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2	  

Abstract 1	  

 2	  

Phylogenetic methods have shown promise in understanding the development of 3	  

broadly neutralizing antibody lineages (bNAbs). However, the mutational process that 4	  

generates these lineages – somatic hypermutation (SHM) – is biased by hotspot 5	  

motifs, which violates important assumptions in most phylogenetic substitution 6	  

models. Here, we develop a modified GY94-type substitution model that partially 7	  

accounts for this context-dependency while preserving independence of sites during 8	  

calculation. This model shows a substantially better fit to three well-characterized 9	  

bNAb lineages than the standard GY94 model. We show through simulations that 10	  

accounting for hotspot motifs can lead to reduced bias of other substitution 11	  

parameters, and more accurate ancestral state reconstructions. We also demonstrate 12	  

how our model can be used to test hypotheses concerning the roles of different 13	  

hotspot and coldspot motifs in the evolution of B-cell lineages. Further, we explore 14	  

the consequences of the idea that the number of hotspot motifs – and perhaps the 15	  

mutation rate in general – is expected to decay over time in individual bNAb lineages. 16	  

 17	  
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3	  

Introduction 1	  

 2	  

Recent advances in sequencing technology are giving an unprecedented view into the 3	  

genetic diversity of the immune system during infection, especially in the context of 4	  

chronic infections caused by viruses. Broadly neutralizing antibody (bNAb) lineages, 5	  

which produce B cell receptors (BCRs) capable of binding a wide range of viral 6	  

epitopes, are of particular interest (Haynes et al. 2012). Within such lineages, all B 7	  

cells descend from a shared common ancestor and are capable of rapid sequence 8	  

evolution through the processes of somatic hypermutation (SHM) and clonal 9	  

selection. For chronically infecting viruses such as HIV-1, this co-evolutionary 10	  

process may continue for years (Wu et al. 2015). Because immunoglobulin gene 11	  

sequences from bNAb lineages undergo rapid molecular evolution, selection and 12	  

diversification, they would appear to be suitable for evolutionary and phylogenetic 13	  

analysis, and these methods have already been applied to various immunological 14	  

questions such as inferring the ancestral sequences of bNAb lineages (Sok et al. 2013; 15	  

Hoehn et al. 2016). Intermediate ancestors of B cell lineages are of particular interest 16	  

because they may act as targets for stimulation by vaccines (Haynes et al. 2012). 17	  

 18	  

However, the biology of mutation and selection during somatic hypermutation is 19	  

different from that which occurs in the germline, and therefore it is unlikely that 20	  

standard phylogenetic techniques will be directly applicable to studying bNAb 21	  

lineages without suffering some bias and error. One of the most important 22	  

assumptions of likelihood-based phylogenetics is that evolutionary changes at 23	  

different nucleotide or codon sites are statistically independent. Without this 24	  

assumption, likelihood calculations become computationally impractical as the length 25	  

and number of sequences increases (Felsenstein 1981). Unfortunately, in contrast to 26	  

germline mutations, somatic hypermutation of BCR sequences is driven by a 27	  

collection of enzymes that cause some sequence motifs (between two and seven base 28	  

pairs) to mutate at a higher rate than others (Smith et al. 1996; Teng and Papavasiliou 29	  

2007; Elhanati et al. 2015). This context sensitivity clearly violates the assumption of 30	  

independent evolution among sites. Furthermore, because hotspot motifs are, by 31	  

definition, more mutable than non-hotspot motifs, their frequency within a B-cell 32	  

lineage may decrease over time as they are replaced with more stable motifs (Sheng et 33	  

al. 2016). These changes will not be passed on to subsequent generations through the 34	  
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4	  

germline because the mutational process is somatic. This effect may have a number of 1	  

consequences for molecular evolutionary inference, for example it may render 2	  

inappropriate the common practice of estimating equilibrium frequencies from the 3	  

sequences themselves. At present it is unknown how the violation of these 4	  

assumptions will affect phylogenetic inference of BCR sequences in practice, and the 5	  

problem of ameliorating such effects remains an open issue. 6	  

 7	  

This work has two main aims. The first is to analyse BCR evolution in three 8	  

previously published and long-lived bNAb lineages in HIV-1 infected patients. This 9	  

analysis confirms the prediction of a decay of certain hotspot motifs through time. 10	  

Our second aim is to develop and introduce a new substitution model that can 11	  

partially account for this effect. The model is a modification of the GY94 (Goldman 12	  

and Yang 1994) codon substitution model. Although only an approximation, our new 13	  

model can detect and quantify the effect of somatic hypermutation on BCR sequences 14	  

whist preserving the assumption of independence among codon sites in order to 15	  

maintain computational feasibility. This model shows a significantly better fit than the 16	  

standard GY94 model to all three bNAb lineages from HIV-1 patients. Through 17	  

simulations, we validate the effectiveness of the model, and show its ability to reduce 18	  

bias in the estimation of other evolutionary parameters such as tree length. Further, 19	  

we use this model as a framework for testing hypotheses of hotspot motif symmetry 20	  

and hierarchy of mutability, and we explore its potential applications such as 21	  

improved ancestral state reconstruction. 22	  

 23	  

 24	  
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5	  

Materials and Methods 1	  

 2	  

Multiple Sequence Alignment 3	  

Heavy chain sequences from the three bNAb lineages presented in (Wu et al. 2015) 4	  

were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). The 5	  

lineage of greatest duration was VRC01, which was sampled over 15 years (Wu et al. 6	  

2015), followed by CAP256-VRC26 (hereafter VRC26), which was sampled over 7	  

four years (Doria-Rose et al. 2014), and CH103, which was sampled over three years 8	  

(Liao et al. 2013). Sequences from each bNAb lineage were translated into amino 9	  

acids, aligned to their putative germline V gene segment using IgBlast (Ye et al. 10	  

2013), and then re-translated back into codons. Putative germline segment 11	  

assignments (V4-59*01 for CH103, V3-30*18 for VRC26, and V1-2*01 for VRC01) 12	  

were obtained from bNAber (Eroshkin et al. 2013) and sequences were obtained from 13	  

the IMGT V-Quest human reference set (Lefranc and Lefranc 2001). Because of 14	  

considerable uncertainty in D and J germline assignments for each lineage, only the V 15	  

segment was used. Insertions relative to the germline sequence were removed, so that 16	  

all sequences within each lineage were aligned to the same germline sequence. 17	  

Removing these insertions brought together two nucleotides that are not actually 18	  

adjacent, creating false motifs. To prevent this, the 3’ nucleotide of the region joined 19	  

together from the removal of the insertion was converted to an N. To keep results 20	  

consistent among lineages, only nucleotide positions from the beginning of the first 21	  

framework region (FWR1) to the end of FWR3 were used. Sampling dates of each 22	  

sequence were extracted from the sequence ID tags provided on GenBank. Eleven 23	  

sequences were excluded from CH103 because this information was not available. 24	  

 25	  

Hotspot decay in bNAb lineages 26	  

The “hotspot frequency” of each sequence was defined as the number of times a 27	  

particular hotspot motif was observed, divided by the number of possible hotspot 28	  

locations (sequence length - motif length + 1) in that sequence, and was calculated for 29	  

two trimer (WRC/GYW) and two dimer (WA/TW) motifs separately (Yaari et al. 30	  

2013), where W = A or T, Y = A or G, and R = T or C, as per the IUPAC nucleotide 31	  

ambiguity codes. Hence an example of a trimer motif might be ATC, and its reverse 32	  

complement GAT. The underlined base in each of these motifs experiences increased 33	  
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6	  

AID-mediated mutability. Trimers and dimers with non-ACGT characters were 1	  

excluded from the calculation of hotspot frequency.  2	  

 3	  

Changes in hotspot frequency values through time were analysed using linear 4	  

regression and correlation. Because the date of infection was not known for VRC01, 5	  

germline IGHV sequences were not included in these calculations. Importantly, 6	  

because the sequences within each B-cell lineage are phylogenetically related, they 7	  

are partially correlated due to shared common ancestry and are not independent data 8	  

points, hence p-values from standard correlation and regressions tests are not reliable. 9	  

However, the regression is still an unbiased measure of trends in sequence change 10	  

over time (see Drummond et al. 2003 for discussion). Regressions of hotspot 11	  

frequency through time are shown in Figure 1. 12	  

 13	  

In the absence of a suitable hypothesis test based on regression, we developed a 14	  

simulation-based approach to test for significant associations between hotspot 15	  

frequency and time in bNAb lineages. The null model for this test is a substitution 16	  

model (GY94) that does not explicitly model the decay of hotspot motifs. The GY94 17	  

model is used to estimate a maximum likelihood phylogenetic tree. Multiple data sets 18	  

were simulated under this null model, using the same sample sizes and sampling times 19	  

as the three empirical bNAb data sets. The significance of the difference between the 20	  

null model and the observed data is calculated as the proportion of simulated datasets 21	  

with a greater negative correlation between hotspot frequency and time than in the 22	  

observed data set. Results for these tests are shown in Table 1. 23	  

 24	  

Maximum likelihood phylogenetic trees and substitution model parameters for each of 25	  

the three bNAb lineages were estimated using the GY94 model and empirical codon 26	  

frequencies, as implemented in codonPhyML (Gil et al. 2013). Trees were re-rooted 27	  

so that the germline sequence is placed as an outgroup with a branch length of zero, 28	  

effectively making it the ancestor of the lineage. For each bNAb lineage, we then 29	  

simulated 100 sequence data sets down the corresponding ML tree using the GY94 30	  

model, starting with the corresponding germline sequence at the root and using the 31	  

fitted substitution model parameters. Simulations were performed using the program 32	  

EVOLVER, which is part of the PAML package (Yang 2007). 33	  

 34	  
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7	  

To ascertain whether the observed effects were general, or specific to known hotspot 1	  

motifs, we repeated the above regression and simulation approach for non-hotspot 2	  

motifs. To do this, we simply randomly assigned non-hotspot nucleotide motifs as 3	  

“hotspots” whilst keeping the number of trimer and dimer hotspots the same (eight 4	  

and three, respectively). This analysis was then repeated for 100 such random 5	  

allocations. 6	  

 7	  

A codon substitution model for antibody lineages 8	  

In order to represent the molecular evolution of long-lived B cell lineages more 9	  

accurately, we develop here a new substitution model that models the effects of motif-10	  

specific mutation across BCR sequences. This model, named the HLP16 model, is a 11	  

modification of the GY94 substitution model (more specifically, it is a modification 12	  

of the M0 model, because ω is kept constant among sites and lineages; Yang et al. 13	  

2000). Specifically, we add to the GY94 model an additional parameter, ha, which 14	  

represents the change in relative substitution rate of a hotspot/coldspot mutation in 15	  

motif a. Explicitly modelling the full context dependence of hotspot motifs would 16	  

make likelihood calculations computationally infeasible. Instead, we weight ha by 𝑏!"! , 17	  

which is the probability that the mutation from codon i to codon j was a hotspot 18	  

mutation in motif a, averaged across all possible combinations of codons on the 5’ 19	  

and 3’ flanks of the target codon. This is a mean field approximation (i.e. the expected 20	  

effect is averaged across all possible scenarios) and is similar to the singlet-doublet-21	  

triplet model of Whelan and Goldman (2004). A “hotspot mutation” is defined as a 22	  

mutation occurring within the underlined base of the specified motif (e.g. the trimer 23	  

motif and its reverse complement WRC/GYW; nucleotides represented using the 24	  

IUPAC coding scheme). Because we did not find a significant decay of dimer hotspot 25	  

motifs through time (see Figure 1 and Table 1), our model only includes trimer 26	  

hotspots. However, dimers or other motifs could easily be added with additional 27	  

values of ha and 𝑏!"!  for each new motif.  28	  

 29	  

In the HLP16 model, each entry qij in the transition rate matrix Q is parameterised by: 30	  

πj = Baseline frequency of codon j 31	  

k = Transition/transversion mutation relative rate ratio 32	  

ω = Nonsynonymous to synonymous mutation relative rate ratio 33	  
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8	  

a = Motif in which mutation rate is modified at underlined base. Here, a ∈ {WRC, 1	  

GYW, WA, TW, SRC, GRS}, but in principle any other motif ≤ 4nt long 2	  

could be used. 3	  

ha = Change in mutability due to mutation in motif a; ha  ≥ -1. 4	  

𝑏!"!  = Probability that mutation from i to j involves the underlined base in motif a 5	  

 6	  
and the transition matrix Q itself is defined by 7	  
 8	  

qij = 

        0                                                                                𝑖 → 𝑗  𝑚𝑜𝑟𝑒  𝑡ℎ𝑎𝑛  1  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒  𝑐ℎ𝑎𝑛𝑔𝑒                  
𝜋!(1+ 𝑏!"!ℎ!! )                      𝑖 → 𝑗  𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛                                    
𝑘𝜋! 1+ 𝑏!"!ℎ!!                 𝑖 → 𝑗  𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                                                
𝜔𝜋! 1+ 𝑏!"!ℎ!!                 𝑖 → 𝑗  𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛                      
𝜔𝑘𝜋! 1+ 𝑏!"!ℎ!!           𝑖 → 𝑗  𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                                  

  (1) 9	  

 10	  

The values of 𝑏!"!  are calculated by marginalizing over all possible 5’ and 3’ flanking 11	  

sense codons as follows: 12	  

𝑏!"! =    𝜋!!"
!!!

!"
!!! 𝜋!𝐼 𝑖, 𝑗, 𝑘,𝑚,𝑎 ,   (2) 13	  

where I is the indicator function: 14	  
 15	  

𝐼 𝑖, 𝑗, 𝑘,𝑚,𝑎 = 1              𝑘𝑖𝑚 → 𝑘𝑗𝑚  𝑖𝑠  𝑎  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  𝑓𝑟𝑜𝑚  𝑚𝑜𝑡𝑖𝑓  a      
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                          

(3) 16	  

 17	  

This model, though an approximation, has several useful properties. Most 18	  

importantly, because codon changes are modelled as occurring independently of each 19	  

other, the phylogenetic likelihood can still be calculated using Felsenstein’s pruning 20	  

algorithm, which greatly reduces computational time (Felsenstein 1981). The model 21	  

also has the intuitive property that, if no hotspot motif is specified, then all ha = 0 and 22	  

the model simplifies to the GY94 model. Thus the M0 submodel of the GY94 model 23	  

is a special case of the HLP16 model.  24	  

 25	  

In contrast to most substitution models, the relative substitution rate parameters in the 26	  

Q matrix of the HLP16 model is not necessarily time-reversible, i.e. it does not 27	  

necessarily satisfy the detailed balance condition 𝜋!𝑞!" = 𝜋!𝑞!". Time reversibility is 28	  

useful because it means that likelihood calculations can be undertaken on an unrooted 29	  

tree, which can then be rooted on any branch. In the case of B cell lineage evolution, 30	  

it is necessary to root the lineage phylogeny at the germline sequence during 31	  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2016. ; https://doi.org/10.1101/078279doi: bioRxiv preprint 

https://doi.org/10.1101/078279
http://creativecommons.org/licenses/by/4.0/


	  
9	  

parameter estimation. This property is also known as the “pulley principle”, which 1	  

only holds for reversible models, and helps to speed up search algorithms for 2	  

maximum likelihood trees (Boussau and Gouy 2006). In our implementation, 3	  

likelihood calculations during branch length optimization are sped up by starting the 4	  

pruning algorithm calculations at the lower (more ancestral) node of the branch being 5	  

optimized, then updating the partial likelihoods on all nodes between the branch being 6	  

optimized and the root node. 7	  

 8	  

While in standard GY94-type models the vector π  represents the equilibrium 9	  

frequencies of codons, this is not the case for the HLP16 model. This can be checked 10	  

by direct calculation of the total flux in and out of a codon j; in general 𝜋!𝑞!"!!! ≠11	  

𝜋!𝑞!"!!!  for HLP16 because the matrix 𝑏!"!  is generally not symmetric in i and j. 12	  

Although equilibrium frequencies do exist (and can be calculated numerically), we are 13	  

in fact interested in the model’s non-equilibrium behaviour, since the ancestral 14	  

sequence is likely to be far from equilibrium, and observed codons are unlikely to 15	  

have reached their equilibrium frequencies. As a result, the best-fit values of π  may 16	  

even change according to the time at which a B-cell lineage is sampled. Thus the 17	  

values of π  in our model are more appropriately interpreted as best-fit constant codon 18	  

frequencies given the data and other model parameters, and should not be directly 19	  

interpreted as equilibrium frequencies. More specifically, we use the CF3X4 model 20	  

(Kosakovsky Pond et al. 2010) to find the best-fitting codon frequencies. In this 21	  

model, the frequencies of A, C, G, and T at each of the three codon positions are 22	  

estimated through ML as twelve additional parameters. 23	  

 24	  

Within this framework, a hierarchical network of hotspot models can be specified by 25	  

fixing certain values of ha to zero and by setting some values of ha to be equal. For 26	  

instance, a symmetric WRC/GYW model is specified by setting hWRC = hGYW and by 27	  

setting all other values of ha to zero, leaving just one parameter (hWRC) to be estimated 28	  

using maximum likelihood. Pairs of models that are nested (e.g. strand symmetric vs. 29	  

asymmetric motifs) can be formally compared using likelihood ratio tests; non-nested 30	  

models may be compared using the Akaike information criterion (AIC). 31	  

 32	  
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We implement this model in IgPhyML, a program modified from the source code of 1	  

codonPhyML (Gil et al. 2013). IgPhyML implements the rate matrix in equation 1 2	  

estimates the parameters ha using maximum likelihood, together with the other model 3	  

parameters. Specifically, we optimize ω, k, πj, and the vector of phylogeny branch 4	  

lengths. Performing all likelihood calculations from the root node slows computation 5	  

substantially, therefore in this work we applied the HLP16 model to a fixed tree 6	  

topology, and we deliberately leave the problem of co-estimating topology for future 7	  

work. For each data set, the tree topology used was that inferred using the standard 8	  

M0 version of the GY94 model in codonPhyML, which was subsequently re-rooted in 9	  

order to place the germline sequence at the universal common ancestor.  10	  

 11	  

Because the M0 version of the GY94 model is a special case of the HLP16 model  12	  

(i.e. when all h parameters = 0) the two models are nested and can be compared using 13	  

a likelihood ratio test. Let Lmax(HLP16) and Lmax(M0) be the maximum likelihoods 14	  

obtained under the HLP16 and M0 models, respectively. The likelihood ratio statistic 15	  

2 log[ Lmax(HLP16) / Lmax(M0) ] is then approximately chi-squared distributed with 16	  

degrees of freedom equal to the number of additional h parameters (Huelsenbeck and 17	  

Rannala 1997). For each bNAb dataset, we calculate Lmax(HLP16) by co-optimising h 18	  

and other model parameters, whereas Lmax(M0) is calculated by constraining all ha=0 19	  

whilst optimising the other model parameters. 20	  

 21	  

Effectiveness of the mean field approximation 22	  

We evaluated and validated our implementation of the HLP16 model by simulating 23	  

data sets under different values of h and testing how accurately model parameters 24	  

were inferred. For brevity, we considered only symmetric WRC/GYW hotspot motifs 25	  

in this analysis (hWRC=hGYW; hereafter in this section hereafter referred to as h). 26	  

Because the HLP16 model is a mean field approximation it will not fully account for 27	  

the context dependency of somatic hypermutation. To measure the degree of this 28	  

effect, we generated simulated datasets using a modified version of HLP16 that does 29	  

fully account for the context dependence of adjacent codon sites. In a forward 30	  

simulation procedure, the 3’ and 5’ flanking codons of each site are known. This 31	  

allowed us to create a B matrix for each site in each sequence with bij equal to either 1 32	  

or 0 depending on whether or not the substitution was a hotspot mutation in a 33	  
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WRC/GYW motif. The process begins at the root sequence, calculates a separate B 1	  

and Q matrix at each site in the sequence, simulates two descendant sequences, then 2	  

repeats for descendant nodes down the tree until all tips are filled. More specifically: 3	  

(1) We randomly subsampled each bNAb lineage to 99 sequences, plus the 4	  

single germline sequence at the root. Subsampling was necessary to make the 5	  

large number of replicates computationally feasible. 6	  

(2) We estimated a maximum likelihood phylogeny for each subsampled 7	  

bNAb lineage data set using the standard GY94 model. During estimation we 8	  

optimised ω, k, πj, branch lengths and the tree topology. The resulting ML tree 9	  

was re-rooted at the germline sequence with a branch length of zero. 10	  

(3) For each value of h investigated (0, 1, 2, and 4), we simulated 20 11	  

alignments along each of these trees using the procedure outlined above. 12	  

Simulations were undertaken using the estimated values of ω, k and πj, 13	  

obtained in step (2) for the corresponding bNAb lineage data set. Starting 14	  

(root) sequences were generated randomly from codon frequencies. 15	  

(4) For each of the replicates defined in step (3), we performed three different 16	  

ML calculations: (i) h was optimised using ML (with ĥ as the MLE estimate of 17	  

h), (ii) h was fixed to zero and (iii) h was fixed to the true value used in 18	  

simulation. These three scenarios enable us to test type 1 and type 2 error 19	  

rates, by determining whether ĥ was significantly different to h or to zero, 20	  

respectively. Statistical significance was determined using the chi-squared 21	  

approximation to the likelihood ratio statistic, as described above. In all 22	  

calculations, the tree topology was fixed to that inferred in step (2). 23	  

(5) For each data set and for each set of simulations under a particular value of 24	  

h, we estimated ĥ and then calculated the properties of this estimator as 25	  

follows: 26	  

i. Bias in estimation: (Mean[ĥ] – h)  27	  

ii. Variance in estimation: Variance[ĥ]  28	  

iii. Type 1 error rate: The proportion of simulated data sets in which h 29	  

was outside of the 95% confidence interval for ĥ.  30	  

iv. Type 2 error rate: The proportion of simulated data sets in which h 31	  

> 0, but failed to reject the null hypothesis (h = 0). 32	  

 33	  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2016. ; https://doi.org/10.1101/078279doi: bioRxiv preprint 

https://doi.org/10.1101/078279
http://creativecommons.org/licenses/by/4.0/


	  
12	  

To test how our implementation performs on simulations in which HLP16 is the true 1	  

model, we also repeated the above simulation analysis using the standard HLP16 2	  

model (the results of which are detailed in Supplemental File 2). 3	  

 4	  

Biased mutation during somatic hypermutation has been shown to give false 5	  

signatures of natural selection using approaches that compare the expected number of 6	  

replacement and silent mutations (Dunn-Walters and Spencer 1998). We hypothesised 7	  

that the HLP16 model might partially reduce this bias. To test this, and to explore 8	  

whether the HLP16 model improved estimation of other evolutionary parameters, we 9	  

compared the percentage error under the HLP16 and GY94 models of estimates of (i) 10	  

ω, (ii) k, (iii) tree length (sum of all branch lengths) and (iv) the ratio of internal to 11	  

external branch lengths. These results are provided in Figure 2 and Supplemental 12	  

Figure 4.  13	  

 14	  

The fact that bNAb lineages are clearly not in equilibrium when they are sampled 15	  

(Figure 1) has interesting implications for the use of Markov substitution models. 16	  

Typically, it is assumed that nucleotide or codon frequencies are at equilibrium at the 17	  

time of sampling, and empirical codon frequencies are often used as estimates of 18	  

equilibrium frequencies. In the case of long-lived B cell lineages, however, sampled 19	  

sequences are almost certainly not in equilibrium, making empirical codon 20	  

frequencies inaccurate approximations for equilibrium frequencies. Because changes 21	  

from SHM are not inherited through the germline, each BCR lineage is expected to 22	  

begin out of sequence equilibrium, potentially converging to its equilibrium 23	  

distribution as it evolves. For this reason, it is necessary to optimize equilibrium 24	  

codon frequencies using ML rather than using empirical codon frequencies. To test 25	  

how this might affect estimation of h, we repeated the simulation procedure above 26	  

using empirical equilibrium frequencies from each data set. These results are included 27	  

in Supplemental File 3. 28	  

 29	  

Hotspot model selection 30	  

By placing different constraints on the six ha parameters, we tested ten different 31	  

hotspot models on the three bNAb lineages CH103, VRC26, and VRC01. The 32	  

specific constraints used to define each hotspot model, and the results of model testing 33	  
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are shown in Table 4. Full results from each model fit are shown in Supplemental 1	  

File 5. 2	  

 3	  

Further, to ensure that the effects we observe are particular to the hotspot and coldspot 4	  

motifs under investigation, we compared estimated h values for defined hotspot 5	  

motifs to those obtained from all other possible trimer motifs with similar 6	  

characteristics. Specifically, we generated all possible motifs and their reverse 7	  

complements that (i) were 3nt in length, (ii) contained two IUPAC letters standing for 8	  

two possible nucleotides (R, Y, S, W, K, and M), and (iii) subsequently contained an 9	  

unambiguous nucleotide (i.e. A, C, G, or T). We then fitted the HLP16 model using 10	  

these each of these 144 motifs individually and compared how estimated h values for 11	  

these motifs compared the values for WRC/GYW and SYC/GRS.  We repeated this 12	  

process for dimer motifs, but with the constraints that motifs (i) were 2nt in length, 13	  

(ii) contained one IUPAC letter standing for two possible nucleotides and (iii) 14	  

subsequently contained an unambiguous nucleotide. We fitted the HLP16 model to 15	  

the same data using these 24 dimer motifs and compared them to the results from 16	  

WA/TW motifs. Results from this analysis are shown in Supplemental File 6. 17	  

 18	  

Effects on ancestral state reconstruction 19	  

One of the key applications of molecular phylogenetics to BCR sequence data is the 20	  

reconstruction of ancestral sequences within a B-cell lineage (Kepler 2013). Ancestral 21	  

state reconstruction is an implicit part of the phylogenetic likelihood calculation when 22	  

nucleotide or codon substitution models are used. For each simulation replicate, and 23	  

for each of the three likelihood calculations described in step (3) above, we computed 24	  

the most likely codon at each codon position at each internal node in the tree. These 25	  

ancestral sequences were then used to compare the accuracy of reconstructions under 26	  

the HLP16 model with those obtained using the GY94-type model. In each simulation 27	  

replicate, accuracy of ancestral sequence reconstruction was measured by calculating 28	  

the mean number of pairwise nucleotide or amino acid differences between the 29	  

predicted and true sequences at each node. We repeated this ancestral state 30	  

reconstruction procedure on each bNAb lineage with its best-fit model. These are 31	  

shown in Supplemental File 7 and 8, respectively.   32	  

 33	  
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The HLP16 model is implemented in IgPhyML, which is available to download 1	  

through: https://github.com/kbhoehn/IgPhyML. Code and sequence alignments for 2	  

simulation and ancestral sequence reconstruction analyses are included in the file 3	  

Supplemental_Code.zip. 4	  

 5	  

 6	  
Results 7	  

 8	  

Decay of hotspot motifs in bNAb lineages 9	  

All three bNAb lineages showed a negative correlation between trimer hotspot 10	  

content and time. However, no such decline was seen in dimer motifs (Table 1, 11	  

Figure 1). To test whether the observed patterns of hotspot decay were significantly 12	  

different from those expected under a standard reversible codon substitution model 13	  

that does not explicitly account for hypermutation at hotspot motifs, we implemented 14	  

a significance test that compares the correlation between hotspot motif frequency and 15	  

time in simulated data sets generated under the null phylogenetic model. All three B 16	  

cell lineages showed a significantly greater negative correlation between trimer 17	  

hotspot content and time than expected under the null model (Table 1). In all cases, 18	  

the frequency of dimer motifs showed no significant change through time. 19	  

Furthermore, we repeated these analyses with randomly chosen non-hotspot motifs 20	  

taking the place of the real, known hotspot motifs. This latter analysis demonstrates 21	  

that the significant decline detected was specific to known hotspot motifs; declines of 22	  

similar degree were rarely observed in non-hotspot motifs (Supplemental File 1). 23	  

 24	  

A codon substitution model for phylogenies undergoing somatic hypermutation 25	  

All three bNAb lineages showed a significant improvement in likelihood under the 26	  

symmetric WRC/GYW HLP16 model compared to the GY94 model. The maximum 27	  

likelihood values of h for the three data sets were ĥWRC = ĥGYW = 1.91, 1.82, and 2.05, 28	  

for CH103, VRC26, and VRC01, respectively. In each case the simpler GY94 model 29	  

(all h=0) could be rejected using the likelihood ratio test (p < 0.0001 for all three 30	  

lineages). These results are summarized in Table 2. These ĥ values represent up to a 31	  

three-fold increase in the relative rate of change at hotspot locations (depending on 32	  

the values of bij). 33	  

 34	  
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The mean field approximation used in this model did not dramatically affect 1	  

parameter estimation when applied to data sets simulated under a fully context 2	  

dependent model, at least for the parameter space of the three empirical bNAb 3	  

lineages (Table 3). Mean ĥ values from simulations in which 0 ≤ hWRC/GYW ≤ 2 were 4	  

close to their true h values and exhibited low absolute bias and variability (maximum 5	  

-0.17 and 0.11, respectively, when h =2). Of these simulated data sets, 6.1% 6	  

incorrectly rejected the correct parameter value (i.e. they estimated a ĥ significantly 7	  

different from the true value of h used in the simulations). This is close to the 8	  

theoretical expectation under α = 0.05. Further, none of the datasets simulated with h 9	  

> 0 failed to reject the null hypothesis that h = 0, demonstrating good statistical 10	  

power. Bias generally increased if h was raised beyond that observed in the empirical 11	  

bNAb linages. Performance was worse when h = 4, which resulted in a mean type 2 12	  

error of 0.42 and a mean bias of -0.59. This behaviour is as expected because, as h 13	  

increases, the mean field approximation will become less accurate. We found that 14	  

using empirical codon frequencies decreased the performance of h estimation; using 15	  

empirical frequencies resulted in higher bias and type 2 error rates than using ML 16	  

frequencies (Supplemental File 3). Discussion of why empirical codon frequencies 17	  

are unlikely to be suitable for long-lived B-cell lineage phylogenies is provided in the 18	  

Methods section. 19	  

 20	  

Within the parameter space of the empirical data sets (0 ≤ hWRC/GYW ≤ 2), there was no 21	  

substantial difference in estimation of other model parameters compared to the 22	  

standard GY94 model, except for the tree length parameter in some simulations 23	  

(Figure 2, Supplemental File 4). However, when this h is large (4, in these 24	  

simulations), the GY94 model substantially underestimates tree length in each of the 25	  

simulated lineages. In contrast, the HLP16 model, while not completely eliminating 26	  

this effect, substantially reduced it. In simulations based on the long-lived VRC01 27	  

lineage in which this h = 4, the GY94 model overestimated the ω parameter; this bias 28	  

was not obvious in simulations based on the VRC26 and CH103 lineages that were 29	  

sampled for a shorter duration. The HLP16 model was generally able to infer ω 30	  

accurately under all values of h.  31	  

 32	  

Hotspot model selection 33	  

 34	  
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All hotspot motif models tested gave a significantly higher likelihood than the 1	  

standard GY94 model when applied to the CH103, VRC26, and VRC01 B-cell 2	  

lineages. Likelihoods were considerably higher for asymmetric models. Using a LRT, 3	  

the asymmetric WRC/GYW model significantly rejected the corresponding nested 4	  

symmetric model (p = 2.3x10-15, 7.8x10-5, and 3.8x10-3, for lineages CH103, VRC26, 5	  

and VRC01, respectively). Similarly the asymmetric WA/TW model rejected its 6	  

symmetric counterpart (p < 1x10-45 for all three lineages). Allowing different hotspot 7	  

motifs to have different h values also resulted in significantly higher likelihoods than 8	  

using a uniform value of h for all hospots (p < 1x10-15 for all three lineages). 9	  

Interestingly, VRC26 and VRC01 showed a significantly higher likelihood under 10	  

asymmetric SYC/GRS coldspot motifs (p = 2.2x10-13 and 4.2x10-3), but CH103 did 11	  

not (p=0.65). This difference was also reflected in the best-fit (lowest AIC) model for 12	  

each lineage. For VRC26 and VRC01the best-fit model was the “Free coldspots and 13	  

hotspots” model, in which all motifs and their reverse complements are given separate 14	  

h values. However, for CH103 the best-fit model was the “Symmetric coldspots, 15	  

asymmetric hotspots” model, in which each hotspot and its reverse complement are 16	  

given separate h values, but coldspots remain symmetric. 17	  

 18	  

In the randomization analysis, we found that WRC/GYW motifs exhibited a larger 19	  

value of h, and a higher likelihood, than any other trimer motif analysed. Further, 20	  

SYC/GRS motifs resulted in a h values that was lower than 140 of the 143 other 21	  

trimer motifs tested. WA/TW motifs showed a higher h value than 22 out of the 23 22	  

other dimer motifs analysed (only RC/GY motifs showed a higher h). These results 23	  

are shown in Supplemental File 6. 24	  

 25	  

Ancestral state reconstruction 26	  

In fully context dependent simulations, we also found that the HLP16 model provided 27	  

an accuracy of ancestral state reconstructions that was similar to the GY94 model 28	  

where h < 4, and that HLP16 substantially improved accuracy at h = 4 (Supplemental 29	  

File 7). Sequence reconstructions under the two models were fairly similar for 30	  

internal nodes near the root and the tree tips, but showed improvement under the 31	  

HLP16 model especially for internal nodes in the basal third of the phylogeny. 32	  

Typically, we would expect the uncertainty in ancestral state reconstruction to 33	  

increase as we move from the tree tips towards the root; however, B-cell lineages are 34	  
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unusual in that the root sequence is also known as it corresponds to the germline 1	  

sequence.  2	  

 3	  

While true ancestral sequences are not available for the three empirical bNAb 4	  

lineages, we did observe differences between ancestral sequences reconstructed using 5	  

the HLP16 and GY94 models. For each lineage, we compared the two models by 6	  

calculating the mean number of amino acid differences between the predicted 7	  

ancestral sequences at all internal nodes of each tree. Performing this ancestral state 8	  

reconstruction on each of the three bNAb lineages showed a mean of 0.63, 1.15, and 9	  

0.95 amino acid sequence difference across all internal nodes, with a maximum 10	  

difference of 9, 10, and 15 amino acid differences in a single node for CH103, VC26, 11	  

and VRC01, respectively. Differences somewhat more concentrated in the basal third 12	  

of the phylogeny, consistent with the simulation results above (Supplemental File 8).  13	  

  14	  
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Discussion 1	  

 2	  

Molecular phylogenetics has already been used in a variety of applications in the 3	  

study BCR genetic diversity and the molecular evolution of B cell lineages (Kepler 4	  

2013; Sok et al. 2013; Kepler et al. 2014). However, the process of somatic 5	  

hypermutation is known to occur in ways that violate fundamental assumptions of 6	  

most phylogenetic substitution models. Here, we demonstrate that failing to account 7	  

for this has tangible effects on phylogenetic inference and ancestral state 8	  

reconstruction from sets of sequences from long-lived bNAb lineages. We develop 9	  

and implement a new codon substitution model (HLP16) that, whilst only an 10	  

approximation, is capable of mitigating these effects. 11	  

 12	  

Perhaps the most salient difference between standard substitutions models and the 13	  

biology of somatic hypermutation is the context dependency of mutation in BCRs. 14	  

This biased mutation process at hotspot motifs, for which a variety of empirical 15	  

models have been developed to characterise the process at di, tri, penta, and heptamer 16	  

levels (Smith et al. 1996; Yaari et al. 2013; Elhanati et al. 2015), has long been known 17	  

to give false signature of selection in BCRs (Dunn-Walters and Spencer 1998). This 18	  

effect was observed in some of our simulations (Figure 2, Supplemental File 4), as a 19	  

failure to account for the increased rate of substitution at hotspot motifs led to 20	  

overestimation of the ω (dn/ds) parameter. However, these simulations used an h 21	  

value of 4, which was outside of the range of what we observed for empirical bNAb 22	  

lineages. 23	  

 24	  

Some approaches have been developed to study the substitution process in BCR data 25	  

in the context of biased mutation. Some of these are non-phylogenetic in nature (e.g. 26	  

Hershberg et al. 2008; Yaari et al. 2012) and focus on the expected number of 27	  

germline to tip replacement mutations in comparison to a null model. Kepler et al 28	  

(2014) developed a non-linear regression model approach that, combined with an 29	  

empirical model of mutation rate at each site, allowed the authors to test for the 30	  

effects of selection and mutation on BCR genetic diversity. The substitution model 31	  

detailed in McCoy et al (2015) is more similar to the model introduced in our study, 32	  

but accounts for biased mutation by comparing values of ω inferred from a given data 33	  

set to those inferred from out-of-frame rearrangements.  34	  
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 1	  

Other approaches have been taken to study the effect of context dependent mutation 2	  

in phylogenetic substitution models. Many have focused on modelling the 3	  

substantially increased mutability of CpG motifs (Hwang and Green 2004; Lunter and 4	  

Hein 2004). These approaches are attempts to account for the full context dependency 5	  

of CpG hypermutation, and require significantly more complex models. In the case of 6	  

somatic hypermutation in BCRs, the increased mutability of BCR hotspot mutations 7	  

(~3 fold) is not as great as CpG motifs (~18 fold; Lunter and Hein 2004), so a simpler, 8	  

approximate approach is still effective (Table 3). The mean-field approximation has 9	  

also been used previously, but in a reversible codon model, to take into account di- 10	  

and trinucleotide substitutions (Whelan and Goldman 2004). 11	  

 12	  

The HLP16 codon substitution model detailed here is a relatively straightforward 13	  

modification of the widely used M0 submodel of the GY94 model. Although the 14	  

HLP16 model is slower to compute than the simpler, reversible model on which it is 15	  

based, we have found that it is usable, and certainly statistically preferable, to the 16	  

GY94 model when applied to any BCR data set whose diversity may have been 17	  

shaped by somatic hypermutation. Further, the HLP16 model does not rely on an 18	  

empirical model to incorporate the effect of biased mutation, but instead attempts to 19	  

explicitly model the context-dependent mutational process by estimating the 20	  

parameter h directly from the data. We note, however, that the HLP16 model is a 21	  

mean-field approximation and does not capture the full context of motif driven 22	  

evolution. Therefore we do not expect it to fully disentangle interactions between 23	  

selection and biased mutation, and estimated values of ω should be interpreted 24	  

carefully. In addition to correcting biases in parameter estimation, simulation analyses 25	  

reveal that the HLP16 model produces different, and more accurate, ancestral state 26	  

reconstructions than the standard GY94 model. Importantly, empirical analyses on 27	  

bNAb lineages performed here were using tree topologies that were optimal under 28	  

GY94, rather than HLP16, for computational tractability. This is expected to make the 29	  

estimation of each h conservative in these analyses, but it is not clear how the optimal 30	  

topology of the HLP16 model will differ from that under GY94.  31	  

 32	  

Our model selection results suggest that different hotspot motifs have highly variable 33	  

effects on sequence evolution in B-cell lineages. It is generally thought that increased 34	  
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mutation in WRC/GYW motifs (or the tetramer motifs WRCY/RGYW) reflect the 1	  

action of AID targeting, while in WA/TW motifs it is the result of error-prone 2	  

polymerase repair (Teng and Papavasiliou 2007). Consistent with these separate 3	  

mechanisms, WRC/GYW motifs have generally been found to be strand symmetric, 4	  

but WA/TW motifs are strand-biased, with WA mutating at a higher rate than TW 5	  

(Bransteitter et al. 2004; Spencer and Dunn-Walters 2005; Teng and Papavasiliou 6	  

2007). It is interesting, then, that in all three lineages tested here show a significantly 7	  

better fit for asymmetric vs. symmetric WRC/GYW (Table 4; Supplemental File 5). 8	  

However, our results do not necessarily conflict with previous findings on the targeted 9	  

nature of SHM. If strand bias were a feature of AID targeting, it would be expected to 10	  

be consistent between lineages. However, the asymmetric WRC/GYW model did not 11	  

show a consistent polarity, with CH103 and VRC01 having hGYW > hWRC, and VRC26 12	  

showing the opposite pattern (Supplemental File 5). By contrast, the asymmetric 13	  

WA/TW model also showed a higher value of hWA than hTW, consistent with the 14	  

existing literature. One can imagine a number of complex factors that may lead to 15	  

increased likelihood under the asymmetric WRC/GYW model even under a strand 16	  

symmetric targeting of AID, and these tests do not distinguish between them. 17	  

SYC/GRS coldspot motifs also did not show a consistent strand polarity between the 18	  

lineages, and in CH103 did not show evidence of asymmetry at all, consistent with the 19	  

notion that SYC/GRS motifs are also the result of AID targeting (Bransteitter et al. 20	  

2004). 21	  

 22	  

Another common assumption in phylogenetic analysis is that the codons or 23	  

nucleotides sampled for analysis are at their equilibrium frequencies. Because our 24	  

hotspot model has asymmetric relative rates between codons, which are a function of 25	  

h, codon frequencies may change through time within a B-cell lineage when h is 26	  

significantly above zero. This is a consequence of the decline in the number of 27	  

hotspots through time (Figure 1). We dealt with this problem by estimating 28	  

equilibrium frequencies by maximum likelihood within the model. This provided an 29	  

improvement, both in maximum likelihood and in parameter estimation, over using 30	  

empirical codon frequencies. However, it is not yet clear if this is the most efficient or 31	  

the most effective way of dealing with the problem sequences that have not converged 32	  

to their equilibrium distribution. While ML optimization finds the best fitting codon 33	  

frequency values (under the CF3x4 model), in reality codon frequencies may change 34	  
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over the course of the phylogeny, and a model that accounts for that would likely be 1	  

more appropriate. However, effective modelling of the numerous factors that affect 2	  

codon frequency change in BCR lineages will be complex and we leave that problem 3	  

for future analyses.  4	  

 5	  

This decay of hotspot motifs in bNAb lineages may have important implications for 6	  

our understanding of host-virus coevolution. More specifically, the loss of hotspot 7	  

motifs may lead to a decrease in sequence mutability, and therefore a decline in 8	  

overall rate of evolution over time for a given lineage (Sheng et al. 2016). This 9	  

hypothesis has several interesting implications. If the slowdown in mutation rate over 10	  

time, arising from hotspot decay, is an intrinsic property of activated B cell lineages, 11	  

then BCR sequence divergence from a germline ancestor (and thus affinity 12	  

maturation) may be intrinsically constrained. Consequently, while BCR lineages may 13	  

be able to rapidly evolve binding affinity and co-evolve with pathogens for an initial 14	  

period after activation, over longer periods of time the ratio of the rate of BCR 15	  

sequence change to pathogen sequence change may decline. We hypothesise that in 16	  

extreme cases the rates of BCR evolution within a lineage may eventually fail to keep 17	  

up with the rapid evolution of chronically infecting viruses, such as HIV-1, due to the 18	  

exhaustion of available BCR hotspot motifs. The notion that biased mutation will lead 19	  

to decreased mutability and evolutionary rate was explored recently by Sheng et al 20	  

(2016). They concluded that the observed mutation rate decreases  in bNAb lineages 21	  

was most likely due to a shift from positive to purifying selection, although the loss of 22	  

hotspot motifs may also play a role and the issue is not yet fully resolved. 23	  

 24	  

We have implemented this model in the software package IgPhyML, a modified 25	  

version of codonPhyML (Gil et al. 2013). This program can perform all of the 26	  

substitution model analyses performed here. Source code is available at: 27	  

https://github.com/kbhoehn/IgPhyML. 28	  

  29	  
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Tables 1	  

 2	  

Table 1: Hotspot motif decay in three bNAb lineages. 3	  

B-cell 

lineage 

Trimer motifs: WRC/GYW Dimer motifs: WA/TW 

Observed 

correlation 
Observed/simulated 

P 

value 

Observed 

correlation 
Observed/simulated 

P 

value 

CH103 -0.48 -11.33 0.00 0.09 0.46 0.29 

VRC26 -0.50 -11.77 0.00 0.33 0.84 0.30 

VRC01 -0.33 5.50 0.02 0.11 0.70 0.39 

The “Observed correlation” column shows the correlation between hotspot frequency 4	  

and time. The next column shows how these values compare to the mean of the same 5	  

values from 100 simulations under the null model. The third column shows the p 6	  

value – the proportion of simulated data sets that had a lower correlation than 7	  

observed data sets.  8	  

 9	  

Table 2: Maximum likelihood estimates of h and likelihood ratio tests  10	  

Lineage ĥ WRC/GYW 
Log-likelihood 

2*LR p value 
hWRC/GYW=mle hWRC/GYW=0 

CH103 1.91 (1.5, 2.4) -14927 -15031.5 209 0 

VRC26 1.82 (1.6, 2.1)  -37632.5 -37913.8 562.6 0 

VRC01 2.05 (1.8, 2.3) -44037.7 -44339.3 603.2 0 

Significance was determined using the likelihood ratio test under a chi-squared 11	  

distribution with one degree of freedom. 90% confidence intervals for ĥ are shown in 12	  

parentheses in the second column. All lineages showed a p value < 1x10-45. 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
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 1	  
 2	  
 3	  
Table 3: HLP16 performance under fully-context dependent simulations for 4	  

symmetric WRC/GYW hotspots 5	  
Set h Mean ĥ Bias Variability Type 1 error Type 2 error 

CH103 

0.00 -0.014 -0.014 0.020 - 0.00 

1.00 1.039 0.039 0.066 0.00 0.05 

2.00 2.015 0.015 0.114 0.00 0.05 

4.00 3.512 -0.488 0.283 0.00 0.25 

VRC26 

0.00 0.014 0.014 0.024 - 0.10 

1.00 0.981 -0.019 0.053 0.00 0.05 

2.00 1.884 -0.116 0.066 0.00 0.00 

4.00 3.502 -0.498 0.336 0.00 0.35 

VRC01 

0.00 -0.007 -0.007 0.012 - 0.00 

1.00 0.912 -0.088 0.048 0.00 0.15 

2.00 1.835 -0.165 0.099 0.00 0.15 

4.00 3.229 -0.771 0.166 0.00 0.65 

 6	  
Type 1 error rate shows the proportion of data sets that incorrectly failed to reject the 7	  

null hypothesis of h = 0. Type 2 error rate shows the proportion of data sets that 8	  

rejected the true value of h shown in the first column. Both hypothesis tests for type 1 9	  

and 2 errors used an alpha value of 0.05. Importantly, data in these analyses were not 10	  

simulations under HLP16, but a fully context dependent variation of it. Similar 11	  

analyses using HLP16 as the true model are shown in Supplemental File 2. 12	  

  13	  
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 1	  
Table 4: Hotspot model selection 2	  
 3	  

 Constraint/optimization of each ha p values from LR tests 

Model name hWRC hGYW hWA hTW hSYC hGRS CH103 VRC26 VRC01 

Symmetric 
WRC/GYW* ML hWRC 0 0 0 0 

2.3E-15 7.8E-05 3.8E-03 
Asymmetric 
WRC/GYW ML ML 0 0 0 0 

Symmetric 
WA/TW* 0 0 ML hWA 0 0 

0 0 0 
Asymmetric 

WA/TW 0 0 ML ML 0 0 

Symmetric 
SYC/GRS* 0 0 0 0 ML hSYC 

0.65 2.2E-13 4.2E-03 
Asymmetric 
SYC/GRS 0 0 0 0 ML ML 

Uniform 
hotspots* ML hWRC hWRC hWRC 0 0 

6.7E-16 0 0 
Hierarchical 

hotspots ML hWRC ML hWA 0 0 

SCAH* ML ML ML ML ML hSYC 
0.65 1.1E-06 1.1E-03 

FCH ML ML ML ML ML ML 

 4	  
Models of hotspot hierarchy (degree of mutability) and symmetry, specified by 5	  

placing constraints on how different values of h are optimized. Columns 2-7 show 6	  

how the parameter ha is obtained for a particular model. A value of “0” indicates that 7	  

h is fixed at zero, “ML” indicates that a parameter is optimised by maximum 8	  

likelihood, and “ha” indicates that h parameter is equal to another value of h. For 9	  

instance, in “Symmetric WRC/GYW,” hGYW is equal to its reverse complement hWRC, 10	  

which is ML optimised. However, in “Asymmetric WRC/GYW,” both are ML 11	  

optimised. Note that each model marked with an asterisk * is nested with the model 12	  

immediately below it by one free parameter, allowing hypothesis testing using a 13	  

likelihood ratio test. Rows 8-10 show p values obtained from likelihood ratio tests of 14	  

each of these nested hotspot models for the bNAb lineage specified in each column. 15	  

SCAH = symmetric coldspots, asymmetric hotspots; FCH = free coldspots and 16	  

hotspots. Parameters, log likelihood, and AIC of each fit are shown in Supplemental 17	  

File 5.   18	  
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Figure 11	  

 2	  
Figure 1: Decrease in frequency of trimer and dimer hotspot motifs in three bNAb 3	  

lineages. Red line shown is least square regression.  4	  

  5	  
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Figure 2 1	  

 2	  
 3	  
Figure 2: Proportional error in parameter estimation compared to true values for the 4	  

VRC01 B cell lineage fully context dependent simulations. Values of ω, k, tree length, 5	  

and ratio of internal to external branch lengths are shown in panels a), b), c), and d), 6	  

respectively. Estimates obtained under the GY94 are in orange (h=0) and estimates 7	  

obtained under the HLP16 model are in blue (h estimated using maximum likelihood). 8	  

The edges and centres of boxplots show the 1st, 2nd, and 3rd quartiles, while the 9	  

whiskers show range. Similar results for B cell lineages CH103 and VRC26 are 10	  

shown in Supplemental File 4. 11	  

 12	  
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