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Abstract

Purpose: To allow efficient extraction of NODDI parameters from data intended for
DTI analysis, permitting biophysical analysis of DTI datasets.

Theory: Simple relations between NODDI parameters (representing axon density, ν,
and dispersion, τ) and DTI invariants (MD and FA) were derived through moment
expansion of the NODDI signal model with no CSF compartment. NODDI-DTI uses
these relations to extract NODDI parameters from DTI data. Diffusional kurtosis
strongly biased MD estimates, thus a novel heuristic correction requiring only DTI
data was derived and used.

Methods: NODDI-DTI parameter estimates using the first shell of data were compared
to parameters extracted by fitting the NODDI model to (i) both shells (recom-
mended) and (ii) the first shell (as for NODDI-DTI) of data in white matter of
three different in vivo datasets, with CSF volume fraction fixed at zero.

Results: NODDI-DTI and one-shell NODDI parameter estimates gave similar errors
compared to two-shell NODDI estimates. NODDI-DTI gave unphysical parameter
estimates in a small percentage of voxels, reflecting voxelwise DTI estimation error
or NODDI model invalidity.

Conclusion: NODDI-DTI is a promising technique to interpret restricted datasets ac-
quired for DTI analysis biophysically, though its limitations must be borne in mind.

Keywords: diffusion MRI, NODDI, DTI, neurite density, neurite orientation dispersion

Word count: 4997
Number of figures: 7

∗Corresponding author
Email address: ledwards@cbs.mpg.de (Luke J. Edwards)

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2016. ; https://doi.org/10.1101/077099doi: bioRxiv preprint 

https://doi.org/10.1101/077099
http://creativecommons.org/licenses/by-nd/4.0/


Introduction

The white matter (WM) of the human brain consists of dense bundles of neuronal

axons connecting its functional areas. Neural circuits thus formed allow these areas to

work together as a coherent entity. Changes in WM impact these neural circuits, and are

thus the subject of studies investigating pathology [1, 2, 3], and cognition and learning [4,

5].

Diffusion tensor imaging (DTI) [6] is, at present, the most commonly used method to

observe WM changes in-vivo [4, 5, 7]. This is because DTI is simply implemented and

time efficient while allowing robust extraction of complementary parameters (e.g. ‘frac-

tional anisotropy’ (FA) and ‘mean diffusivity’ (MD) [8]) sensitive to microstructural WM

changes [9], even in clinical contexts (see e.g. References [1, 3]). Despite its microstructural

sensitivity, the underlying model of DTI, gaussian anisotropic diffusion [6], is unspecific to

biological changes. Numerous studies show MD and FA change in white matter (e.g. due

to learning a new skill [4] or the pathology of Alzheimer’s disease [2]), but cannot, in the

absence of further information, distinguish e.g. changes in axon density from changes in

axon arrangement.

In order to extract parameters of direct neurobiological relevance from diffusion MRI,

we need biophysical models [10, 11, 9]. The majority of biophysical models (including the

NODDI model investigated below) are ‘multicompartment models’. Such models assume

voxelwise diffusion contrast arises from linear combination of diffusion signals from distin-

guishable water compartments. Numerous multicompartment models have been proposed

(see e.g. References [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]), but the complexity and lack of

robustness of most of these models hinder their routine use in neuroscientific and clinical

studies.

The NODDI (neurite orientation dispersion and density imaging) model [17] is a

multicompartment model allowing robust and time-efficient extraction of maps of pa-

rameters representing neurite (in WM: axon) density and dispersion, and represents a

trade-off between complexity, robustness, and acquisition-time duration. Robustness is

achieved by fixing the values of several model parameters from earlier models [22, 18],
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reducing the number of fitted parameters. As a result, the amount of data required to

invert the model is reduced, giving acquisition-time durations approaching those avail-

able in clinical settings [17]. NODDI is thus gaining popularity in diffusion application

studies [23, 24, 15, 25, 26, 20], though the potential of fixed parameters leading to bias

in the fitted parameters has been a source of criticism [15, 27, 21].

Previous studies have shown correlations between NODDI parameters and MD and

FA [17, 28, 25, 29, 30]. Below, we derive relations demonstrating their origin: in the

absence of ‘free water’ (see below), MD and FA are formally sufficient to uniquely define

parameters fitted in the NODDI model. Application of these relations to extract NODDI

parameters from DTI parameters constitutes ‘NODDI-DTI’. Below, we demonstrate that

NODDI-DTI gives reasonable estimates of NODDI parameters in WM, and characterise

its limitations.

Theory

The NODDI signal model supposes three compartments: intraneurite water, extra-

neurite water, and free water [17]. The biophysical parameters fitted in the model are

neurite density (volume fraction of the intraneurite compartment), ν; a measure of neu-

rite dispersion, κ; a vector giving the main neurite orientation; and a volume fraction

accounting for partial-volume effects with free water (nominally CSF) [31, 32, 17]. An

important fixed parameter is the intrinsic diffusivity of the intraneurite compartment,

d = 1.7× 10−3 mm2 s−1 [17]. The primary neurite orientation [17] is formally equivalent

to the principal eigenvector of the diffusion tensor (DT) (see Appendix A), as previously

observed empirically [33].

We examine a reduced form of the NODDI model with no CSF volume fraction. In

order to avoid overestimating CSF volume fraction during NODDI model fitting [15, 34],

we fix this parameter at zero in our NODDI fits. For ease of computation we use τ as our

measure of dispersion, where [15, 17, 18]

τ =
1√

πκ exp(−κ)erfi(
√
κ)
− 1

2κ
, τ ∈ [1/3, 1], (1)
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and erfi is the imaginary error function. τ ranges from 1/3 (isotropically distributed

neurites) to 1 (perfectly aligned neurites)—increasing τ corresponds to increasing neurite

alignment—and is the average of cos2(ψ) over the neurite distribution, where ψ is the

angle between a given neurite and the main neurite orientation [15].

By expanding the NODDI signal model in moments, one can derive a DT correspond-

ing to the NODDI model [18]. As shown in Appendix A, appropriate combination of the

eigenvalues of this DT allows expression of ν and τ in terms of MD and FA of this DT:

ν = 1−

√
1

2

(
3MD

d
− 1

)
, (2)

τ =
1

3

(
1 +

4

|d−MD|
MD · FA√
3− 2FA2

)
. (3)

These relations are exemplified in Figure 1.

Eqs. (2) and (3) demonstrate a one-to-one mapping from (MD,FA) to (ν, τ). We can

predict domains within which MD and FA should lie if the NODDI model provides a

valid representation: substituting ν ∈ [0, 1] and τ ∈ [1/3, 1] into Eqs. (2) and (3) gives

the domains

MD ∈ [d/3, d], FA ∈

[
0,

√
3

2

|d−MD|√
2MD2 + (d−MD)2

]
. (4)

Exceptions will arise in practice either from DT measurement error or the invalidity of

the NODDI model as a representation in a given voxel.

Estimation of a quantitative DT (i.e. the first moment of the diffusion signal) is non-

trivial, as immediately apparent from examination of Figure 1: the main bulk of the MD

values lies below the prediction of Eq. (2). A large part of this bias is due to neglecting

higher order moments in estimating MD [35]. In order to reduce this bias, we define the

heuristically corrected MD,

MDh = MD +
b

6

(
3∑

i,j=1

1 + 2δij
15

λiλj

)
, (5)

where λi is the ith eigenvalue of the measured DT and δij is the Kronecker delta. Eq. (5),
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derived in Appendix B, pragmatically assumes that: only the first higher moment, diffu-

sional kurtosis [36], contributes; the square of the apparent diffusion coefficient is uncor-

related with the apparent diffusional kurtosis; the mean diffusional kurtosis can be taken

to be unity (approximately true over much healthy human brain WM [36, 37, 38]); and

the effect of diffusional kurtosis on each individual eigenvalue is negligible. Figure 1 shows

much closer agreement between the prediction of Eq. (2) and the experimental data when

using MDh; further justification of this correction is given below.

Substituting Eq. (5) into Eq. (2) gives the relation used in the following to compute

ν from DT invariants:

ν = 1−
√

3MDh

2d
− 1

2
= 1−

√√√√ 3

2d

(
MD +

b

6

(
3∑

i,j=1

1 + 2δij
15

λiλj

))
− 1

2
. (6)

The effect of failing to correct for diffusional kurtosis is much less pronounced for

FA [35], and preliminary experiments (data not shown) showed that applying diffusional

kurtosis correction to only MD in Eq. (3) resulted in a modest increase in the number of

unphysical τ parameter estimates. This latter observation can be explained using Eq. (4):

whenever heuristic diffusional kurtosis correction leads to overestimation of MD, the up-

per bound for allowed FA values is artificially decreased, potentially leading to unphysical

τ estimates. We therefore apply no correction to Eq. (3).

Methods

Data collection and preprocessing

All data were collected by scanning healthy volunteers in a MAGNETOM Tim Trio

3 T MRI system (Siemens AG, Healthcare Sector, Erlangen, Germany) as part of a study

approved by a local ethics committee. In each case informed written consent was obtained

prior to scanning.

The first two datasets (subject 1 and subject 2) used a 2D multiband spin-echo

echo-planar imaging (EPI) sequence supplied by the Center for Magnetic Resonance

Research, University of Minnesota [39, 40, 41]. Sequence parameters: field of view (FoV):
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220 × 220 mm2, 81 slices, 1.7 mm isotropic resolution, echo time: TE = 112 ms, vol-

ume repetition time: TR = 4835 ms, partial Fourier factor: 6/8, multiband factor: 3,

total 4 × 66 EPI images with 60 diffusion weighted images per shell using b-values of

b = {1000, 2500} s mm−2, and 4 × 6 interleaved non-diffusion weighted (b = 0) images,

2× phase encoding polarities (Anterior → Posterior / Posterior → Anterior).

The third dataset (subject 3) used a 2D spin-echo EPI sequence. Sequence parameters:

FoV: 192×189 mm2, 63 slices, 2.0 mm isotropic resolution, TE = 100 ms, TR = 11700 ms,

parallel imaging factor: 2, phase encoding polarity (Anterior → Posterior). Additional

parameters for high b-value shell: partial Fourier factor: 6/8, total 111 EPI images with

100 diffusion weighted images with b = 2800 s mm−2 and 11 interleaved b = 0 images.

Additional parameters for low b-value shell: no partial Fourier, total 110 EPI images with

100 diffusion weighted images with b = 800 s mm−2 and 10 interleaved b = 0 images.

In all cases (subjects 1–3) subject motion, eddy currents, and susceptibility distortions

were corrected for using the ACID toolbox [42]; for details see References [43, 37, 44, 45].

Additionally for the multiband data (subjects 1 and 2), after the above corrections were

applied, the corrected data from the two phase encoding directions were summed for use

in subsequent analysis. This final step was unnecessary for subject 3.

Parameter estimation and comparison

Parameters were estimated only in WM voxels determined to be unaffected by CSF

or grey matter partial volume effects. This determination was made by thresholding at

50 % probability a WM probability map obtained by segmenting the first b = 0 image of

each respective dataset in SPM 12 [46].

The ACID toolbox was used to compute FA, MD, and the eigenvalues of the DT

from the low b-value shell of each dataset, and home-written SPM scripts were then used

to generate ν and τ using Eqs. (6) and (3), respectively, from these DT parameters. For

subjects 1 and 2, the ACID toolbox was also used to simultaneously estimate the diffusion

and kurtosis tensors [37], giving silver standard mean diffusivity estimates (MDDKI) less

biased by the effects of diffusional kurtosis [35] allowing evaluation of the validity of Eq. 5.

MDDKI was not computed for subject 3 as the second b-value was deemed too large to

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2016. ; https://doi.org/10.1101/077099doi: bioRxiv preprint 

https://doi.org/10.1101/077099
http://creativecommons.org/licenses/by-nd/4.0/


allow accurate estimation of the kurtosis tensor [36].

NODDI-silver standard results were obtained by fitting both shells of data using the

NODDI toolbox [17, 47] with CSF volume fraction fixed at zero, followed by conversion of

κ into τ using a home-written SPM script implementing Eq. (1). We refer to these silver-

standard results as the ‘two-shell NODDI’ results. In order to investigate the magnitude

of the differences between NODDI and NODDI-DTI, fits were also made of the subset

of the diffusion data used for the DTI fitting using the NODDI toolbox. The term ‘one-

shell NODDI’ distinguishes these results from NODDI-DTI and silver-standard NODDI

results. As the CSF volume fraction is fixed at zero, one-shell NODDI is well-posed [48].

Parameter estimate comparisons were quantified using means and standard deviations

of the differences, visualised using Bland–Altman (BA) plots [49]. Voxels where NODDI-

DTI gave unphysical parameter estimates (ν ∈ [0, 1], τ ∈ [1/3, 1]) were excluded from

analysis.

Results

Before examining the results of NODDI-DTI, we examine the heuristic correction of

MD for diffusional kurtosis (Eq. (5)) used to calculate ν. Figure 1 and the BA plots in

Figure 2 show that the heuristically corrected MD, MDh, is less biased compared to the

uncorrected MD, justifying use of the correction. Numerical values (mean ± one standard

deviation) of the differences in Figure 2 are for subject 1: 0.117±0.040 (MD), 0.025±0.046

(MDh); and for subject 2: 0.119± 0.041 (MD), 0.029± 0.041 (MDh).

The similarity of the NODDI and NODDI-DTI results can be seen in Figure 3, which

shows parameter maps computed with each method, along with maps showing the differ-

ences between the parameter estimates. The differences between the NODDI and NODDI-

DTI results are further presented in several complementary ways: BA plots in Figure 4

show general behaviour, plots of the means and standard deviations of the differences

in Figure 5 compare this general behaviour across subjects, and the series of slices in

Figures 6 and 7 show the behaviour of NODDI-DTI estimates throughout the brain.

Subjects 1 and 2, measured using the same protocol, show the best agreement, but all
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three subjects behave similarly, demonstrating robustness of NODDI-DTI.

NODDI-DTI gave unphysical parameter estimates for some voxels: for ν such voxels

constituted 2.07 %, 2.19 %, and 6.83 % of the total WM voxels for subjects 1–3 re-

spectively; for τ such voxels constituted 0.27 %, 0.74 %, and 5.39 %. The proportion of

unphysical parameter estimates was higher for ν than τ , and greater for subject 3 than

for subjects 1 and 2.

The magnitudes of the means and standard deviations of the differences between

one- and two-shell NODDI are shown in Figure 5. One-shell NODDI gave stable fits in

this case because the CSF compartment fraction was fixed at zero [48]. NODDI-DTI

showed smaller mean differences and one-shell NODDI smaller standard deviations of the

differences. Overall, however, both methods were comparable, further demonstrating the

validity of NODDI-DTI.

Discussion

This work has demonstrated that, with caveats to be discussed below, parameters

of potential neurobiological relevance from the NODDI signal model can be extracted

from DTI parameters. The improved interpretability thus gained is not only applicable

to future DTI studies, but also existing DTI studies.

As an example of using NODDI-DTI to reinterpret existing DTI studies, we apply the

method superficially to the study of Scholz, et al. [4], which demonstrated a statistically

significant FA increase in WM “underlying the intraparietal sulcus” after participants

learned to juggle [4]. Assuming no concomitant change in MD (as suggested by the authors

not reporting any significant change), this FA increase could be interpreted, using Eq. (3),

as an increase in τ , i.e. an increase in alignment of neuronal axons in this area with

training. This result is much more specific than a change in FA, though we note that

quantitative analysis would require reanalysis of the original data. A follow up study

allowing for a full NODDI analysis, combined with proper mechanistic analysis of the

WM plasticity mechanisms, would allow investigation of this effect in more detail.

Unfortunately, NODDI-DTI did not always give physically plausible parameter esti-
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mates for the datasets studied herein. We posit four overlapping explanations for these

unphysical estimates, related to NODDI-DTI assumptions.

Assumption 1: DTI parameters can be accurately estimated from the diffusion signal.

Errors in DTI parameter estimation will lead to errors in parameters estimated using

Eqs. (3) and (6), potentially giving unphysical parameter estimates. The b-values used

likely resulted in overestimates of FA in regions of high anisotropy due to poor estimates

of the low DT eigenvalues [8, 50], explaining why many of the unphysical τ estimates were

found in the highly anisotropic corpus callosum (Figure 7). This hypothesis is bolstered by

the results of subject 3: a lower b-value increased the proportion of unphysical estimates,

especially in highly anisotropic regions.

Assumption 2: CSF can be ignored in voxels with a high probability of being WM.

NODDI-DTI could give unphysical parameter estimates whenever a voxel contains a

significant amount of CSF: the high diffusivity of CSF [17] can take MDh outside the

limits of NODDI-DTI (Eqs. (4)). Figures 6 and 7 show that many of the voxels where

NODDI-DTI gave unphysical parameter estimates are close to the edge of the WM mask,

in line with partial volume effects being important. The larger voxel size used for scanning

subject 3 means that partial volume effects are more prominent, partially explaining the

poorer ν performance in this case. Because CSF volume fraction was fixed at zero in our

NODDI fits, residual partial volume effects may also have affected our NODDI parameter

estimates.

Assumption 3: MD can be heuristically corrected for diffusional kurtosis bias. Figure 1

shows that diffusional kurtosis affects our estimates of MD; such effects could take MD

estimates out of the range of applicability for NODDI-DTI. While our heuristic correction

(Eq. (5)) substantially mitigates this issue, it does not eliminate it. This is evident in the ν

Bland–Altman plots (Figure 4), where the mean and standard deviation of the differences

visibly vary with the mean ν estimate, implying (via Eq. (6)) residual correlation between

the errors and the corrected MD.

Residual bias in the region around the corpus callosum of the ν difference maps in

Figure 6 can be explained by incomplete diffusional kurtosis correction. Here the mean
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diffusional kurtosis is greater than unity [36], and the low DT eigenvalues are poorly

estimated (see above), meaning the heuristic correction is not entirely valid.

Assumption 4: the NODDI model is a valid representation of the diffusion signal.

Assumptions underlying the NODDI signal model can be considered overly restrictive:

the model cannot formally represent WM voxels containing perpendicularly crossing fibre

bundles [51], it is controversial whether intra- and extraneurite intrinsic diffusivities can

be taken to be equal [27], and the extraneurite signal averaging is unrealistic [21]. NODDI

will also be unrepresentative whenever a voxel contains a significant amount of iron

(e.g. through partial voluming with iron rich grey matter nuclei): susceptibility effects

artificially lower diffusivities [52], and so lower d, assumed to be a fixed value in NODDI.

In voxels where the NODDI signal model is unrepresentative, NODDI-DTI may give

unphysical parameter estimates. Such failures will not be immediately apparent in the

NODDI fitted parameters because constraints in the fitting procedure mean parameters

outside the physical range can never be returned, regardless of the model’s biological

plausibility in a given voxel.

The greater number of unphysical NODDI-DTI parameter estimates for ν as com-

pared to τ can be explained by ν estimation being more sensitive to partial volume and

diffusional kurtosis effects. This is borne out by the locations of the failures (Figure 6):

mainly either close to the edge of the WM mask (implying partial volume effects), or in

regions of high anisotropy (implying residual diffusional kurtosis effects).

Pathology could further undermine the assumptions underlying NODDI-DTI: patho-

logical processes can lead to free water located far from CSF compartments [53], can

affect mean kurtosis values [54], and could affect the ‘true’ value of d [15].

NODDI-DTI could be improved and made more appropriate for clinical studies through

investigation of the following points. Unphysical parameter estimates could be pragmati-

cally eliminated by constraining DT fitting using Eqs. (4) (appropriately corrected using

Eq. (5)). Estimates of CSF volume fraction could be incorporated into NODDI-DTI using

the free water elimination method [53, 32, 55]. Known values of mean diffusional kurtosis

in the brain [36, 37, 38] could be used to construct mean diffusional kurtosis Bayesian
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priors [56, 57], or diffusional kurtosis corrected MD and FA could be measured directly

using time-efficient methods [58, 59, 60].

We finish by providing practical recommendations for a minimal NODDI-DTI acquisi-

tion scheme. Results at b = 1000 mm2 s−1 were reasonable, and we would recommend this

as a lower b-value bound; b = 800 mm2 s−1 unfortunately gave many unphysical param-

eter estimates in the corpus callosum. An upper bound on b-value comes from ensuring

diffusional kurtosis does not constitute the majority of the diffusion contrast. Eq. (B.3)

shows that (assuming the apparent diffusional kurtosis is approximately unity [36, 37, 38])

choosing b� 6/d ≈ 3500 mm2 s−1 means that the DT dominates diffusion contrast, giv-

ing an upper b-value bound. High resolution acquisitions which maintain good signal to

noise ratio [50] are recommended to reduce partial volume effects. Accurate DT estima-

tion requires measurement of at least 30 distinct diffusion directions [6]; we recommend

at least this number for application of NODDI-DTI, although the lowest number of ori-

entations tested was 60.

Conclusions

We have estimated NODDI biophysical parameters representing neurite density and

dispersion with reasonable accuracy from diffusion tensor parameters extracted from

single-shell diffusion data. Heuristic kurtosis correction of MD was necessary to remove

diffusional kurtosis bias; use of corrections such as that derived here could improve other

analyses of single-shell diffusion data requiring quantitative MD estimates.

NODDI-DTI opens up two new opportunities: (a) more direct neurobiological inter-

pretation of observed microstructural changes in DTI data (including interpretation of

existing datasets), and (b) simple and time efficient estimation of biophysical parameters

from smaller diffusion datasets, despite limitations due to the underlying NODDI model

and difficulties estimating accurate diffusion tensors.
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Appendix A. Derivation of NODDI-DTI relations (Eqs. (2) and (3))

Appendix A.1. Diffusion tensor of the NODDI signal model

We begin derivation of the NODDI-DTI relations by deriving the DT arising from the

NODDI signal model. This derivation is similar to that of Reference [18], where the DT

of a precursor to the NODDI model [22] was derived.

The normalised signal arising from the NODDI signal model can be written [17]

S = ν

∫
p(κ, ~µ, ~n) exp{−bd~q t~n~n t~q} d~n+(1− ν) exp{−b~q tDec~q} (A.1)

where the first term represents the intraneurite water compartment with diffusivity d

parallel to the neurite and zero perpendicular to it; the second term represents the extra-

neurite water compartment; arrows denote normalised vectors; · t denotes transposition;

~q is the diffusion gradient vector; ν represents neurite density; and

Dec = d

∫
p(κ, ~µ, ~n)

(
~n~n t + (1− ν)(1− ~n~n t)

)
d~n, (A.2)

the DT of the extraneurite compartment. The form of the extraneurite DT arises from

assuming that: the diffusivity of the extraneurite space in the absence of neurites is equal

to the intraneurite diffusivity along the direction of the neurite [17], the neurites reduce

the diffusivity in a long-time-limit tortuous manner [17], and extracellular water is in fast
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exchange among all neurite orientations [21]. The probability density

p(κ, ~µ, ~n) =
exp{−κ(~µ t~n)2}∫

exp{−κ(~µ t ~m)2} d~m
, (A.3)

is a Watson distribution giving the distribution of neurites about main orientation ~µ

with dispersion parameter κ [17]. Isotropically distributed neurites correspond to κ = 0,

neurites perfectly aligned along ~µ correspond to κ→∞.

Eq. (A.1) can be equated with an expansion of the normalised diffusion signal in b [61],

log(S) = −b~q tDNODDI~q +O(b2), (A.4)

such that the DT can be extracted by inspection from

d log(S)

db

∣∣∣∣
b=0

= −νd
∫
p(κ, ~µ, ~n)~q t~n~n t~q d~n−(1− ν)~q tDec~q (A.5)

= −~q t

[
d

∫
p(κ, ~µ, ~n)

(
~n~n t + (1− ν)2(1− ~n~n t)

)
d~n

]
~q, (A.6)

as

DNODDI = d

∫
p(κ, ~µ, ~n)

(
~n~n t + (1− ν)2(1− ~n~n t)

)
d~n (A.7)

= (1− ν)2d+ (2− ν)νd

∫
p(κ, ~µ, ~n)~n~n t d~n . (A.8)

The integral appearing on the right-hand side of Eq. (A.8) is given by [18]

∫
p(κ, ~µ, ~n)~n~n t d~n = τ~µ~µ t +

(1− τ)

2
(1− ~µ~µ t), (A.9)

where τ is defined in Eq. (1). Inserting Eq. (A.9) into Eq. (A.8) gives

DNODDI = ((1−ν)2d+(2−ν)ντd)~µ~µ t +((1−ν)2d+(2−ν)ν
(1− τ)

2
d)(1−~µ~µ t), (A.10)

from which, by inspection, the largest eigenvalue (corresponding to an eigenvector co-
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linear with the main neurite orientation) is

λ1 = ~µ t DNODDI ~µ = (2− ν)ντd+ (1− ν)2d, (A.11)

and the other two eigenvalues are degenerate (with respective eigenvectors arbitrarily

defined in the plane perpendicular to ~µ):

λ2 = λ3 = (2− ν)ν
(1− τ)

2
d+ (1− ν)2d. (A.12)

Because λ1 ≥ λ2, when the primary eigenvector of DNODDI is well-defined (i.e. when

DNODDI is not isotropic), this eigenvector is formally equivalent to the main neurite ori-

entation, as observed empirically [33].

Appendix A.2. Relation of ν to MD (Eq. (2))

MD is defined in terms of the eigenvalues of a DT as [6]

MD =
λ1 + λ2 + λ3

3
. (A.13)

Inserting the eigenvalues from Eqs. (A.11) and (A.12) results in

3MD

d
= (2− ν)ν + 3(1− ν)2. (A.14)

Solving this quadratic equation for ν one obtains

ν = 1±

√
1

2

(
3MD

d
− 1

)
, (A.15)

where the sign ambiguity is resolved by recalling ν ≤ 1 to give Eq. (2).

Appendix A.3. Relation of τ to MD and FA (Eq. (3))

A convenient definition of FA in terms of the eigenvalues of a DT is [6]:

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

. (A.16)
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Because the eigenvalues are linear functions of τ (Eqs. (A.11) and (A.12)) and there is

symmetry between them, it is convenient to simplify this equation by solving for λ2 before

proceeding further. Utilising the identities λ1 = 3MD− λ2 − λ3 (Eq. (A.13)) and λ2 = λ3

(Eq. (A.12)), Eq. (A.16) becomes:

FA2 =
9(λ2 −MD)2

(3MD− 2λ2)2 + 2λ2
2

, (A.17)

which can be rearranged into the quadratic equation

λ2
2 − 2MDλ2 + 3MD2 1− FA2

3− 2FA2
= 0 (A.18)

for which the solutions are:

λ2 = MD

(
1± FA√

3− 2FA2

)
. (A.19)

Eq. (A.19), reveals that all we must do to express τ in terms of MD and FA is (i) express

τ in terms of MD and λ2 and then (ii) substitute Eq. (A.19) into the resulting expression.

Part (i) is achieved by substituting Eq. (2) into Eq. (A.12), then simplifying to give

λ2 =
1

4
(d+ 3MD− 3(d−MD)τ), (A.20)

which, after rearranging for τ , reveals

τ =
1

3

(
1

d−MD
(d+ 3MD− 4λ2)

)
. (A.21)

We can now perform part (ii): inserting Eq. (A.19) into Eq. (A.21) and simplifying

gives the result

τ =
1

3

(
1∓ 4

d−MD

MD · FA√
3− 2FA2

)
. (A.22)

The sign ambiguity is resolved by recalling that τ ≥ 1/3 [15] and that both MD and FA

are nonnegative, resulting in Eq. (3).
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Eq. (3) is ill-defined at MD = d (the denominator of the second term goes to zero);

we classify values at this point as ‘unphysical’ unless FA is also zero. This latter situation

corresponds to the complete absence of fibres (as confirmed by inserting MD = d into

Eq. (2)), and so τ is taken to equal its isotropic value, 1/3.

Appendix B. Heuristic correction of MD for diffusional kurtosis (Eq. (5))

When diffusional kurtosis and higher order moments are zero, the normalised diffusion

signal S is related to the apparent diffusivity, Dapp, by [62]

log(S) = −bDapp, (B.1)

giving

MD = 〈Dapp〉 =
〈log(S)〉
−b

, (B.2)

where 〈·〉 denotes averaging over all diffusion directions.

The complicated microstructure of white matter requires higher order moments to

represent the diffusion signal [61, 36, 35]. To the order of the diffusional kurtosis the

normalised diffusion signal is

log(S) = −bDapp +
b2

6
Dapp

2Kapp, (B.3)

where Kapp is the apparent diffusional kurtosis [61]. The effective mean diffusivity MDeff

derived from this signal (as per Eq. (B.2)) would be

MDeff =
〈log(S)〉
−b

= MD− b

6

〈
Dapp

2Kapp

〉
, (B.4)

which differs from the true MD by a term which we call ‘diffusional kurtosis bias’. While

good estimates of unbiased MD can be obtained from multi-b-value data [35], such extra

data is not available for most DTI acquisitions, and so we derive and use an heuristic

correction to mitigate diffusional kurtosis bias.
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Defining the covariance of Dapp
2 and Kapp:

cov
(
Dapp

2, Kapp

)
=
〈
(Dapp

2 −
〈
Dapp

2
〉
)(Kapp −MK)

〉
(B.5)

=
〈
Dapp

2Kapp

〉
−
〈
Dapp

2
〉

MK, (B.6)

where MK = 〈Kapp〉 , the mean kurtosis, we can write Eq. (B.4) in the form

MDeff = MD− b

6

(〈
Dapp

2
〉

MK + cov
(
Dapp

2, Kapp

))
. (B.7)

We pragmatically assert that cov (Dapp
2, Kapp) = 0, i.e. assume that the apparent diffu-

sivity and apparent diffusional kurtosis are uncorrelated. This assertion results in

MDeff ≈ MD− b

6

〈
Dapp

2
〉

MK, (B.8)

which is further simplified by assuming MK = 1 (true in much healthy WM [36, 37, 38]):

MDeff ≈ MD− b

6

〈
Dapp

2
〉
. (B.9)

To compute the average in Eq. (B.9), we express Dapp in components of the DT, D,

and orientation vector, ~q, i.e. [36]

〈
Dapp

2
〉

=
3∑

i,j,k,l=1

〈qiqjqkqlDijDkl〉 . (B.10)

As we integrate over all ~q on the sphere, we can freely choose the basis of ~q. We thus

choose the diagonal basis of D, simplifying Eq. (B.10) to:

〈
Dapp

2
〉

=
3∑

i,k=1

〈
q2
i q

2
kλiλk

〉
=

3∑
i,k=1

〈
q2
i q

2
k

〉
λiλk, (B.11)

where λi is the ith eigenvalue of D and is independent of orientation. Averages over

the products of the components qi, evaluate to 〈q2
i q

2
k〉 = (1 + 2δik)/15, where δik is the
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Kronecker delta, thus 〈
Dapp

2
〉

=
3∑

i,k=1

1 + 2δik
15

λiλk. (B.12)

Inserting Eq. (B.12) into Eq. (B.9) and rearranging gives the heuristically corrected

MD:

MD ≈ MDh = MDeff +
b

6

(
3∑

i,k=1

1 + 2δik
15

λiλk

)
, (B.13)

which becomes independent of diffusional kurtosis upon assuming the measured (diffu-

sional kurtosis biased) eigenvalues can be substituted for the ‘true’ eigenvalues, giving

Eq. (5).
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Figure 1: Log density scatter plots comparing DTI invariants (computed using only the low b-value shell
of data) and NODDI parameters (fitted using both shells of data). Each row shows a different subject as
labelled. Overlaid red lines in the first and second columns show values of ν for given values of MD and
MDh, respectively, computed using Eq. (2). The overlaid red lines in the third column show τ computed
using Eq. (3) for given FA, with MD set to the mean value in the WM of each subject.
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Figure 2: Log density Bland–Altman plots comparing MDDKI computed via simultaneous fit of the
kurtosis tensor and DT using both shells of data, and mean diffusivity from a DT fit of the low-b-value
shell without (MD, left) and with (MDh, right) heuristic diffusional kurtosis correction. Simultaneous fit
of the kurtosis tensor and DT was performed as per Reference [37]. Differences are defined as MDDKI −
(MD or MDh). Each row shows a different subject as labelled; results were not computed for subject 3
as the second b-value was deemed too large to allow accurate estimation of the kurtosis tensor [36]. Red
lines show mean difference, blue lines show ± two standard deviations of the difference.
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Figure 3: Comparison of maps of parameters computed using NODDI-DTI and two-shell NODDI. Voxels
where NODDI-DTI gave an unphysical parameter estimate are shown in blue. Windows are as per the
limits of the colour scales beside each map, and slice number is given at the top left of the row for each
subject, to allow for cross-referencing with Figures 6 and 7.

26

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2016. ; https://doi.org/10.1101/077099doi: bioRxiv preprint 

https://doi.org/10.1101/077099
http://creativecommons.org/licenses/by-nd/4.0/


S
u
b
je
c
t
1

ν

0.2 0.4 0.6 0.8

mean

-0.2

0

0.2

0.4

d
iff
er
en

ce

τ

0.4 0.6 0.8

mean

-0.4

-0.2

0

d
iff
er
en

ce

S
u
b
je
c
t
2

0.2 0.4 0.6 0.8

mean

-0.4

-0.2

0

0.2

0.4

d
iff
er
en

ce

0.4 0.6 0.8

mean

-0.4

-0.2

0

0.2

d
iff
er
en

ce

S
u
b
je
c
t
3

0.2 0.4 0.6 0.8

mean

-0.4

-0.2

0

0.2

0.4

d
iff
er
en

ce

0.4 0.6 0.8

mean

-0.5

0

0.5

d
iff
er
en

ce

Figure 4: Bland–Altman plots comparing NODDI-DTI and two-shell NODDI results. Plotted is the log-
density, and differences are defined as (two-shell NODDI parameter) − (NODDI-DTI parameter). Red
lines show mean difference, blue lines show ± two standard deviations of the difference; the numerical
values of the means and standard deviations of the differences are given in Figure 5. Axis ranges show
bounds of means and differences in each case.
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Figure 5: Plots of the mean differences between NODDI-DTI and two-shell NODDI (×), and between
one-shell NODDI (using the NODDI toolbox to fit the shell of data used by NODDI-DTI) and two-shell
NODDI (o) parameter estimates. Error bars show ± one standard deviation of the differences. Differences
are defined as (two-shell NODDI parameter)− (estimated parameter). Numerical mean values are given
beside each plotted point, and numerical values for the standard deviations are given beside the upper
error bar.
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Figure 6: Absolute value maps of the difference between ν computed using NODDI-DTI and two-shell
NODDI. Data from all three subjects are shown, and slice numbers are given for each row (slice) and
column (subject). The extent of the colour scale at the top right shows the windowing for all slices.
Blue denotes voxels where NODDI-DTI gave an unphysical parameter estimate.
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Figure 7: Absolute value maps of the difference between τ computed using NODDI-DTI and two-shell
NODDI. Data from all three subjects are shown, and slice numbers are given for each row (slice) and
column (subject). The extent of the colour scale at the top right shows the windowing for all slices.
Blue denotes voxels where NODDI-DTI gave an unphysical parameter estimate. The large number of
unphysical τ values in the corpus callosum of subject 3 is discussed in the text.
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