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Abstract 

RNA viruses are notorious for their ability to evolve rapidly under novel environments. It is known that the 

high mutation rate of RNA viruses can generate huge genetic diversity to facilitate viral adaptation. However, 

less attention has been paid to the underlying fitness landscape that represents the selection forces on viral 

genomes. Here we systematically quantified the distribution of fitness effects (DFE) of single amino acid 

substitutions (86 amino acids total) in the drug-targeted region of NS5A protein of Hepatitis C Virus (HCV). 

We found that the majority of non-synonymous substitutions incur large fitness costs, suggesting that NS5A 

protein is highly optimized in natural conditions. Furthermore, we characterized the evolutionary potential of 

HCV by subjecting the mutant viruses to varying concentrations of an NS5A inhibitor Daclatasvir. As the 

selection pressure increases, the DFE of beneficial mutations shifts from an exponential distribution to a 

heavy-tailed distribution with a disproportionate number of exceptionally fit mutants. The number of available 

beneficial mutations and the selection coefficient are both found to increase at higher levels of antiviral drug 

concentration, as predicted by a pharmacodynamics model describing viral fitness as a function of drug 

concentration. Our large-scale fitness data of mutant viruses also provide insights into the biophysical basis 

of evolutionary constraints and the role of the genetic code in protein evolution. 
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Introduction 

In our evolutionary battles with microbial pathogens, RNA viruses are among the most formidable foes. HIV-

1 and Hepatitis C Virus acquire drug resistance in patients under antiviral therapy. Influenza and Ebola virus 

cross the species barrier to infect human hosts. Understanding the evolution of RNA viruses is therefore of 

paramount importance for developing antivirals and vaccines and assessing the risk of future emergence 

events (Domingo et al. 2012; Goldberg et al. 2012; Metcalf et al. 2015). Comprehensive characterization of 

viral fitness landscapes, and the principles underpinning them, will provide us with a map of evolutionary 

pathways accessible to RNA viruses and guide our design of effective strategies to limit antiviral resistance, 

immune escape and cross-species transmission (Turner and Elena 2000; Ke et al. 2015; Barton et al. 2016). 

Although the concept of fitness landscapes has been around for a long time (Wright 1932), we still know 

little about their properties in real biological systems. Previous empirical studies of fitness landscapes have 

been constrained by very limited sampling of sequence space. In a typical study, mutants are generated by 

site-directed mutagenesis and assayed for growth rate individually. We and others have recently developed 

a high-throughput technique, often referred to as “deep mutational scanning”, to profile the fitness effect of 

mutations by integrating deep sequencing with selection experiments (Wu et al. 2013; Fowler and Fields 

2014; Thyagarajan and Bloom 2014). This novel application of next generation sequencing has raised an 

exciting prospect of large-scale fitness measurements (Qi et al. 2014; Wu et al. 2014; Li et al. 2016; Puchta 

et al. 2016) and a revolution in our understanding of molecular evolution (He and Liu 2016).  

The distribution of fitness effects (DFE) of mutations is a fundamental entity in genetics and reveals the 

local structure of a fitness landscape (Burch and Chao 2000; Eyre-Walker and Keightley 2007; Hietpas et al. 

2011; Desai 2013; Jacquier et al. 2013; Bataillon and Bailey 2014; Bank et al. 2015; Chevereau et al. 2015). 

Deleterious mutations are usually abundant and impose severe constraints on the accessibility of fitness 

landscapes. In contrast, beneficial mutations are rare and provide the raw materials of adaptation. Quantifying 

the DFE of RNA viruses is crucial for understanding how these pathogens evolve to acquire drug resistance 

and surmount other evolutionary challenges.  

The model system used in our study is Hepatitis C Virus (HCV), a positive sense single-stranded RNA 

virus with a genome of ~9.6 kb. The biology of HCV has been studied extensively in the past two decades 

and provides an excellent model system of human RNA viruses. We applied high-throughput fitness assays 

to map the fitness effects of all single amino acid substitutions in domain IA (amino acid 18-103) of HCV 

NS5A protein (Methods). This domain is the target of several directly-acting antiviral drugs, including 
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Daclatasvir (DCV) (Gao et al. 2010). We profiled the DFE of HCV NS5A protein under varying levels of 

positive selection by tuning the concentration of the antiviral drug DCV. In addition, we studied how viral 

evolution is constrained by deleterious mutations that impact protein stability. Finally, we analyzed the shape 

of the DFE in nucleotide sequence space and analyzed how the structure of the genetic code influences 

protein evolution.  

 

Results 

Profiling the fitness landscape of HCV NS5A protein 

To study the DFE of mutations of HCV NS5A protein, we used a previously constructed library of mutant 

viruses using saturation mutagenesis (Qi et al. 2014). Briefly, each codon in the mutated region was 

randomized to cover all possible single amino acid substitutions. We observed 2520 non-synonymous 

mutations in the plasmid library, which covered 99.6% (1628 out of 1634) of all possible single amino acid 

substitutions, as well as 105 synonymous mutations. After transfection, we performed selection on the mutant 

viruses in an HCV cell culture system (Lindenbach et al. 2005). Mutants with frequency below a certain cutoff 

after transfection were assigned as lethal mutations (Methods). The relative fitness of a mutant virus to the 

wild-type virus was calculated based on the changes in frequency of the mutant virus and the wild-type virus 

after one round of selection in cell culture (Supplementary Figure 1).  

Our experiment provides a comprehensive profiling of the local fitness landscape of all single amino acid 

mutations. As expected, the fitness effects of synonymous mutations were nearly neutral, while most non-

synonymous mutations were deleterious (Figure 1). After grouping together non-synonymous mutations 

leading to the same amino acid substitution, we found that around 90% of single amino acid mutations had 

fitness costs and almost half of them were found to be lethal (Supplementary Figure 2). The high sensitivity 

to mutations in HCV NS5A, an essential protein for viral replication, is generally consistent with previous 

mutagenesis studies of RNA viruses (Sanjuan et al. 2004). Our data support the view that RNA viruses are 

very sensitive to the effect of deleterious mutations, possibly due to the compactness of their genomes (Elena 

et al. 2006; Rihn et al. 2013).  

Using the distribution of fitness effects of synonymous mutations as a benchmark for neutrality, we 

identified that only 3.4% of single amino acid mutations are beneficial (Methods). The estimated fraction of 

beneficial mutations is consistent with previous small-scale mutagenesis studies in viruses including 

bacteriophages, vesicular stomatitis virus, etc. (Sanjuan et al. 2004; Burch et al. 2007; Eyre-Walker and 
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Keightley 2007; Silander et al. 2007). Our results indicate that HCV NS5A protein is under strong purifying 

selection, suggesting that viral proteins are highly optimized in their natural conditions. 

Evolutionary potential as a function of positive selection 

Beneficial mutations are the raw materials of protein adaptation (Eyre-Walker and Keightley 2007). Previous 

studies have found that the evolvability of proteins is a function of purifying selection (Stiffler et al. 2015). In 

this study, we aimed to study the role of positive selection in modulating the evolutionary potential of drug-

targeted viral proteins. In addition to growing viruses in the natural condition without drugs, we selected the 

mutant library in 10, 40 and 100 pM of a potent HCV NS5A inhibitor Daclatasvir (DCV). The drug 

concentrations were chosen based on in vitro IC50 of wild type HCV virus (~20 pM) to represent different 

levels of positive selection (mild, intermediate and strong).  

By tuning the concentration of DCV, we observed a shift in the DFE of beneficial mutations (Figure 2A, 

Supplementary Figure 3). At higher drug concentrations, we observed an increase in the average selection 

coefficient as well as the total number of beneficial mutations (Table 1). We further tested whether the shape 

of this distribution changed under drug selection. Previous empirical studies supported the hypothesis that 

the DFE of beneficial mutations is exponential (Imhof and Schlötterer 2001; Sanjuan et al. 2004; 

Cowperthwaite et al. 2005; Rokyta et al. 2005; Kassen and Bataillon 2006; Burch et al. 2007; Carrasco et al. 

2007; MacLean and Buckling 2009; Peris et al. 2010; Bataillon et al. 2011). Following a maximum likelihood 

approach, we fit the DFE of beneficial mutations to the Generalized Pareto Distribution (Supplementary 

Figure 4, Methods). The fitted distribution (Table 1) is described by two parameters: a scale parameter (τ), 

and a shape parameter (κ) that determines the behavior of the distribution’s tail. Using a likelihood-ratio test 

(Beisel et al. 2007), we found that the distribution was exponential (κ = 0) in the natural condition without drug 

selection, but shifted to a heavy-tailed distribution (κ > 0) in the presence of DCV, a condition that the wild 

type virus was poorly adapted to. Our observation confirms the prediction that the shape of the DFE of 

beneficial mutations is dependent on how well adapted the wild type is in a certain environment (Eyre-Walker 

and Keightley 2007). When individuals encounter novel environments (i.e. novel forms of selection pressure) 

(Rokyta et al. 2008; Schenk et al. 2012), the fitness of the wild type is no longer top-ranking and the DFE is 

expected to deviate from the exponential distribution (MacLean et al. 2010).  

A simple pharmacodynamics model describing viral fitness as a function of drug concentration (i.e. 

phenotype-fitness mapping) can explain the changing spectra of beneficial mutations upon drug treatment 

(Figure 2B). For example, mutations that reduce a protein’s binding affinity to drug molecules (i.e. with a 

higher inhibitory concentration than wild-type) may come with a fitness cost (Wu et al. 2013). Thus, a drug-
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resistant mutant that is deleterious in the absence of drug may become beneficial under drug selection, 

leading to an increase in the number of beneficial mutations. Moreover, the relative fitness of the drug-

resistant mutant is expected to increase with stronger selection pressure (Figure 2B, dashed line). 

The dose response curves were previously measured for a set of mutants constructed by site-directed 

mutagenesis (Supplementary Figure 5) (Qi et al. 2014). Indeed, we found that the relative fitness of drug-

resistant mutants increased at higher drug concentration (Figure 2C); in contrast, drug-sensitive mutants 

became less fit under drug selection. Furthermore, based on this set of mutants with validated dose response 

curves, we were able to use the fitness measurements to estimate the IC50 of all mutants in our library 

(Supplementary Figure 6, Methods). In particular, we found that a small group of mutations were highly 

resistant to DCV and this could explain the heavy-tailed DFE of beneficial mutations under drug selection. 

Overall, our results suggest that the evolutionary potential of proteins is modulated by the strength of positive 

selection, in addition to the previous findings on the role of purifying selection (Stiffler et al. 2015).  

Deleterious mutations as evolutionary constraints  

While beneficial mutations open up adaptive pathways to genotypes with higher fitness, mutations that reduce 

fitness impose constraints on the evolution of viruses. To understand the biophysical basis of mutational 

effects (Liberles et al. 2012), we took advantage of the available structural information. The crystal structure 

of NS5A domain I is available excluding the amphipathic helix at N-terminus (Tellinghuisen et al. 2005; Love 

et al. 2009).  

We found that the fitness effects of deleterious mutations at buried sites (i.e. with lower solvent 

accessibility) were more pronounced than those at surface exposed sites (Figure 3A, Supplementary Figure 

7) (Ramsey et al. 2011). Moreover, we performed simulations of protein stability for individual mutants using 

the PyRosetta program (Methods) (Das and Baker 2008; Chaudhury et al. 2010). A mutation with ΔΔG>0, 

i.e. shifting the free energy difference to favor the unfolded state, is expected to destabilize the protein. We 

found that mutations that decreased protein stability led to reduced viral fitness (Figure 3B). For example, 

mutations at a stretch of highly conserved residues (F88-N91) that run through the core of NS5A protein 

tended to destabilize the protein and significantly reduced the viral fitness (Supplementary Figure 8). 

Mutations that increase ΔΔG beyond a threshold were mostly lethal. This is consistent with the threshold 

robustness model, which predicts that proteins become unfolded after using up the stability margin (Bloom 

et al. 2005; Wylie and Shakhnovich 2011; Olson et al. 2014). In contrast, mutations at some sites were highly 

deleterious despite having little impact on protein stability, suggesting that evolution at these sites may be 
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under additional constraints to preserve protein function (Wu et al. 2015; Echave et al. 2016; Jack et al. 2016), 

such as RNA binding (Foster et al. 2010; Hwang et al. 2010).  

We further tested whether the viral replication fitness in cell culture was predictive of evolutionary 

landscapes of viruses in patients (Ferguson et al. 2013). This is critical for the extrapolation of viral replication 

fitness from in vitro to in vivo (Hart and Ferguson 2015). We analyzed sequence diversity of HCV sequences 

in the database of Los Alamos National Lab (Methods). Indeed, we found that the within-patient sequence 

diversity at each site was highly correlated to the replication fitness measured in cell culture (Spearman’s 

ρ=0.82, Figure 3C), suggesting that fitness landscapes profiled in laboratory settings can provide insights 

into evolutionary pathways of viruses in nature (Gong et al. 2013). 

The role of the genetic code in protein evolution 

So far we have considered the spectrum of beneficial and deleterious mutations in the amino acid sequence 

space (Wu et al. 2016). In fact, the evolution of viral proteins in the nucleotide sequence space faces 

additional constraints posed by the genetic code, because most mutations in RNA viruses occur as point 

mutations during genome replication. Our fitness data of single codon mutants (replaced by NNK) provides 

a unique opportunity to examine impacts of the genetic code on the evolution of proteins (Firnberg and 

Ostermeier 2013). 

Due to codon degeneracy, many point mutations are synonymous and thus less likely to be deleterious 

than 2 or 3-nt substitutions. For non-synonymous mutations, we found that the deleterious impacts on fitness 

increased with the number of nucleotide substitutions (Figure 4A, B), supporting the hypothesis that the 

structure of the standard genetic code can buffer the mutational load (Firnberg and Ostermeier 2013). This 

observation is consistent with the facts that amino acids with similar biochemical properties tend to be 

adjacent in the genetic code (Yampolsky and Stoltzfus 2005), and that mutating to biochemically similar 

amino acids is less likely to decrease fitness (Supplementary Figure 2). 

For HCV and other RNA viruses, there is an observed transition:transversion bias in evolution (Tanaka 

et al. 1993; Duchêne et al. 2015). This phenomenon has been attributed to two different, but not mutually 

exclusive, causes: 1) the “mutation hypothesis” argues for a transition:transversion bias in the mutation rate, 

which is bolstered by experimental measurement of de novo mutation rates in viruses (Acevedo et al. 2014); 

2) the “selection hypothesis” argues that natural selection favors amino acid replacements via transition 

(Stoltzfus and Norris 2016). We tested the “selection hypothesis” using the non-synonymous point mutations 

in our library (Figure 4D). We found that the fraction of lethal mutations caused by transversions was slightly 

larger than transitions, but the difference was not statistically significant. Together with previous studies in 
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other systems (Stoltzfus and Norris 2016), our results suggest that the “selection hypothesis” is unlikely to 

be the major cause underlying the transition:transversion bias in evolution of viral proteins. 

In addition, we observed a slight (though not statistically significant) enrichment of beneficial mutations 

in point mutations under the natural condition (Figure 4C). Under drug selection, our conclusions on the 

shifting DFE of beneficial single amino acid mutations still held true for point mutations (Supplementary Figure 

9, Supplementary Table 1). Furthermore, we observed that beneficial mutations were significantly depleted 

in 3-nt substitutions (Supplementary Figure 10). However, this difference in the fraction of beneficial mutations 

can be confounded by the fact that 3-nt substitutions are more likely to be lethal. As pointed out in a previous 

study on the potential benefits of the genetic code in protein evolution (Firnberg and Ostermeier 2013), 

mutational robustness and the enrichment of beneficial mutations may actually be two sides of the same coin. 

 

Discussion 

Mutation accumulation (Levy et al. 2015) and site-directed mutagenesis (Visher et al. 2016) are traditional 

approaches to examine the DFE. Both methods provide pivotal insights into the shape of the DFE, yet with 

limitations. The site-directed mutagenesis approach requires fitness assays for each mutant and can only 

provide a sparse sampling of mutations. The sampling of sequence space in a mutation accumulation 

experiment is biased towards large-effect beneficial mutations, as they are more likely to fix in the population. 

In contrast, the “deep mutational scanning” approach (Wu et al. 2013; Fowler and Fields 2014), which utilizes 

high-throughput sequencing to simultaneously assay the fitness or phenotype of a library of mutants, allows 

for unbiased and large-scale sampling of fitness landscapes and thus is ideal for studying the characteristics 

of empirical DFE. 

The shape of the DFE determines mutational robustness (Visser et al. 2003; Draghi et al. 2010; Visher 

et al. 2016). Our study quantified the fitness effects of single amino acid substitutions in the drug-targeted 

region of an essential viral protein (86 amino acids, 1628 out of 1634 possible substitutions). In general, the 

empirical DFE of HCV NS5A was consistent with previous findings that viral proteins were highly optimized 

in the natural condition and very sensitive to the effects of deleterious mutations. Moreover, given the 

advantages of our saturation mutagenesis, we were able to use the fitness data to test multiple hypotheses 

of protein evolution, including the role of the genetic code in buffering mutational load, and the cause of 

transition:transversion bias. In the future, profiling the DFE in a range of different systems will allow us to test 

the generality of our conclusions. 

In our study, we have used the fitness effects of synonymous mutations to determine the threshold of 
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neutrality. Synonymous mutations are usually expected to have no or minimal influence on phenotype or 

fitness, but this view is being increasingly challenged as the effect of synonymous mutations on protein 

expression and folding becomes elucidated, such as via mRNA secondary structures or codon usage (Yang 

et al. 2014; Agashe et al. 2016). One interesting observation in our selection experiments is that some 

synonymous mutations seemed to have phenotypic effects on drug sensitivity (Supplementary Figure 11). 

Although this is not the focus of our study, understanding the mechanism of natural selection at the RNA level 

and its implications for molecular evolution, particularly in the context of RNA viruses, may be a fruitful area 

for future studies. 

One often overlooked point is that DFE will vary as a function of selection pressure (Martin and 

Lenormand 2006; Lalić et al. 2011; Stiffler et al. 2015). For example, mutations that impair function would 

become more deleterious with increasing pressure of purifying selection, thus leading to reduced protein 

evolvability (Stiffler et al. 2015). In this study, we have focused on gain-of-function mutations in a novel 

environment. The pleiotropic effect of mutations causes the spectrum of beneficial mutations to shift between 

the natural condition and the condition with drug selection. Moreover, mutations enabling the new function 

(e.g. drug resistance) become more beneficial with increasing pressure of positive selection.  

Although different systems have distinct protein-drug interactions that lead to different resistance profiles 

(Robinson et al. 2011), the results in our study provide a general framework to study DFE of drug-targeted 

proteins. Future studies along this line will further our understanding of how proteins evolve new functions 

under the constraint of maintaining their original function (Soskine and Tawfik 2010), as exemplified in the 

evolution of resistance to directly-acting antiviral drugs (Rosenbloom et al. 2012). We have also demonstrated 

that the fitness data could be utilized to infer drug sensitivity of mutants and inform predictive modeling of 

within-patient viral dynamics (Ke et al. 2015). Quantifying the characteristics of DFE of drug-targeted proteins 

under different environments (e.g. varying levels of selection pressure, or conflicting selection pressures), 

would allow us to assess repeatability in the outcomes of viral evolution (de Visser and Krug 2014) and guide 

the design of therapies to minimize drug resistance (Ogbunugafor et al. 2016). 

 

Conclusions 

Many RNA viruses adapt rapidly to novel selection pressures, such as antiviral drugs. Understanding how 

pathogens evolve under drug selection is critical for the success of antiviral therapy against human pathogens. 

By combining deep sequencing with selection experiments in cell culture, we have quantified the distribution 

of fitness effects of mutations in the drug-targeted domain of Hepatitis C Virus NS5A protein. Our results 
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indicate that the majority of single amino acid substitutions in NS5A protein incur large fitness costs. 

Combined with stability predictions based on protein structure, our fitness data reveal the biophysical 

constraints underlying the evolution of viral proteins. Furthermore, by subjecting the mutant viruses to positive 

selection under an antiviral drug, we find that the evolutionary potential of viral proteins in a novel environment 

is modulated by the strength of selection pressure. 

 

Materials and Methods 

Mutagenesis 

The mutant library of HCV NS5A protein domain IA (86 amino acids) was constructed using saturation 

mutagenesis as previously described (Qi et al. 2014). In brief, the entire region was divided into five sub-

libraries each containing 17-18 amino acids. NNK (N: A/T/C/G, K: T/G) was used to replace each amino acid. 

The oligos, each of which contains one random codon, were synthesized by IDT. The mutated region was 

ligated to the flanking constant regions, subcloned into the pFNX-HCV plasmid and then transformed into 

bacteria. The pFNX-HCV plasmid carrying the viral genome was synthesized in Dr. Ren Sun’s lab based on 

the chimeric sequence of genotype 2a HCV strains J6/JFH1.  

Cell culture 

The human hepatoma cell line (Huh-7.5.1) was provided by Dr. Francis Chisari from the Scripps Research 

Institute, La Jolla. The cells were cultured in T-75 tissue culture flasks (Genesee Scientific) at 37 oC with 5% 

CO2. The complete growth medium contained Dulbecco's Modified Eagle's Medium (Corning Cellgro), 10% 

heat inactivated Fetal Bovine Serum (Omega Scientific), 10 mM HEPES (Life Technologies), 1x MEM Non-

Essential Amino Acids Solution (Life Technologies) and 1x Penicillin-Streptomycin-Glutamine (Life 

Technologies).  

Selection  

Plasmid mutant library was transcribed in vitro using T7 RiboMAX Express Large Scale RNA Production 

System (Promega) and purified by PureLink RNA Mini Kit (Life Technologies). 10 µg of in vitro transcribed 

RNA was used to transfect 4 million Huh-7.5.1 cells via electroporation by Bio-Rad Gene Pulser (246 V, 950 

µF). The supernatant was collected 144 hours post transfection and virus titer was determined by 

immunofluorescence assay. The viruses collected after transfection were used to infect ~2 million Huh-7.5.1 

cells with an MOI at around 0.1-0.2. The five mutant libraries were passaged for selection separately as 

previously described (Qi et al. 2015). For the three different levels of selection pressure, the growth media 

was supplemented with 10 pM, 40 pM and 100 pM HCV NS5A inhibitor Daclatasvir (BMS-790052), 
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respectively. The supernatant was collected at 144 hours post infection. 

Preparation of Illumina sequencing samples 

For each sample, viral RNA was extracted from 700 µl supernatant collected after transfection and after 

selection using QIAamp Viral RNA Mini Kit (Qiagen). Extracted RNA was reverse transcribed into cDNA by 

SuperScript III Reverse Transcriptase Kit (Life Technologies). The targeted region in NS5A (51-54 nt) was 

PCR amplified using KOD Hot Start DNA polymerase (Novagen). The Eppendorf thermocycler was set as 

following: 2 min at 95 °C; 25 to 35 three-step cycles of 20 s at 95 °C,15 s at 52-56 °C (sub-library #1, 52 °C; 

#2, 52 °C; #3, 52 °C; #4, 56 °C; #5, 54 °C) and 25s at 68 °C; 1 min at 68 °C. The number of PCR cycles are 

chosen based on the copy number of cDNA templates as determined by qPCR (Bio-Rad). The PCR primers 

are listed in Table S1. The PCR products were purified using PureLink PCR Purification Kit (Life Technologies) 

and prepared for Illumina Hiseq 2000 sequencing (paired-end 100 bp) following 5'-phosphorylation using T4 

Polynucleotide Kinase (New England BioLabs), 3’ dA-tailing using dA-tailing module (New England BioLabs), 

and TA ligation of the adapter using T4 DNA ligase (Life Technologies). Each sample was tagged with a 

unique 3-bp customized barcodes, which were part of the adapter sequence and were sequenced as the first 

three nucleotides in both the forward and reverse reads (Wu et al. 2015) (Table S2).  

Analysis of sequencing data  

The sequencing data were parsed by SeqIO function of BioPython. The reads from different samples were 

de-multiplexed by the barcodes and mapped to the entire mutated region in NS5A by allowing at maximum 

5 mismatches with the reference genome (Table S3) (Qi et al. 2014). Since both forward and reverse reads 

cover the whole amplicon, we used paired reads to correct for sequencing errors. A mutation was called only 

if it was observed in both reads and the quality score at the corresponding position was at least 30. 

Sequencing reads containing mutations not supposed to appear in the mutant library were excluded from 

downstream analysis. The sequencing depth for each sub-library is at least ~105 and two orders of magnitude 

higher than the library complexity. 

Calculation of relative fitness  

For each condition of selection experiments (i.e. different concentration of Daclatasvir [DCV]), the relative 

fitness (RF) of a mutant virus to the wild-type virus is calculated by the relative changes in frequency after 

selection, 

1 1

0 0([ ])
T T

mut WT
mut T T

mut WT

f fRF DCV
f f

= =

= =

   
=    
   

 

where 
T round

mutf =
and 

T round
WTf =

is the frequency of the mutant virus and the wild-type virus at round 0 (after 
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transfection) or round 1 (after selection). The fitness of wild-type virus is normalized to 1. The fitness values 

estimated from one round have been shown to be highly consistent to estimates from multiple rounds of 

selection (Qi et al. 2014).  

Mutants with less than 10 read counts in the plasmid library were filtered. A mutation was considered lethal 

if at least one of the two criteria was met: 1) after transfection, the mutant had less than 10 read counts; 2) 

after transfection, the ratio between the mutant’s frequency and the wild-type’s frequency was smaller than 

10-4. The thresholds for beneficial and deleterious mutations were defined as 1 2 silentσ+ and 1 2 silentσ− , 

respectively. silentσ  is the standard deviation of the fitness effects of synonymous mutations under the natural 

condition (Figure 1). The fitness effects of non-synonymous mutations leading to the same amino acid 

substitution were averaged to estimate the fitness effect of the given single amino acid substitution. 

Fitting the distribution of fitness effects of beneficial mutations 

The distribution of selection coefficients of beneficial mutations were fitted to a Generalized Pareto 

Distribution following a maximum likelihood approach (Beisel et al. 2007),  
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Only mutations with relative fitness higher than the beneficial threshold 1 2 silentσ+ were included in the 

distribution of beneficial mutations. The selection coefficients were normalized to the beneficial threshold. 

The shape parameter κ determines the tail behavior of the distribution, which can be divided into three 

domains of attraction: Gumbel domain (exponential tail, κ = 0), Weibull domain (truncated tail, κ < 0) and 

Fréchet domain (heavy tail, κ > 0). For each selection condition, a likelihood ratio test is performed to evaluate 

whether the null hypothesis κ = 0 (exponential distribution) can be rejected.  

Estimation of IC50 from fitness data 

We can quantify the drug resistance of each mutant in the library by computing its fold change in relative 

fitness, 

([ ])([ ]) mut

mut

RF DCVW DCV
RF

=  
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Here mutRF  is the relative fitness of a mutant under the natural condition (i.e. no drug). W is the fold change 

in relative fitness and represents the level of drug resistance relative to the wild type. W > 1 indicates drug 

resistance, and W < 1 indicates drug sensitivity.  

This empirical measure of drug resistance can be directly linked to a simple pharmacodynamics model 

(Rosenbloom et al. 2012), where the viral replicative fitness is modeled as a function of drug dose, 

([ ])([ ])
[ ] [ ]

mut mut wt

mut wtmut

RF DCV IC ICW DCV
DCV IC DCV ICRF

   
= =    + +   

 

Here IC denotes the half-inhibitory concentration. The Hill coefficient describing the sigmoidal shape of the 

dose response curve is fixed to 1, as used in fitting the dose response curves of wild-type virus and validated 

mutant viruses (Supplementary Figure 5). We can use the drug resistance score W to infer the dose response 

of each mutant. Because the dose response curve depends on the duration of drug treatment, we 

transformed Wobserved (144 hr drug treatment in selection experiments) to Wpredicted (48 hr drug treatment, 

Supplementary Figure 6A) and then calculated IC50 using the equation above. 

Calculation of relative solvent accessibility 

DSSP (http://www.cmbi.ru.nl/dssp.html) was used to compute the Solvent Accessible Surface Area (SASA) 

(Kabsch and Sander 1983) from the HCV NS5A protein structure (PDB: 3FQM) (Love et al. 2009). SASA was 

then normalized to Relative Solvent Accessibility (RSA) using the empirical scale reported in (Tien et al. 2013).  

Predictions of protein stability 

ΔΔG (in Rosetta Energy Units) of HCV NS5A mutants was predicted by PyRosetta (version: 

“monolith.ubuntu.release-104”) as the difference in scores between the monomer structure of mutants (single 

amino acid mutations from site 32 to 103) and the reference (PDB: 3FQM). The score is designed to capture 

the change in thermodynamic stability caused by the mutation (ΔΔG) (Das and Baker 2008). The sequence 

of the reference protein was different from the sequence of the wild-type virus used in this study. Thus instead 

of directly comparing ΔΔG to fitness effects, we used the median ΔΔG caused by amino acid substitutions at 

each site.  

The PDB file of NS5A dimer was cleaned and trimmed to a monomer (chain A). Next, all side chains were 

repacked (sampling from the 2010 Dunbrack rotamer library (Shapovalov and Dunbrack 2011)) and 

minimized for the reference structure using the talaris2014 scoring function. After an amino acid mutation 

was introduced, the mutated residue was repacked, followed by quasi-Newton minimization of the backbone 
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and all side chains (algorithm: “lbfgs_armijo_nonmonotone”). This procedure was performed 50 times, and 

the predicted ΔG of a mutant structure is the average of the three lowest scoring structures. 

We note that predictions based on NS5A monomer structure were only meant to provide a crude profile of 

how mutations at each site may impact protein stability. Potential structural constraints at the dimer interface 

have been ignored, which is further complicated by the observations of two different NS5A dimer structures 

(Tellinghuisen et al. 2005; Love et al. 2009). The reference sequence of NS5A in the PDB file (PDB: 3FQM) 

is different from the WT sequence used in our experiment by 20 amino acid substitutions. 

Within-patient sequence diversity  

Aligned nucleotide sequences of HCV NS5A protein were downloaded from Los Alamos National Lab 

database (Kuiken et al. 2005) (all HCV genotypes, ~2600 sequences total) and clipped to the region of 

interest (amino acid 18-103 of NS5A). Sequences that caused gaps in the alignment of H77 reference 

genome were manually removed. After translation to amino acid sequences, sequences with ambiguous 

amino acids were removed (~2300 amino acid sequences after filtering). The sequence diversity at each 

amino acid site was quantified by Shannon entropy.  
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Figure 1. Distribution of fitness effects (DFE) of single codon substitutions of HCV NS5A protein. 

DFE of (A) non-synonymous substitutions and (B) synonymous substitutions. The thresholds (black lines) 

used for classifying beneficial, nearly neutral and deleterious mutations are determined by the variation of 

fitness values of synonymous substitutions (Methods). 88.7% of non-synonymous substitutions in NS5A 

protein are deleterious (among which 48.0% are lethal and not displayed in the histogram), 7.9% are nearly 

neutral and 3.4% are beneficial mutation.  
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Figure 2. The spectrum of beneficial mutations shifts under the selection of an antiviral drug. (A) 

The cumulative distribution function of relative fitness of beneficial single amino acid substitutions under 

different selection conditions. (B) Hypothetical dose response curves of the wild-type virus and a drug-

resistant mutant virus. Relative fitness of the drug-resistant mutant is expected to increase with drug 

concentration. (C) Relative fitness of validated drug resistant and sensitive mutations as a function of 

Daclatasvir concentration.  
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Figure 3. Deleterious mutations reveal constraints of protein evolution. (A) Amino acid sites that were 

less tolerant of mutations (average fitness of mutants <0.2) have lower relative solvent accessibility.. (B) 

Mutations that destabilized protein stability reduced the viral replicative fitness. Changes in folding free 

energy ΔΔG (Rosetta Energy Unit) of NS5A monomer were predicted by PyRosetta (Methods). The median 

of ΔΔG at each amino acid site is shown. (C) The within-patient sequence diversity of HCV NS5A protein at 

each site is highly correlated to the replicative fitness measured in cell line, suggesting that evolutionary 

pathways of viral proteins are indeed constrained by mutations that reduce viral replicative fitness. In (B) 

and (C), the average fitness of observed mutants at each amino acid site is shown. Red lines represent the 

fits by linear regression and are only used to guide the eye. 
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Figure 4. The role of the standard genetic code in viral evolution. (A) DFE of non-synonymous 

substitutions with 1, 2, and 3 nucleotide changes (lethal mutations are not displayed). Black lines indicates 

the mean. (B) The fraction of lethal mutations increases with the number of nucleotide changes, suggesting 

that the genetic code is optimized to buffer the mutational load (Chi-squared test, p=1.4×10-21). (C) The 

fraction of beneficial mutations is slightly enriched for point mutations (Chi-squared test, p=0.41). Only non-

synonymous substitutions are included in the analysis. (D) For non-synonymous point mutations, the fitness 

effect of transitions (n=69) is slightly less deleterious than that of transversions (n=190), but the difference is 

not significant (two-sample Kolmogorov-Smirnov test, p=0.53).    
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[DCV] Fraction of beneficial 

codon substitutions 

Scale parameter  

τ 

Shape parameter  

κ 

p-value 

0 pM 3.4% (56/1634) 0.26 0.27n.s. 0.09 

10 pM 5.4% (88/1634) 0.63 0.62 0.0001 

40 pM 9.7% (158/1634) 0.88 1.11 <0.0001 

100 pM 9.3% (152/1634) 1.57 1.18 <0.0001 

Table 1. Statistics of the distribution of fitness effects of beneficial single amino acid substitutions 

under varying selection pressure. n.s.: cannot reject the null hypothesis that the distribution is 

exponential (p>0.05). 
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Supplementary Materials 
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Supplementary Tables 1-3 

Supplementary Datasets 1 
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Supplementary Figure 1. Experimental workflow of high-throughput fitness assays. We performed the 

selection of the mutant virus library using HCV cell culture system. Viral RNA was extracted after transfection 

or after selection, and reverse transcribed into cDNA. The mutated region in NS5A protein was amplified by 

PCR and sequenced by Illumina HiSeq. The relative fitness of a mutant virus to the wild-type virus was 

calculated based on the frequency of the mutant virus and the wild-type virus at round 0 (after transfection) 

and round 1 (after selection). See Methods for more details. 
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Supplementary Figure 2. Fitness effects of single amino acid substitutions in HCV NS5A protein 

under native condition. Different amino acid substitutions at the same site can have different fitness 

effects. The missing variants are colored black; lethal variants are colored dark blue. 
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Supplementary Figure 3. DFE of non-synonymous substitutions under drug selection. 
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Supplementary Figure 4. Fitted distribution of fitness effects of beneficial single amino acid 

mutations. (A) Comparison of the fitted distribution to data. (B)The exponential distribution fails to fit the 

spectrum of beneficial mutations under conditions with drug selection.  
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Supplementary Figure 5. Dose response curve of validated mutants (10 drug-resistant mutant, 1 

drug-sensitive mutant) and WT virus. The Hill coefficient is fixed at 1 in fitting the dose response curves 

(Methods). The unit of IC50 is pM. The virus titer was measured after 48 hr of growth under drug treatment.  
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Supplementary Figure 6. Infer IC50 from fitness data under drug selection. (A) W is the fold change in 

relative fitness and represents the level of drug resistance relative to the wild type (Methods). Because the 

dose response curve depends on the duration of drug treatment, we normalized Wobserved (144 hr drug 

treatment in selection experiments) to Wpredicted (48 hr drug treatment, as used in the measurement of dose 

response curves of validated mutants). If viral growth is always exponential, the exponent is expected to be

48 1
144 3

= . The fitted exponent is larger than 1
3

,  suggesting that virus titer starts to saturate in 144 hr. (B) 

The fold change in IC50 caused by a single amino acid substitution is inferred from the measured fitness 

profiles under native condition and under drug selection (100 pM [DCV]). The existence of a group of highly 

resistant mutants (>10 fold change in IC50) can explain why DFE of beneficial mutations shifts to a heavy-

tailed distribution under drug selection. The resistance score of 9 single amino acid substitutions exceeds 

the maximum (Methods) and is manually set to 104 pM, which can be seen by the small peak in the right tail 

of histogram. (C) The measurement of drug resistance is consistent across different conditions of drug 

selection. 
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Supplementary Figure 7. Mutations at buried sites are highly deleterious. The structure of HCV NS5A 

monomer is visualized by PyMOL (PDB: 3FQM, chain A). Amino acid sites with an average fitness less than 

0.2 are in blue and the corresponding side chains are shown. 
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Supplementary Figure 8. Effects of mutations on protein stability, viral fitness and sequence diversity 

at each amino acid site. The fitness is averaged over all observed mutants at each amino acid site. The 

medium of ddG at each amino acid site is shown.  
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Supplementary Figure 9. Distribution of fitness effects of beneficial point mutations. Only non-

synonymous mutations are included. 
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Supplementary Figure 10. The potential role of genetic code in adaptive mutations. For non-
synonymous codon substitutions, the fraction of beneficial mutations with 3-nt changes is significantly lower 
than that of 1-nt or 2-nt mutations under drug selection (Pearson’s chi-squared test: [DCV]=10 pM, 
p=1.2×10-2, 40 pM: p=3.7×10-4, 100 pM: p=1.1×10-2). 
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Supplementary Figure 11. Fitness effects of synonymous mutations under drug selection. Relative 

fitness of some synonymous mutations increased or decreased with drug concentration, suggesting that 

these mutations may have phenotypic effects on drug sensitivity.  

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2016. ; https://doi.org/10.1101/078428doi: bioRxiv preprint 

https://doi.org/10.1101/078428
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

[DCV] Fraction of beneficial 
mutations 

Scale parameter  Shape parameter  p-value 

0 pM 4.6% (12/259) 0.13 0.35n.s. 0.42 

10 pM 6.2% (16/259) 0.41 0.08n.s. 0.85 

40 pM 11.2% (29/259) 0.32 1.06 0.0003 

100 pM 10.8% (28/259) 0.32 1.50 <0.0001 

Supplementary Table 1. Fitted parameters of the distribution of beneficial point mutations. Only non-

synonymous mutations are included in the analysis. n.s.: p>0.05. 
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Library  

(amino acid site) 

Forward primer 

 

Reverse primer 

 

1 (18-34) 5’-GTT TGC ACC ATC TTG ACA-3’ 5’-TTG ACA AGA GAT GAA GGG-3’ 

2 (35-51) 

 

5’-CAA GCT GCC CGG CCT C-3’ 5’-GCA GCG CGT GGT CAT GAT-3’ 

3 (52-68) 

 

5’-TGG GCC GGC ACT GGC-3’ 5’-GAT CCT CAT AGA GCC CAG-3’ 

4 (69-85) 

 

5’-CAT CTC TGG CA A TGT CCG C-3’ 5’-AGC AAT TGA TAG GAA  AGG CCC-3’ 

5 (86-103) 

 

5’-TGC ATG AAC ACC TGG CAG-3’ 5’-ATG GCG GTC TTG TAG TTC GT-3’ 

Supplementary Table 2. PCR primers used in preparation of sequencing samples. 
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Sample Barcode 

Plasmid ATG 

Transfection (round 0) CCC 

No drug (round 1) CGG 

[DCV]=10 pM (round 1) CTT 

[DCV]=40 pM (round 1) ACT 

[DCV]=100 pM (round 1) AAC 

Supplementary Table 3. Barcodes used in multiplexing Illumina sequencing samples. 
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Supplementary Dataset 1. Sequence of HCV NS5A protein. 

Nucleotide sequence (amino acid site 18-103, “wild-type” in this study) 

GACTTCAAAAATTGGCTGACCTCTAAATTGTTCCCCAAGCTGCCCGGCCTCCCCTTCATCTCTTGTCAA

AAGGGGTACAAGGGTGTGTGGGCCGGCACTGGCATCATGACCACGCGCTGCCCTTGCGGCGCCAAC

ATCTCTGGCAATGTCCGCCTGGGCTCTATGAGGATCACAGGGCCTAAAACCTGCATGAACACCTGGCA

GGGGACCTTTCCTATCAATTGCTACACGGAGGGCCAGTGCGCGCCG 

Amino acid sequence 

DFKNWLTSKLFPKLPGLPFISCQKGYKGVWAGTGIMTTRCPCGANISGNVRLGSMRITGPKTCMNTWQGT

FPINCYTEGQCAP 
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