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This study explores whether the myelinated vagal connection between the heart and the brain
is involved in emotion recognition. The Polyvagal theory postulates that the activity of the
myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception
of emotions could be one of this skills dependent on heart-brain interactions. However, this
assumption was differently supported by diverging results suggesting that it could be related to
confounded factors. In the current study, we recorded the resting state vagal activity (reflected by
High Frequency Heart Rate Variability, HF-HRV) of 77 (68 suitable for analysis) healthy human
adults and measured their ability to identify dynamic emotional facial expressions. Results show
that HF-HRV is not related to the recognition of emotional facial expressions in healthy human
adults. We discuss this result in the frameworks of the polyvagal theory and the neurovisceral
integration model.
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Introduction1

The behavior of an animal is said social when involved in in-2

teractions with other animals (Ward & Webster, 2016). These3

interactions imply an exchange of information, signals, be-4

tween at least two animals. In humans, the face is an efficient5

communication channel, rapidly providing a high quantity of6

information. Facial expressions thus play an important role7

in the transmission of emotional information during social8

interactions. The result of the communication is the combina-9

tion of transmission from the sender and decoding from the10

receiver (Jack & Schyns, 2015). As a consequence, the quality11

of the interaction depends on the ability to both produce and12

identify facial expressions. Emotions are therefore a core13

feature of social bonding (Spoor & Kelly, 2004). Health14

of individuals and groups depend on the quality of social15

bonds in many animals (Boyer, Firat, & Leeuwen, 2015; S. L.16

Brown & Brown, 2015; Neuberg, Kenrick, & Schaller, 2011),17

especially in highly social species such as humans (Singer &18

Klimecki, 2014).19

The recognition of emotional signals produced by others is20

not independent from its production by oneself (Niedenthal,21

2007). The muscles of the face involved in the production of22

a facial expressions are also activated during the perception of23

the same facial expressions (Dimberg, Thunberg, & Elmehed,24

2000). In other terms, the facial mimicry of the perceived25

emotional facial expression (EFE) triggers its sensorimotor26

simulation in the brain, which improves the recognition abili-27

ties (Wood, Rychlowska, Korb, & Niedenthal, 2016). Beyond28

that, the emotion can be seen as the body -including brain-29

dynamic itself (Gallese & Caruana, 2016) which helps to un-30

derstand why behavioral simulation is necessary to understand31

the emotion.32

The interplay between emotion production, emotion percep-33

tion, social communication and body dynamics has been sum-34

marized in the framework of the polyvagal theory (Porges,35
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2007). In a phylogenetic perspective, the polyvagal theory36

describes how the interaction between the central and the37

autonomic nervous systems underlie social behaviors. Heart38

brain interactions are the core feature of the theory because39

they shape the adaptation of an organism to environmental40

variations. Indeed, social interactions precisely generate a41

large amount of variability in the environment (Taborsky &42

Oliveira, 2012). Three major phylogenetic stages are iden-43

tified in the polyvagal theory and are all associated with a44

specific physiological functioning. The most primitive stage45

is supposed common to almost all the vertebrates. The behav-46

ioral function associated is immobilization and is underpinned47

by the unmyelinated branch of the vagus nerve connecting48

the heart and the brain. This function is a defense mecha-49

nism allowing to cope with highly dangerous events. The50

fight/flight response to danger is assumed to have emerged51

during a second and more recent stage and is dependent on52

the sympathetic-adrenal system. Finally, the third and last53

stage is proposed to characterize most of the mammals. The54

major physiological component of this stage is the myelinated55

branch of the vagus nerve which underlies self-soothing and56

prosocial/affiliative behaviors.57

The myelinated vagus nerve quickly conducts information58

between heart and brain resulting in modifications of heart59

rate and heart contraction (Coote, 2013). The vagus nerve60

and the heart are connected at the level of the sinus node61

via acetylcholine. The sinus node contains high quantity of62

acetylcholinesterase, the acetylcholine is rapidly hydrolyzed,63

and the delay of vagal inputs are short (Task Force of the64

European Society of Cardiology the North American Society65

of Pacing Electrophysiology (1996);Thayer2012a). Secondly,66

myelinated axonal conduction speed is high resulting in a67

quick reaction of the heart to the stimulation and to the stop of68

the stimulation (T. W. Ford & McWilliam, 1986; Jones, Wang,69

& Jordan, 1995; D. Jordan, 2005). High speed communication70

between the heart and the brain generates important variability71

in heart rate. This physiological variability allowed by vagal72

activity contributes to optimal regulation of the metabolism73

as a function of environmental changes and internal needs74

(Porges, 1997; Thayer & Sternberg, 2006).75

Axons of the myelinated vagus nerve originates from pregan-76

glionic cardiac vagal neurons situated in the nucleus ambiguus77

(Porges, 1997). The nucleus ambiguus is a group of motor78

neurons from which the myelinated branch but also several79

sensory and motor fibers including the facial and trigeminal80

nerves emerge (Porges, 1998). The nucleus ambiguus has81

bidirectional connections with cortical (prefrontal, cingulate82

and insular) and sub-cortical (amygdala, hypothalamus) areas83

(Thayer & Lane, 2009). Theses regions play an important role84

in social cognition (Amodio & Frith, 2006) and emotional pro-85

cessing (Lane et al., 2009). This implies that social communi-86

cation, cardiac vagal control and facial muscular control share87

common structural pathways. Constantly receiving updated88

information from external and internal changes, the nucleus89

ambiguus is the place of rapid central-periphery integration90

and reactivity toward emotional challenges (Coote, 2013;91

Porges, 1995). Afferent inputs to the facial motor nucleus92

are found (inter alia) in the nucleus ambiguus. The distribu-93

tion of motoneurons supplying fast muscle contraction might94

underlie the complexity and mobility of facial expressions95

(Sherwood, 2005). The panel of available facial expressions96

could be the result of dynamic connections between cortical97

control, brainstem nuclei sensorimotor integration/inhibition98

and facial muscles activity (Porges, 2001) and may foster the99

ability to engage and regulate diversified social interactions100

(Sherwood, 2005). It is to notice that this proposition made101

by the polyvagal theory (Porges, 2001) seems plausible but102

has not been developed or tested specifically at an anatomo-103

functional level. Indeed, an important gap remains between104

the functions of neural connections and social skills. Evidence105

toward this hypothesis is mitigated so far (Sherwood, 2005)106

and needs to be tested further both at anatomical, physiologi-107

cal and behavioral levels.108

Taken together, anatomo-functional characteristics of heart-109

brain-face interactions allow to predict that myelinated vagus110

nerve activity should be associated with the ability to process111

emotional facial signals involved in social communication112

(Porges, 2003). However, even if the literature cited above113

strongly corroborate the hypothesis formulated by Porges114

(1995), measures of vagal activity and emotion signal percep-115

tion have not been recorded together until Bal et al. (2010) in116

healthy children and autistic children and Quintana, Guastella,117

Outhred, Hickie, & Kemp (2012) in healthy human adults.118

They monitored the myelinated vagal heart-brain communi-119

cation via the spectral analysis of heart rate variability which120

is a popular and reliable non-invasive tool reflecting the auto-121

nomic nervous system activity (Heathers, 2014; Task Force122

of the European Society of Cardiology the North American123

Society of Pacing Electrophysiology, 1996). Specifically,124

they extracted high frequency range of heart rate variability125

(HF-HRV) which provides a rigorous assessment of the myeli-126

nated heart-brain connection activity [Akselrod et al. (1981);127

Gary G Berntson et al. (1997); G. G. Berntson, Cacioppo,128

& Quigley (1993); Gary G. Berntson, Norman, Hawkley, &129

Cacioppo (2008); Cacioppo et al. (1994); M V Kamath &130

Fallen (1993); M. V. Kamath, Upton, Talalla, & Fallen (1992);131

M V Kamath, Upton, Talalla, & Fallen (1992)).132

Bal et al. (2010) evaluated facial emotion recognition with133

videos of dynamic EFEs (Dynamic Affect Recognition Eval-134

uation, DARE) on the six basic emotions (sadness, fear, sur-135

prise, disgust, anger, and happiness, Porges, Cohn, Bal, &136

Lamb (2007)). Videos displayed emotions going from neu-137

tral expression to apex through morphing. Quintana et al.138

(2012) evaluated facial emotion recognition by the Reading139

Mind in the Eyes Test (RMET, (Baron-Cohen, Jolliffe, Morti-140

more, & Robertson, 1997; Baron-Cohen, Wheelwright, Hill,141
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Raste, & Plumb, 2001)). The RMET is composed of pho-142

tographs displaying the eye-region of the facial expression of143

actors/actresses. The facial expressions corresponds to a feel-144

ing, a thinking or mental state. The photograph is displayed145

along with 4 labels describing possible mental states, among146

which only one actually corresponds to the picture. The task147

of the participants is therefore to “read in the mind” in order148

to identify the correct mental state. The work of Quintana et149

al. (2012) is important because no data could bring evidence150

in favor of an association between vagal activity and the per-151

ception of social cues in healthy humans within the polyvagal152

framework (Porges, 1997) until them. The main result of153

their study is that HF-HRV is associated with better scores154

at the RMET, with items recoded such as correct answers155

weight much for difficult trials versus easy ones. The authors156

conclude that higher levels of resting state HF-HRV are asso-157

ciated with better emotion recognition skills. Conversely, Bal158

et al. (2010) did not find any association between HF-HRV159

and emotion identification in healthy participants but only in160

children with autism spectrum disorders. Besides this results161

is observed only for response latency but not for accuracy).162

Fear, happiness and sadness were faster identified by higher163

resting-state HF-HRV participants.164

On one side, Quintana et al. (2012) found that healthy adults165

were better at identifying mental states (when weighting for166

difficulty) and therefore proposed that HF-HRV is linked with167

emotion recognition. One the other side, Bal et al. (2010)168

did not find any association between HF-HRV and emotion169

identification (in healthy children). From here, 2 explana-170

tions can emerge: i) The conceptual overlap between emotion171

recognition and mind reading found in Quintana et al. (2012)172

matters, and HF-HRV is associated with mental state reading173

bu not with emotion identification per se, iii) Considering174

healthy human participants, HF-HRV is associated with emo-175

tion recognition only in adults.176

A study mixing the designs of Bal et al. (2010) and Quintana177

et al. (2012) can help to disentangle between these hypotheses.178

We report the results obtained after a protocol where resting179

state HF-HRV is measured in healthy adults. The emotion180

identification task is similar to the Dynamic Affect Recogni-181

tion Evaluation software (DARE, Porges et al. (2007)) used182

in Bal et al. (2010) (including anger, disgust, fear, joy, sad-183

ness and surprise) but included three more EFEs (contempt,184

embarrassment, and pride). All EFEs movies were from the185

Amsterdam Dynamic Facial Expression Set (ADFES, Schalk,186

Hawk, Fischer, & Doosje (2011)), a more recent database187

with color stimuli. As a consequence, emotion identification188

is based on a recent database with dynamic EFEs used in Bal189

et al. (2010) (anger, disgust, fear, joy, sadness and surprise)190

and 3 more (contempt, embarrassment, and pride) in order191

to increase complexity. Even if this perspective is strongly192

challenged (Jack, Sun, Delis, Garrod, & Schyns, 2016), some193

authors suggest that the emotions used by Bal et al. (2010)194

are more basic and easier to identify compared to emotions195

more complex emotions such as contempt, embarrassment,196

and pride (Baron-Cohen, Golan, & Ashwin, 2009). Contempt,197

embarrassment and pride are considered as “self-conscious”198

emotions but present typical morphological configurations at199

the level of the whole face (Schalk et al., 2011). Indeed, they200

involve facial muscular patterns or even slight movement of201

the head (Tracy & Robins, 2008; Tracy, Robins, & Schriber,202

2009) and these patterns are to be decoded in order to identify203

the emotion. Albeit more complex than basic emotions, they204

differ from pure mental states because not concentrated on205

the eyes area.206

As the distinction between basic and complex emotions fits207

the difference between our set of EFEs and the set used by208

Bal et al. (2010), it is relevant to rely on it as a factor of209

difficulty in EFEs recognition. Our design allows to assess210

if HF-HRV is associated with emotion recognition on a new211

set of dynamic whole EFEs. If HF-HRV is associated with212

emotion recognition in these conditions, this suggests that the213

task used by Bal et al. (2010) was not complex enough to214

establish the correlation and that HF-HRV is not discriminant215

for the recognition of “basic” emotions. On the contrary,216

if HF-HRV is not associated with emotion recognition, this217

would suggest that the results of Quintana et al. (2012) does218

not apply to emotion perception per se but rather to differ-219

ent “non-emotional” mechanisms involved in social signals220

reading (R. L. C. Mitchell & Phillips, 2015).221

Methods222

In the “Methods” and “Data analysis” sections, we report how223

we determined our sample size, all data exclusions, all manip-224

ulations, and all measures in the study (Simmons, Nelson, &225

Simonsohn, 2012).226

Sample. Initial sample was composed of 77 young healthy227

human adults. Participants were recruited via advertisements228

(mailing list and poster). All participants were psychology229

students of University Grenoble-Alpes. Participants were230

French or perfectly bilingual in French. They provided writ-231

ten informed consent before the participation. The study232

was part of a global project reviewed and approved by the233

University human ethics committee from Grenoble, France234

(Grenoble ethics committee notice number 2014-05-13-49235

and 2014-05-13-48). To be eligible, participants had to be236

aged between 18 and 60 years, with a normal or normal-to-237

corrected vision, explicitly reported an absence of psychiatric,238

neurologic, hormonal, or cardio-vascular disease, and with239

no medical treatment (with the exception of contraception).240

Smoking, energizing drinks (e.g. coffee, tea, etc. . . ) and241

psychotropic substances (e.g. alcohol, cannabis, etc. . . ) were242

prohibited to each participant the day of the experiment. They243

had also to avoid eating or drinking (water was allowed)244

the 2 hours preceding the experiment in order to limit the245

influence of digestion on autonomic functioning (Short term246
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HRV measurement can be biased by the digestion of food247

since viscera are innervated by the autonomic nervous system248

(Heathers, 2014; Iorfino, Alvares, Guastella, & Quintana,249

2016; Quintana & Heathers, 2014)) but they had to eat in the250

morning (more than 2 hours before the experiment) in order251

to avoid fasting states. The participants received experimental252

credits in return of their participation.253

Sample size. We planned between 75 and 80 participants to254

take part in the study. Anticipating possible exclusions due to255

technical problems, we determined our sample size expecting256

at least 65 participants suitable for final analysis. This sample257

size was set on the basis of Quintana et al. (2012). Their258

sample size of 65 was adequate to observe an association259

between HF-HRV and the RMET score, with an effect size of260

R2~.07.261

Procedure. The experiment took place in a quiet and262

dimmed room. All participants were tested between 0900263

h and 1300 h. After a global description of the experiment,264

participants were asked to empty their bladder before starting265

the experiment. After that, they were taught how to install the266

Bioharness® heart rate monitor. They were left in autonomy267

in an isolated room for the installation of the heart rate mon-268

itor. Then, they seated in a chair, the experimenter checked269

the signal and the experiment started. The instructions were270

to relax, breathe naturally and spontaneously. During 5 min-271

utes, the participant watched short neutral samples of films272

selected and evaluated by Hewig et al. (2005) (“Hannah and273

her Sisters” and “All the President’s Men”) and Schaefer, Nils,274

Sanchez, & Philippot (2010) (“Blue [1]”, “Blue [2]”, “Blue275

[3]” and “The lover”). Videos were displayed without audio.276

These 5 first minutes aimed to allow the participant to shift277

in a calm state. ECG data for HRV baseline computation was278

recorded during the 5 following minutes while participants279

listened to the first 5 minutes of a neutral audio documentary280

designed for laboratory studies (Bertels, Deliens, Peigneux, &281

Destrebecqz, 2014). Neutral videos and audio documentary282

were used in order to standardize ECG recordings (Piferi,283

Kline, Younger, & Lawler, 2000). ECG data was recorded284

during spontaneous breathing (Denver, Reed, & Porges, 2007;285

Kobayashi, 2009; Kowalewski & Urban, 2004; Larsen, Tzeng,286

Sin, & Galletly, 2010; Muhtadie, Koslov, Akinola, & Mendes,287

2015; Pinna et al., 2007). After this first phase, the emotion288

identification task session started for about 15 minutes (see289

description below). When this step ended, the participant290

completed computerized control surveys. The experimenter291

stayed out the room during the experiment but was available292

for eventual questions between the different steps of the ex-293

periment.294

Emotion identification task. The emotion identification295

task followed the design used by Bal et al. (2010) and pro-296

posed by Porges et al. (2007). Participants were presented297

with short video clips displaying dynamic standardized EFEs298

produced by humans adults. All the stimuli came from the299

Figure 1. Examples of emotional facial expressions and of a
neutral facial expression. From left to right and top to bottom:
Joy (F03), Sadness (F04), Anger (M03), Fear (F05), Surprise
(M02), Disgust (M04), Pride (M03), Contempt (M11), Em-
barras (F01), and Neutral (M12). All stimuli are from the
ADFES (van der Schalk, Hawk, Fischer, & Doosje, 2011).

ADFES (Schalk et al., 2011). Nine EFEs (Figure 1) of300

ten North-European models (5 males and 5 females: “F01”,301

“F02”, “F03”, “F04”, “F05”, “M02”, “M03”, “M04”, “M11”,302

and “M12”) were presented in a random design. Video clips303

displayed the face of the model going from a neutral expres-304

sion to the apex of the EFE. Video clips duration ranged from305

6 to 6.5 seconds, including a neutral face for 0.5 seconds,306

followed by the onset of the EFE, and then the face held307

at apex for 5 seconds (Figure 2). In phase 1 of each trial,308

participants used the numeric pad of the computer keyboard309

to identify EFEs. The were asked to push the “0” key as310

soon as they could identify what emotion was expressed in311

the video video clip. Synchronous with the “0” key press,312

phase 2 started as the the video clip stopped and a new screen313
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Figure 2. Time course of the EFE of pride (F03). From left
to right and top to bottom, t = 0, 0.5, 1, 2, 3, 4, 5, 6 seconds.
Images are extracted from the original video set of the ADFES
(van der Schalk, Hawk, Fischer, & Doosje, 2011).

appeared with each of the nine emotion labels matched with314

one the nine other number keys of the numeric pad (1-2-3-315

4-5-6-7-8-9). The same matching – randomly determined316

before the launch of the experiment – was used for all trials317

and for all participants (pride = 1, sadness = 2, surprise = 3,318

embarrassment = 4, fear = 5, joy = 6, anger = 7, contempt =319

8, disgust = 9). The participant was asked to identify which320

of the nine emotion labels corresponded to the EFE displayed321

in the video clip. There was no time limit nor time pressure322

or measure for phase 2 responses. The latency to recognize323

emotions was measured as the response time in phase 1. Emo-324

tion recognition accuracy was measured by the responses325

provided during phase 2. Before data recording, participants326

performed nine training trials on the nine EFEs of another327

North-European model (“M08”) in order to familiarize with328

the task. The experimenter stayed in the experimental room329

during this step in order to check if the participant understood330

the instructional set and possibly help the participant in case331

of questions and/or difficulties.332

Response times were used as a measure of quantity of evi-333

dence needed in order to detect the emotion (Bal et al., 2010).334

In other words, the hypothesis behind is that more efficient335

processing of facial emotional signals should allow to detect336

more subtle muscle movements of the face and therefore337

identify the emotion faster. Obviously, this method could338

also be influenced by different strategies of response but ac-339

curacy scores are available in order to assess the success of340

the recognition. As a consequence, performances in emotion341

recognition can be evaluated by both measures separately.342

The presence of 9 instead of 6 emotions (compared to Bal et343

al. (2010)) allows to increase the difficulty of the task and344

therefore induce variability in our data. Therefore, this design345

is closer to the design proposed by Quintana et al. (2012)346

with a large number of different emotions to categorize.347

Physiological measurement. The electrocardiogram348

(ECG) data was recorded with a Zephyr BioharnessTM 3.0349

(Zephyr, 2014). The BioharnessTM is a class II medical350

device presenting a very good precision of measurement for351

ECG recording in low physical activity conditions (Johnstone,352

Ford, Hughes, Watson, & Garrett, 2012a, 2012b; Johnstone353

et al., 2012). It has been used for ECG measurements in354

both healthy and clinical populations, presenting a very high-355

to-perfect correlation with classical hospital or laboratory356

devices (Brooks et al., 2013; Yoon, Shah, Arnoudse, & De357

La Garza, 2014). The BioharnessTM both provides comfort358

for the participant and allow reliable HRV extraction for359

the researcher (Lumma, Kok, & Singer, 2015). The chest360

strap’s sensor measures electrical activity corresponding to361

the classical V4 lead measurement (5th intercostal space362

at the midclavicular line) through conductive Lycra fabric.363

A single-ended ECG circuit detects QRS complexes and364

incorporates electrostatic discharge protection, both active365

and passive filtering and an analog-to-digital converter.366

Interbeat intervals are derived by Proprietary digital filtering367

and signal processed with a microcontroller circuit. The368

ECG sensor sampling frequency is 250 Hz and the resolution369

0.13405 mV., ranging from 0 to 0.05 V (Villarejo, Zapirain,370

& Zorrilla, 2013). After a slight moistening of the 2 ECG371

sensors, the chest-strap was positioned directly on the372

skin, at the level of the inframammary fold, under the373

lower border of the pectoralis major muscle. The recording374

module communicated with an Android® OS smartphone375

by Bluetooth®. The application used to acquire the signal376

emitted by the BioharnessTM was developed, tested, and377

validated by Cânovas, Domingues, & Sanches (2011). The378

Android® OS device used to record the signal was an379

LG-P990 smartphone (Android® version 4.1.2.).380

Control for confounding factors. To control for confound-381

ing variables likely to be linked to HRV, participants com-382

pleted questionnaires detailing life habits, demographic data383

and emotional traits (Quintana et al., 2012). Physical activity384

was assessed with the International Physical Activity Ques-385

tionnaire (IPAQ,Craig et al. (2003)), composed of 9 items that386

calculate an index reflecting the energy cost of physical activ-387

ities (Metabolic Equivalent Task score, MET). The IPAQ has388
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been validated in French (Briancon et al., 2010; Hagströmer,389

Oja, & Sjöström, 2006) and widely used in French surveys390

(Salanave et al., 2012). Participants also completed the De-391

pression Anxiety and Stress scales (DASS-21;(P. F. Lovibond392

& Lovibond, 1995)). The DASS-21 is a 21-item question-393

naire, validated in French (Ramasawmy & Gilles, 2012), and394

composed of three subscales evaluating depression, anxiety395

and stress traits. We also recorded the size, weight, age and396

sex of the participants and their daily cigarette consumption.397

Participants answered final surveys on a DELL latitude E6500398

laptop. Surveys were built and displayed with E-prime soft-399

ware (E-prime 2.0.10.242 pro).400

Physiological signal processing. R-R interval data was ex-401

tracted from the Android® device and imported into RHRV402

for Ubuntu (Rodríguez-Liñares et al., 2011). Signal was vi-403

sually inspected for artifact (Prinsloo et al., 2011; Quintana404

et al., 2012; Wells, Outhred, Heathers, Quintana, & Kemp,405

2012). Ectopic beats were discarded (Kemper, Hamilton, &406

Atkinson, 2007) for participants presenting a corrupted RR407

interval series (Beats per minute (bpms) shorter/longer than408

25/180 and/or bigger/smaller than 13% compared to the 50409

last bpms). RR series were interpolated by piecewise cubic410

spline to obtain equal sampling intervals and regular spectrum411

estimations. A sampling rate of 4 Hz was used. We then412

extracted the frequency component of HRV from RR interval413

data. The LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) compo-414

nents were extracted using an east asymmetric Daubechies415

wavelets with a length of 8 samples. Maximum error allowed416

was set as 0.01 (García, Otero, Vila, & Márquez, 2013).417

Model comparison. Model selection was completed using418

AICc (corrected Akaike information criterion) and Evidence419

Ratios -ERi- (K. P. Burnham & Anderson, 2004; Kenneth P.420

Burnham, Anderson, & Huyvaert, 2011; Hegyi & Garamszegi,421

2011; Symonds & Moussalli, 2011). AICc provides a relative422

measure of goodness-of-fit but also of parsimony by sanction-423

ing models for their numbers of parameters. AICc is more424

severe on this last point than AIC (AICc = AIC +
2K(K + 1)
n − K − 1

425

where K is the number of parameters and n the sample426

size.). We computed the difference between best (lower)427

and other AICcs with ∆AICc = AICci − AICcmin . The weight of428

a model is then expressed as wi =
e

1
2 ∆AICci∑R

r e
1
2 ∆AICcr

. From there,429

we can compute the Evidence Ratio: ERi =
wbest

wi
. Even430

if quantitative information about evidence is more precise,431

we also based our decision on Kass & Raftery (1995) and432

Snipes & Taylor (2014), i.e. minimal (ERi < 3.2), substantial433

(3.2 < ERi < 10), strong (10 < ERi < 100) and decisive434

(100 < ERi) evidence. If the model with the lower AICc435

included more parameters than others, we considered it as436

relevant if the evidence was at least substantial. If the model437

with the lower AICc included less parameters than others, we438

chose it even if evidence was minimal.439

Results440

Correlations between control variables and variables of inter-441

est are displayed in figures 3 and 4. Because weight was asso-442

ciated with HF-HRV, we adjusted HF-HRV for it by extracting443

the standardized residuals of the regression with weight as the444

independent variable and HF-HRV as the dependent variable445

(Quintana et al., 2012). HRV as an independent variable in the446

following analysis is therefore HF-HRV (normalized units)447

adjusted for weight.448

In a second step, we selected the relevant random factors to449

include in our models. Whether for response times or accu-450

racy, participants and items (i.e. the model (actor) performing451

the EFE) were appropriate as random factors. Indeed models452

including participants and items showed the lowest (best)453

AICc with ERi = 0.936/0.064 = 14.62 (strong evidence) for454

response times (Table 1) and ERi = 0.967/0.033 = 29.30455

(strong evidence) for accuracy (Table 2).456

We then compared the parsimony of models containing main457

effects (HF-HRV and emotion type) and interaction effects.458

Model comparison showed no evidence in favor of a main459

effect of HF-HRV or toward an interaction between HRV and460

emotion compared to the intercept model, either for response461

times or accuracy (tables 3 and 4. HF-HRV did not predict per-462

formance in emotion identification. This absence of effect was463

observed regardless of the emotion type (“complex” versus464

“basic”). There was minimal evidence (ERi = 0.631/0.211 =465

2.99 for response times and ERi = 0.596/0.194 = 3.07 for ac-466

curacy) toward and principal effect of emotion type compared467

to the second best model and decisive evidence compared468

to the intercept model (Figure 5) with a marginal R2 of .06469

and .05 respectively. Overall emotions absent from Bal et470

al. (2010) (i.e. “complex emotions”) were more difficult471

to identify compared to the emotion they used (i.e. “basic”472

emotions).473
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Figure 3. Correlation confidence intervals between recorded variables. Confidence regions represent 95% CIs and are marked
with a black dot when including 0.

Table 1
Comparison of random effects in models for response times, ordered by AICc relative to the model with the lowest (best) AICc.

K AICc ∆AICc Weight

ppt + item 4 77486 0 0.936
ppt + item + HRVslope 7 77491 5.366 0.064
ppt 3 77563 77.37 0
item 3 78383 896.9 0

Note. K is the number of parameters in the model. ppt=participants, item = model of the video clip, HRVslope = random by-participant474

variation in the slope of HF-HRV. Nb. All other random slope models failed to converge.475

476
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Figure 4. Scatter plots, distributions, and Pearson correlation coefficients between recorded variables. R values’ font sizes are
proportional to the strength of the correlation.

Table 2
Comparison of random effects in models for accuracy, ordered by AICc relative to the model with the lowest (best) AICc.

K AICc ∆AICc Weight

ppt + item 3 4463 0 0.967
ppt + item + HRVslope 6 4469 6.739 0.033
ppt 2 4494 31.66 0
item 2 4516 53.21 0

Note. K is the number of parameters in the model. ppt=participants, item = model of the video clip, HRVslope = random by-participant477

variation in the slope of HF-HRV. Nb. All other random slope models failed to converge.478
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Table 3
Comparison of models for response times, ordered by AICc relative to the model with the lowest (best) AICc.

K AICc ∆AICc Weight

Int + Emo 5 77089 0 0.63
Int + HRV + Emo 6 77091 2.188 0.21
Int + HRV + Emo + HRV ∗ Emo 7 77093 4.567 0.06
Int + HRV2 + Emo + HRV2 ∗ Emo 7 77093 4.567 0.06
Int + HRV + HRV2 + Emo + HRV ∗ Emo + HRV2 ∗ Emo 9 77095 6.202 0.02
Int 4 77486 396.9 0
Int + HRV2 5 77486 397 0
Int + HRV 5 77488 399 0
Int + HRV ∗ Emo 5 77488 399.1 0
Int + HRV + HRV2 6 77488 399.1 0

Note. K is the number of parameters in the model. Int = Intercept, HRV = resting HF-HRV, Emo = Type of emotion (present in Bal et al.479

(2010) versus not). All models include participants and items as random factors.480

481

Table 4
Comparison of models for accuracy, ordered by AICc relative to the model with the lowest (best) AICc.

K AICc ∆AICc Weight

Int + Emo 4 4339 0 0.59
Int + HRV + Emo 5 4341 2.243 0.19
Int + HRV + Emo + HRV ∗ Emo 6 4343 3.994 0.08
Int + HRV2 + Emo + HRV2 ∗ Emo 6 4343 3.994 0.08
Int + HRV + HRV2 + Emo + HRV ∗ Emo + HRV2 ∗ Emo 8 4344 5.03 0.04
Int 3 4463 123.8 0
Int + HRV2 4 4464 125.1 0
Int + HRV ∗ Emo 4 4464 125.3 0
Int + HRV 4 4465 126 0
Int + HRV + HRV2 5 4466 127.4 0

Note. K is the number of parameters in the model. Int = Intercept, HRV = resting HF-HRV, Emo = Type of emotion (present in Bal et al.482

(2010) versus not). All models include participants and items as random factors.483

484
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Discussion485

We carried out a study in order to test whether HF-HRV486

was associated with better decoding of emotional facial ex-487

pressions. Our protocol was built in order to combine the488

properties of previous studies on this subject (Bal et al., 2010;489

Quintana et al., 2012). We were able to measure reaction490

times and accuracy in an EFEs recognition task with both491

“basic” and “self-conscious” emotions (Schalk et al., 2011).492

In line with the observations of Bal et al. (2010), our results493

show that HF-HRV is not associated with better recognition494

of “basic”" emotions. While “self-conscious” emotions were495

harder to identify than “basic” emotions, the performance of496

participants was not predicted by HF-HRV. HF-HRV does not497

predict emotion identification on dynamic videos of whole498

faces, even taking difficulty into account.499

The polyvagal theory predicts that the myelinated vagal con-500

nection between the heart and the brain can foster the percep-501

tion of social cues in mammals (Porges, 2007). Quintana et al.502

(2012) showed that this feature of heart-brain interactions (as503

indexed by HF-HRV) is indeed associated with better perfor-504

mances at the RMET in healthy human adults. It is generally505

admitted that the RMET measures the ability to read others’506

mental states. The association between HF-HRV and RMET507

performances can be interpreted as better emotion recognition508

skills in higher HF-HRV participants (Quintana et al., 2012).509

However, emotion recognition is not the only mechanism510

necessary to read other’s mental states. Attentional shifting511

and inhibition play a large part in Theory of Mind (ToM),512

i.e. the ability to attribute mental states to others (R. L. C.513

Mitchell & Phillips, 2015; Poletti, Enrici, & Adenzato, 2012;514

Samson, 2009). Several theoretical perspective have proposed515

a framework describing the interplay between emotion percep-516

tion and ToM. Many of them propose the distinction between517

decoding the emotion from external stimulation and under-518

standing its meaning for the other person (R. L. C. Mitchell &519

Phillips, 2015). This second step is likely to require inhibition520

of one’s perspective, rapid information updating, working521

memory, attentional switching between one’s and the other’s522

state (Carlson, Moses, & Breton, 2002; R. L. C. Mitchell &523

Phillips, 2015; Poletti et al., 2012; Samson, 2009).524

As a consequence, the association between HF-HRV and525

mind reading could also be explained by better executive526

skills and not necessarily by better emotion identification527

abilities. Indeed, Bal et al. (2010) showed that HF-HRV was528

not associated with emotion recognition in healthy human529

children. They used an emotion categorization task with dy-530

namic EFEs on six emotions (Porges et al., 2007). Still, it was531

not possible to put the work of Bal et al. (2010) and Quintana532

et al. (2012) in perspective because i) the population of inter-533

est was different (children vs. adults) and ii) the association534

between HF-HRV and RMET performances was observed535

when taking the items’ difficulty into account: it could be536

argued that the difficulty of the task in Bal et al. (2010) did537

not allow to discriminate the association with HF-HRV. We538

designed a study inspired from Bal et al. (2010) but tested539

healthy human adults and increased the difficulty of the task540

by adding three more EFEs to categorize. Model comparison541

by AICc showed that models without HF-HRV as a parameter542

were always far more parsimonious than models including543

HF-HRV as a parameter. This was observable for reaction544

times, accuracy, linear and quadratic shapes, even taking the545

difficulty of the task into account. This design allowed to546

discriminate between models with and without HF-HRV, that547

is to say, the parsimony of the models without HF-HRV was548

always clearly superior to the models with HF-HRV. This549

support the fact that HF-HRV is not associated with emotion550

recognition skills.551

On the basis of these results, we propose that the associa-552

tion between HF-HRV and performances in “mental states”553

reading (Quintana et al., 2012) cannot be explained by better554

emotion recognition skills. The more plausible explanation555

at this stage would rather take attentional, working memory556

and executive skills into account. Interestingly, recent stud-557

ies clearly show that higher HF-HRV individuals perform558

better in many cognitive tasks depending on executive and559

attentional functioning. The neurovisceral integration model560

provides a theoretical framework (Thayer & Lane, 2000) al-561

lowing to understand the association between HF-HRV and562

attention. The neural control of the heart is highly dependent563

on cortical inputs especially from the prefrontal cortex (PFC),564

the insula, and the anterior cingulate cortex (ACC). Variability565

observed in heart rate and mediated by the functioning of the566

myelinated vagus nerve is therefore largely influenced by567

attentional shifts, conflict monitoring, and inhibition. Con-568

versely, it is also likely that afferent feed-backs from the heart569

can influence the central nervous system, therefore creating570

dynamic loops between the heart and the brain, fostering the571

adaptation of the organisms to internal and external demands.572

Neuroimaging studies bring evidence toward an important573

overlap between central nervous system activities associated574

with HRV (Thayer, Åhs, Fredrikson, Sollers, & Wager, 2012)575

and with ToM (Schurz, Radua, Aichhorn, Richlan, & Perner,576

2014). The medial PFC (mPFC), the insula and the ACC577

play a large part in cardiovascular control and ToM. These578

areas show connections with the temporo-parietal junction579

(TPJ). It has been suggested that the TPJ is mainly involved580

in inferences about short-term intentions while more durable581

mental states could rather be taken over by the mPFC (Van582

Overwalle, 2009). The mPFC is also involved in inhibitory583

functions and interconnected with the ACC associated with584

cognitive control and conflict monitoring and with the insula585

underlying body states integration (Lane et al., 2009; Mier et586

al., 2010; Reeck, Ames, & Ochsner, 2016; Thayer & Lane,587

2009). Therefore, brain areas involved in cardiovascular con-588

trol and characterizing differences in HRV are often found589

associated with executive functioning, attentional regulation,590
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and switching between one’s and other’s body states rather591

than emotion identification.592

Even if we did not measure sensorimotor activity of the face593

during the tasks, we made the hypothesis that sensorimotor594

simulation would play an important part in the detection of595

emotions (Wood et al., 2016). This hypothesis was important596

in order to test the polyvagal proposition (Porges, 2001) ac-597

cording to which neural cardiovascular control is associated598

with neural sensorimotor control of the head and face mus-599

cles, both at an anatomical and at a functional level. In this600

perspective, our result does not validate that HF-HRV and601

sensorimotor skills are associated in order to perform a per-602

ceptive task such as decoding EFEs. Thus, it is plausible that603

HF-HRV predicts social skills (Beffara, Bret, Vermeulen, &604

Mermillod, 2016; Miller, Kahle, & Hastings, 2015) at another605

level. Attentional skills have already been suggested as the606

cognitive mechanism linking HF-HRV and social functioning607

(Keltner, Kogan, Piff, & Saturn, 2014). Obviously, we did608

not test this hypothesis in this study. However, as attention609

is a strong necessity to apply theory of mind (Lin, Keysar, &610

Epley, 2010) aside from decoding facial patterns, it is likely611

that the ability of higher HF-HRV individuals to process social612

signals is not due to better sensori-motor control but rather to613

better attentional or executive skills (Park & Thayer, 2014).614

Obviously, this proposition still needs to be specifically tested.615

A solid set of studies highlight the association between HF-616

HRV and working memory (Hansen, Johnsen, & Thayer,617

2003; Hansen, Johnsen, Sollers, Stenvik, & Thayer, 2004),618

inhibition and attention switching (Kimhy et al., 2013), and619

more flexible attentional engagement and disengagement to-620

ward negative emotional stimuli (Park & Thayer, 2014; Park,621

Van Bavel, Vasey, Egan, & Thayer, 2012; Park, Vasey, Van622

Bavel, & Thayer, 2013). Consequently, whether at neuroimag-623

ing or behavioral level, better cognitive skills associated with624

higher resting state HF-HRV appear to be a more reliable625

candidate for explaining more accurate mind reading, while626

emotion identification abilities did not show substantial as-627

sociation with HF-HRV in our study. While further studies628

are needed to clearly establish the mediation of the HF-HRV –629

ToM link by executive functioning, we suggest that domain-630

general cognitive mechanisms (C. Heyes, 2014; Cecilia Heyes,631

2016a, 2016b; Cecilia Heyes & Pearce, 2015) should be con-632

sidered when studying in the functional association between633

HF-HRV and the social life.634

Conclusions. Heart-brain interactions are proposed to un-635

derlie socio-emotional skills (Porges, 2007). It has been636

shown that resting HF-HRV is associated with mental states637

reading (Quintana et al., 2012). These authors suggested that638

HF-HRV was linked to emotion recognition abilities. How-639

ever, the current study does not allow to conclude that resting640

HF-HRV predict emotion recognition, even taking emotion641

type into account. Further studies should examine the role of642

executive functioning as a mediator of the HF-HRV – ToM643

association. Domain-general cognitive skills could account644

for the role of HF-HRV in social functioning.645
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