

affect more generally the function associated to domains. Hence, we calculated the enriched 

Gene Ontology (GO) terms associated to the domains enriched in mutations and switches 

separately, and then calculated the overlap between both set. This overlap was compared to the 

overlap obtained by randomly sampling hundred times from the reference proteome the same 

number of GO terms found for domains in enriched switches or mutations. Notably, the 

observed overlap was higher than expected for each GO term and at different GO slim levels 

(Figure 2C), and the shared functional categories included receptor activity and protein binding. 
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A total of 754 (12.5%) functional switches in 634 genes (47 of them in 37 cancer drivers) 

affected domain families that were also enriched in mutations, supporting the notion that isoform 

switches and mutations may impact similar functions in tumors.  

If switches and mutations have similar functional impacts, we would expect a tendency toward 

mutual exclusion of some switches with mutations in cancer drivers. In fact, we identified 292 

functional switches that were mutually exclusive with somatic PAMs in three or more cancer 

drivers (Fisher’s test p-value < 0.05) (Supplemental Experimental Procedures), and 16 of them 

showed mutual exclusion with at least one cancer gene driver from the same pathway (Table 

S3). These 16 switches included one in COL9A3, which had mutual exclusion with MET 

mutations in kidney renal papillary cell carcinoma (KIRP), and one in PRDM1, which showed 

mutual exclusion with mutations in TP53 in lung adenocarcinoma (LUAD) (Figure 2D) as well as 

in PTEN In lung squamous cell carcinoma (LUSC) (Figure S2H) (Table S3). Despite the 

observed mutual exclusion, none of the cases was significant after multiple test correction, 

indicating that the described switches may not provide strong signatures for pan-negative 

tumors (Saito et al., 2015).  

Isoform switches affect protein interactions with cancer drivers  

Many of the frequently lost and gained domain families in functional switches were involved in 

protein binding activities, indicating a potential impact on protein–protein interactions (PPIs) in 

cancer. To study this, we used data from five different sources to build a consensus PPI 

network with 8,142 nodes, each node representing a gene (Figure S3). Then, to determine the 

effect of switches on the PPI network, we mapped PPIs from this network to domain–domain 

interactions (DDIs). Domains involved in DDIs were mapped to the specific protein isoforms 

using their encoded protein sequence. For genes with switches, we then considered those PPIs 

that could be mapped to DDIs involving domains mapped on either the normal or the tumor 

isoforms (Figure S4). From the 8,142 genes in the PPI network, 3,243 had at least one isoform 

switch, and for 1,688 isoform switches (in 1,355 genes) we were able to map at least one PPI to 

a specific DDI with domains on either the normal or the tumor isoform. A total of 162 of these 

switches were located in 123 cancer drivers, with the remaining 1,526 in non-driver genes.  

For each isoform switch, using the DDI information, we evaluated whether the change between 

the normal and tumor isoforms would affect a PPI from the network by matching the domains 
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affected by the switch to the domains mediating the interaction, controlling for the expression of 

the isoforms predicted to be interaction partners. We found that 477 switches (28.3%) in 423 

different genes affected domains that mediated protein interactions and thus likely impacted 

such interactions. Most of these interaction-altering switches (n = 414, 86.8%) caused the loss 

of the domain that mediated the interaction, while a minority (n = 64, 13.2%) led to a gain of the 

interacting domain. Only a switch in TAF9 led to gains and losses of interactions with different 

partners, mediated by the loss of a TIFIID domain and a gain of an AAA domain (Table S4).  

Notably, switches in driver genes tended to lose PPIs more frequently than those in non-drivers, 

(Figure 3A). From the 162 switches in drivers, 41 (25.3%) of them altered at least one 

interaction, either causing loss (33 switches) or gain (8 switches). Moreover, switches that 

affected domains from families enriched in mutations or that showed frequent mutual exclusion 

with mutational drivers also affected PPIs significantly more frequently than other functional 

switches (Chi-square test p-value < 2.2e-16 and p-value = 6.8e-08, respectively) (Figure S5). 

Looking at genes annotated as direct interactors of drivers, they tended to affect PPIs more 

frequently than the rest of functional switches mapped to PPIs (Figure 3B). Additionally, all 

functional pathways found enriched in PPI-affecting switches were related to cancer (adjusted 

Fisher’s exact test p-value < 0.05 and odds-ratio > 2) (Table S5), reinforcing the functional 

relevance of these 477 PPI-affecting isoform switches in cancer. 

Isoform switches remodel protein interaction networks in cancer 

To further characterize the role of switches, we calculated modules in the PPI network (Blondel 

et al., 2008) using only interaction edges affected by switches (Supplemental Experimental 

Procedures). This produced 179 modules involving 1405 genes (Table S6). From these, 52 

modules included a cancer driver, and 47 of them included also switches that involved two 

protein-coding isoforms. We tested for the enrichment of genes belonging to specific protein 

complexes (Ruepp et al., 2009), complexes related to RNA-processing and splicing (Akerman et 

al., 2015) and cancer-related pathways (Liberzon et al., 2015) (Table S6) (Supplemental 

Experimental Procedures). From the 47 modules described above, 8 showed enrichment in 

pathways and complexes: apoptosis-related pathways (module 109 in Table S6), Ubiquitin 

mediated proteolysis pathway (module 26), and ERBB signaling pathway (module 169), as well 

as Spliceosomal (module 11), Ribosomal (module 170), SMN (module 28), PA700 (module 58) 
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and TFIID (module 66) complexes (Table S6). In particular, module 11 was enriched in splicing 

factors and RNA binding proteins, and included the cancer drivers SF3B1, FUS, SYNCRIP, 

EEF1A1 and YBX1 (Figure 3C) (Table S6). The module contained a switch in RBMX involving 

the skipping of two exons and the elimination of an RNA recognition motif (RRM) that would 

impact interactions with SF3B1, EEF1A1 and multiple RBP genes (Figure 3C); and a switch in 

TRA2B that yielded a non-coding transcript previously described (Stoilov et al., 2004) and would 

eliminate an interaction with SF3B1 and other splicing factors. We also found a switch in 

HNRNPC, TRA2A, NXF1 and RBMS2 that lost interactions with various SR-protein coding 

genes. Consistent with a potential functional impact, the PPI-affecting switches showed mutual 

exclusion with the mutational cancer drivers (Figure 3D). Interestingly, this module also 

contained switches in the Importin genes IPO11 and IPO13, which affected interactions with 

ubiquitin conjugating enzymes UBE2E1, UBE2E3 and UBE2I, and which showed mutual 

exclusion across different tumor types (Figure 3D). These results indicate that the activity of 

RNA-processing factors may be altered in cancer through the disruption of their PPIs by 

alternative splicing.  

Another interesting case was module 28 (Table S6), with switches in the regulators of 

translation,EIF4B, EIF3B and EIF4E, which affected interactions with the drivers EIF4G1, 

EIF4A2 and PABPC1 (Figure 3E). The switch in EIF4B caused the skipping of one exon, which 

we predicted to eliminate an RRM domain and lose interactions with drivers EIF4G1 and 

PABPC1. The switch in EIF3B yielded a non-coding transcript that would lose multiple 

interactions. Although we did not predict any PPI change for EIF4E, this switch lost eight 

predicted ANCHOR regions (Table S4), suggesting a possible effect on yet to be described 

interactions. Besides frequent PAMs, PABPC1 also presented a functional switch that affected 2 

disordered regions but did not affect any of the RRMs. In this case we did not predict any 

change in PPI and the possible functional impact remains to be discovered. Moreover, the 

identified PPI-affecting switches showed mutual exclusion with PAMs in EIF4G1 and PABPC1 

and (Figure 3F). These results suggest that isoform switches may impact translational 

regulation in tumors through the alteration of protein–protein interactions of the corresponding 

regulators.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Isoform switches as potential drivers of cancer  

Our results provide evidence that a subset of the alternative splicing switches (I) induced a gain 

or loss of a protein domain from a family frequently mutated in cancer, (II) affected one or more 

PPIs, (III) displayed some mutual exclusion with drivers, or (IV) displayed recurrence across 

patients. One or more of these properties were fulfilled by 1662 functional switches, which we 

hypothesized could define potential alternative splicing drivers (potential AS-drivers) (Figure 4A) 

(Table S1), with the majority of them 1080 (65%) affecting mutated domain families and/or PPIs 

(Figure 4B). To test possible driver-like properties in these switches, we calculated their 

centrality and distance to mutational drivers in the PPI network, which are considered as 

defining properties for cancer-relevant genes (Jonsson and Bates, 2006). Potential AS-drivers 

showed greater centrality (Mann-Whitney test p-value < 2.2e-16) (Figure S6A) and closer 

distances to tumor-specific drivers (Fisher’s exact test p-value < 2.2e-16, OR = 1.5) (Figure 

S6B) compared to the rest of switches.  

The prevalence of these potential AS-drivers varied across samples and tumor types. 

Considering tumor specific mutational drivers (Mut-drivers) and our set of potential AS-drivers, 

we labeled each patient as AS-driver–enriched or Mut-driver–enriched according to whether the 

proportion of switched potential AS-drivers or mutated Mut-drivers was higher, respectively. This 

partition of the samples indicated that, although Mut-drivers were predominant in patients for 

most tumor types, potential AS-drivers were predominant for a considerable number of patients 

across several tumor types, and particularly for kidney and prostate tumors (Figure 4C). 

Additionally, regardless of the tumor type, patients with many mutations in Mut-drivers tended to 

show a low number of switched potential AS-drivers, and vice versa (Figure 4D). The 

occurrence of copy number alteration (CNA) drivers also showed a pattern of anti-correlation 

with our potential AS-drivers similar to the one we found between Mut-drivers and potential AS-

drivers (Figure S6C). The patient distribution patterns of candidate AS-drivers compared with 

mutational or CNA drivers bear resemblance with the proposed cancer genome hyperbola 

between mutations and CNAs (Figure S6D) (Ciriello et al., 2013), which supports the notion that 

a subset of isoform changes represents alternative, yet-unexplored relevant mechanisms that 

could provide a complementary route to induce similar effects as genetic mutations.   
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Discussion 

We have identified consistent and recurrent transcript isoform switches that impact the function 

of affected proteins by adding or removing protein domains that were frequently mutated in 

cancer or by disrupting or gaining protein–protein interactions – possibly also altering the 

formation of protein complexes – with cancer drivers or in cancer related pathways. Moreover, 

we observed that patients with some of these isoform switches tended not to harbor mutations 

in cancer drivers and the other way around. Recently, an alternative splicing change in NFE2L2 

has been described to lead to the loss of a protein domain and the interaction with its negative 

regulator KEAP1, thereby providing an alternative mechanism for the activation of an oncogenic 

pathway (Goldstein et al., 2016). Similarly, an isoform change in the gene ATF2 has been 

shown to drive melanomagenesis (Claps et al., 2016). These examples, together with the 

analyses presented here, support a model by which functions and pathways often altered in 

cancer through somatic mutations may be affected in a similar way by isoform changes in some 

patients, and therefore contribute to the tumor phenotype. Importantly, these isoform changes 

could occur without gene expression changes in the host gene and thus provide an independent 

catalogue of functional alterations in cancer.  

Functional domains and interactions might not always be entirely lost through a switch, as 

normal isoforms generally retain some expression in tumors. This could be partly due to the 

uncertainty in the estimate of transcript abundance from RNA sequencing or to the 

heterogeneity in the transcriptomes of tumor cells. Still, a relatively small change in transcript 

abundance has ben shown to be sufficient to trigger an oncogenic effect in cells (Anczuków et 

al., 2015; Bechara et al., 2013; Sebestyén et al., 2016). Additionally, we observed that a number 

of isoform changes defined a switch from a protein-coding transcript to a non-coding one, 

possibly undergoing non-sense mediated decay, which is a widespread mechanism of 

alternative splicing mediated gene expression regulation (Hansen et al., 2009), and could 

potentially alter function in a way similar to other isoform changes between protein-coding 

isoforms. The predicted impact on domains and interactions could therefore be indicative of 

alterations on regulatory networks with variable functional effects.   

Our description in terms of transcript isoform switches allowed us to describe more variations in 

the transcriptome than using local alternative splicing events, and to determine the protein 
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features potentially gained or lost through splicing changes. However, this approach has some 

potential limitations. Accurate determination of differential transcript usage in genes with many 

isoforms requires high coverage and sufficient samples per condition (Sebestyén et al., 2015), 

which we expect was mitigated by our use of the variability across normal samples to determine 

significance. Additionally, since we used annotated transcript isoforms, we may have missed 

tumor specific transcripts not present in the annotation. We also only recovered a small fraction 

of the entire set of protein-protein interactions taking place in the cell. For instance, we did not 

characterize those interactions mediated through low complexity regions (Buljan et al., 2012; 

Ellis et al., 2012), hence many more interactions and protein complexes may be affected in 

tumors.  

The origin of the observed splicing changes remains to be elucidated. We did not find a general 

association with somatic mutations in cis. It is possible that small copy-number alterations or 

indels are responsible for these switches, but are still hard to detect with WES and WGS data 

and more targeted searches or deeper sequencing is necessary. An alternative explanation is 

that the majority of the switches described occur through trans acting alterations, such as the 

expression change in splicing factors (Sebestyén et al., 2016). For instance, mutations in 

RBM10 or downregulation of QKI lead to the same splicing change in NUMB that promotes cell 

proliferation (Bechara et al., 2013; Zong et al., 2014), and the oncogenic switch in RAC1 (Zhou 

et al., 2012) is regulated by expression changes in various splicing factors (Gonçalves et al., 

2009; Pelisch et al., 2012), which are controlled by pathways often altered in tumors (Fu and 

Ares, 2014). Another possibility is that these switches describe signatures of non-genetic 

variability (Brock et al., 2009). The intra-tumor heterogeneity could allow recapitulating similar 

transcriptome phenotypes, which would determine the fitness of cells and the progression of 

tumors independently of somatic mutations. Since natural selection acts on the phenotype 

rather than on the genotype, an interesting hypothesis is that specific transcript isoform 

expression patterns could define particular tumor phenotypes that would be closely related to 

those determined by somatic mutations in drivers, thereby defining an advantageous phenotype 

such that the selective pressure to develop equivalent adaptations is relaxed. Accordingly, our 

identified isoform switches could play an important role in the neoplastic process independently 

of or in conjunction with the already characterized genetic alterations.  
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Experimental Procedures 

Further details and an outline of resources used in this work can be found in Supplemental 

Experimental Procedures. 

Calculation of significant isoform switches per patient 

We modeled splicing alterations in a gene as a switch between two transcript isoforms, one 

normal and one tumoral. For each transcript, the relative abundance per sample, which we 

called PSI, was calculated by normalizing its abundance in TPM units by the sum of 

abundances of all transcripts in the same gene. Then, for each transcript and sample we 

calculated the change in relative abundance as ΔPSI = PSItumor - PSIref, where PSItumor is the 

relative abundance in the tumor sample and PSIref is the normal reference value, which is the 

value of the paired normal sample when available, or the median of PSIs in the normal samples 

for the same tissue type, otherwise. We considered significant those changes with |ΔPSI| > 0.05 

and with empirical p < 0.01 in the comparison of the observed |ΔPSI| value with the distribution 

of |ΔPSI| values obtained by comparing the normal samples pairwise without repetition. We only 

kept those cases for which the tumor isoform PSI was higher than the normal isoform in the 

tumor sample and the normal isoform PSI in the normal sample was higher than the value for 

the tumor isoform. Moreover, we discarded genes that either had an outlier expression in the 

tumor sample compared to normal tissues – had expression below the bottom 2.5% or above 

the 97.5% of the values of normal expression – or showed differential expression between the 

tumor and the normal samples (Wilcoxon test p-value < 0.01 using the gene TPM values).  

Candidate switches were defined per patient and per gene, and in some samples the same 

gene could have different switches. We discarded those switches that contradicted a more 

frequent switch in the same gene and the same tumor type. Moreover, we discarded any switch 

that affected a number of patients below the top 99% of the distribution of patient frequency of 

these contradictory switches in each tumor type. Lastly, we filtered out switches that were 

significantly lowly recurrent, i.e. they occurred in fewer patients than expected by chance  

(Binomial test - adjusted p-value < 0.05, using all tumor types). As a consequence, none of the 

reported switches occurred in less than 5 samples. Thus, a switch in a patient sample was 

defined as a pair of transcripts in a gene with no expression change and with significant 
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changes in opposite directions that showed consistency across a minimum number of patients. 

We aggregated the switches from the different tumor types to get the final list (Table S1).  

Simulated switches 

To simulate switches between normal and tumor tissues we used genes with more than one 

expressed isoform. For each gene, we selected the isoform with the highest median expression 

across the normal samples as the normal isoform and an arbitrary different transcript expressed 

in the tumor samples as the tumor isoform. For each gene, we generated a maximum of five 

such simulated switches.  

Functional switches 

A switch was defined as functional if both isoforms overlapped in genomic extent and there was 

a change in the encoded protein, including cases where only one of the isoforms was coding, 

and moreover there was a gain or loss of a protein feature: Pfam domains (Finn et al., 2016) 

mapped with InterProScan (Jones et al., 2014), ProSite patterns (Gattiker et al., 2002); 

disordered regions from IUPred (Dosztanyi et al., 2005); and disordered regions potentially 

involved in protein–protein interactions from ANCHOR (Dosztanyi et al., 2009). For IUPred and 

ANCHOR we only considered changes involving at least 5 amino acids. Switches without any 

mapped protein features were not considered. Significance on the enrichment of protein 

features losses versus gains was calculated by comparing the number of gains and losses in 

switches with the same numbers in simulated switches (Supplemental Experimental 

Procedures).   

Enrichment of domain families in switches and mutations 

To find protein domain families significantly affected by switches we first calculated a reference 

proteome for each tumor type. Using genes with multiple transcripts, we selected those that had 

at least one isoform with TPM>0.1, and only kept the isoform with the highest median 

expression across the normal samples in the same tissue type. Proteins encoded by these 

isoforms were considered the reference proteome in each tumor type. We aggregated the 

reference proteomes from all tumor types to form a pan-cancer reference proteome. The 

expected frequency of a protein feature was then measured as the proportion of this feature in 
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the reference proteome. This expected frequency was then used to calculate the probability of a 

feature to be affected by a switch using a binomial test with the number of times the feature was 

gained or lost in switches and the total number of feature gains or losses due to switches 

(Supplemental Experimental Procedures). We selected cases with Benjamini-Hochberg  (BH) 

adjusted p-value < 0.05. Additionally, to ensure the specificity of the enrichment for each 

domain class, we considered only domain families affected in at least two switches. To calculate 

domain families enriched in mutations, we considered again the reference proteome in each 

tumor type. The expected mutation rate of a domain family was considered to be the proportion 

of the length of domains in the proteome covered by this domain family. We aggregated all 

observed mutations falling within each family and calculated the probability of the observed 

mutations using a binomial test using the mutation count for a domain family and the total 

mutations in all domain families  (Supplemental Experimental Procedure). After correcting for 

multiple testing, we kept those cases with a BH adjusted p-value < 0.05. GO analysis was 

performed using DcGO (Fang and Gough, 2013). For the enrichment test, we considered 

significant those cases with FDR < 0.01 (hypergeometric test).  

Protein interaction analysis 

We created a consensus protein–protein interaction (PPI) network using data from PSICQUIC 

(del Toro et al. 2013), BIOGRID (Chatr-Aryamontri et al., 2015), HumNet (Lee et al., 2011), 

STRING (Szklarczyk et al., 2011), and from (Rolland et al., 2014). The consensus network was 

built with interactions appearing in at least four of these five sources, yielding a total of 8,142 

nodes with 29,991 interactions. To find PPIs likely altered by isoform switches we first mapped 

each PPI in a gene to a specific domain–domain interaction (DDI), using information on 

domain–domain interactions from iPfam (Finn et al., 2014), DOMINE (Raghavachari et al., 

2008), and 3did (Mosca et al., 2014). Domains involved in DDIs were then mapped to specific 

protein isoforms. For the genes with switches, we then considered those PPIs that could be 

mapped to DDIs involving domains mapped to either the normal or the tumor isoforms. In total, 

3,242 genes with 4,219 switches mapped to one or more interactions in the consensus network, 

and 1,688 isoform switches (in 1,355 genes) were mapped to at least one specific DDI. We 

defined a PPI as lost if it was mapped to one or more DDIs in the isoform expressed in the 

normal tissue but not in the isoform expressed in the tumor sample. If multiple domains 

mediated the same interaction, it was considered lost if at least one of these domains was lost 
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in the switch. We defined a PPI as gained if it was mapped to a DDI only in the tumor isoform 

but not in the normal isoform. 
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Figures 

 

Figure 1. Patient-specific definition of isoform switches across multiple cancer types. (A) 

Number of isoform switches (y axis) calculated in each tumor type, separated according to 

whether the switches affected an annotated protein feature (Functional) or not (Non-functional) 

and whether they occur in cancer gene drivers (Driver) or not (Non-driver). (B) Number of 

different protein feature gains and losses in functional switches for each of the protein features 

considered, which showed significant enrichment in losses compared to random switches: Pfam 

(Fisher’s exact test p-value = 4.4-23, odds-ratio (OR) = 1.5), Prosite (p-value = 1.4e-08, OR = 

1.3), IUPRED (p-value = 1.1e-127, OR=1.3), ANCHOR (p-value = 7.5e-139, OR=1.5). (C) Top 

20 functional switches in cancer drivers (x axis) according to patient count (y axis). Tumor types 
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are indicated by color: breast carcinoma (BRCA), colon adenocarcinoma (COAD), head and 

neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear-cell 

carcinoma (KIRC), kidney papillary cell carcinoma (KIRP), liver hepatocellular carcinoma 

(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate 

adenocarcinoma (PRAD), and thyroid carcinoma (THCA). (D) Cellular component (red) and 

Molecular function (green) ontologies associated with protein domain families that are 

significantly lost in functional isoform switches (Binomial test - BH adjusted p-value < 0.05). For 

each functional category, we give the number of switches in which a domain family from this 

category is lost, which is also indicated by the color shade. 
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Figure 2. Comparison of isoform switches and somatic mutations.  (A) For each patient 

sample, color-coded according to the tumor type, we indicate the proportion of all genes with 

protein-affecting mutations (PAMs) (y axis) and the proportion of genes with multiple transcript 

isoforms that presented a functional isoform switch in the same sample (x axis). (B) Domain 

families that were significantly lost or gained in functional isoform switches that are also 

significantly enriched in protein-affecting mutations in tumors. For each domain class, we 

indicate the number of different switches in which they occurred. We include here the loss of the 

P53 DNA-binding and P53 tetramerization domains, which only occurred in TP53. (C) 

Agreement between protein-affecting mutations and functional switches (y axis) measured in 

terms of the functional categories of the protein domains they affected (x axis), using two gene 

ontologies (GOs) at three different GO Slim levels, from most specific (+++) to least specific (+). 

Random occurrences (plotted in light color) were calculated by sampling 100 times the same 

number of GO terms from the reference proteome as those enriched in domain families affected 
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by functional switches and in domains families affected by PAMs. Agreement is calculated as 

the percentage of the union of functional categories from both sets that are common to both. (D) 

Pairs formed by a cancer driver (in parentheses) and a functional switch from the same pathway 

and showed significant mutual exclusion (before multiple test correction) between PAMs and 

switches across patients in at least one tumor type – color-coded by tumor type. The y-axis 

indicates the percentage of samples where the switch occurred and x-axis indicates the 

percentage of samples where the driver was mutated in the same tumor type.  
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Figure 3. Potential impact of isoform switches in protein interactions with cancer drivers. 

(A) Functional switches were divided according to whether they occurred in tumor-specific 

drivers (yes) or not (no). For each tumor type we plot the proportion of protein-protein 

interactions (PPIs) (y axis) that were gained (green), lost (red), or remained unaffected (gray). 

All comparisons except for KIRC, LUAD were significant (Supplemental Experimental 

Procedures), Samples from KIRP and LIHC had no PPI-affecting switches in drivers. (B) 

Functional switches mapped to PPIs were divided according to whether they affected a PPI 

(yes) or not (no). For each tumor type we plotted the proportion of functional switches (y axis) 

that occurred in cancer drivers (black), in interactors of drivers (dark gray), or in other genes 

(light gray). All tests for the enrichment of PPIs affected by switches in driver interactors were 

significant except for KIRC, LUAD and LUSC (Supplemental Experimental Procedures). (C) 

Network for module 11 (Table S6) with PPIs predicted to be lost (red). Cancer drivers are 

indicated in black or gray if they had a functional switch or not, respectively. Other genes are 

indicated in dark blue or light blue if they had a functional switch or not, respectively. We do not 

show unaffected interactions. (D) OncoPrint for the samples that present protein-affecting 

mutations (PAMs) in drivers or switches from (C). Mutations are indicated in black and PPI-

affecting switches are indicated in red (loss in this case). Other switches with no predicted effect 

on the PPI are depicted in gray. The top panel indicates the tumor type of each sample by color 

(same color code as in previous figures). The second top panel indicates whether the sample 

harbors a PAM in a tumor-specific driver (black) or not (gray), or whether no mutation data is 

available for that sample (white). (E) As in (C) for module 28 (Table S6). (F) OncoPrint for the 

switches and drivers from (E). Colors are as in (D).  
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Figure 4. Isoform switches as potential drivers of cancer. (A) Number of functional isoform 

switches and potential AS-drivers detected in each tumor type. (B) Candidate potential AS-

drivers grouped according to their properties: disruption of protein–protein interactions (PPIs), 

significant recurrence across patients (Recurrence), gain or loss of a protein feature that is 

frequently mutated in tumors (Affects M_feature), mutual exclusion and sharing pathway with 

cancer drivers (Pannegative). Horizontal bars indicate the number of switches for each property. 

The vertical bars indicate those in each of the intersections indicated by connected bullet points 

(Conway et al., 2017). (C) Classification of samples according to the relevance of potential AS-

drivers or Mut-drivers in each tumor type. For each tumor type (x axis), the positive y axis shows 

the percentage of samples that have a proportion of switched potential AS-drivers higher than 

the proportion of mutated Mut-drivers. The negative y axis shows the percentage of samples in 

which the proportion of mutated Mut-drivers is higher than the proportion of switched potential 

AS-drivers. Only patients with mutation and transcriptome data are shown. (D) Each of the 
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patients from (C) is represented according to the percentage of mutated Mut-drivers (y axis) and 

the percentage of switched potential AS-drivers (x axis).  
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