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Abstract 18 

RNA viruses are notorious for their ability to evolve rapidly under positive selection in novel environments. It 19 

is known that the high mutation rate of RNA viruses can generate huge genetic diversity to facilitate viral 20 

adaptation. However, less attention has been paid to the underlying fitness landscape that represents the 21 

selection forces on viral genomes. Here we systematically quantified the distribution of fitness effects (DFE) 22 

of about 1,600 single amino acid substitutions in the drug-targeted region of NS5A protein of Hepatitis C Virus 23 

(HCV). We found that the majority of non-synonymous substitutions incur large fitness costs, suggesting that 24 

NS5A protein is highly optimized in natural conditions. We characterized the adaptive potential of HCV by 25 

subjecting the mutant viruses to positive selection by the NS5A inhibitor Daclatasvir. Both the selection 26 

coefficient and the number of beneficial mutations are found to increase with the strength of positive selection, 27 

which is modulated by the concentration of Daclatasvir. The shift in the spectrum of beneficial mutations in 28 

NS5A protein can be explained by a pharmacodynamics model describing viral fitness as a function of drug 29 

concentration. Finally, our large-scale fitness data of mutant viruses also provide insights into the biophysical 30 

basis of evolutionary constraints in protein evolution.  31 
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Introduction 32 

In our evolutionary battles with microbial pathogens, RNA viruses are among the most formidable foes. HIV-33 

1 and Hepatitis C Virus acquire drug resistance in patients under antiviral therapy. Influenza and Ebola virus 34 

cross the species barrier to infect human hosts. Understanding the evolution of RNA viruses is therefore of 35 

paramount importance for developing antivirals and vaccines and assessing the risk of future emergence 36 

events (Goldberg et al. 2012; Domingo et al. 2012; Metcalf et al. 2015). Comprehensive characterization of 37 

viral fitness landscapes, and the principles underpinning them, will provide us with a map of evolutionary 38 

pathways accessible to viruses and guide our design of effective strategies to limit antiviral resistance, 39 

immune escape and cross-species transmission (Turner and Elena 2000; Ke et al. 2015; Barton et al. 2016). 40 

Although the concept of fitness landscapes has been around for a long time (Wright 1932), we still know 41 

little about their properties in real biological systems. Previous empirical studies of fitness landscapes have 42 

been constrained by very limited sampling of sequence space. In a typical study, mutants are generated by 43 

site-directed mutagenesis and assayed for growth rate individually. We and others have recently developed 44 

a high-throughput technique, often referred to as “deep mutational scanning” or “quantitative high-resolution 45 

genetics”, to profile the fitness effect of mutations by integrating deep sequencing with selection experiments 46 

in vitro or in vivo (Wu et al. 2013; Thyagarajan and Bloom 2014; Qi et al. 2014; Fowler and Fields 2014). This 47 

novel application of next generation sequencing has raised an exciting prospect of large-scale fitness 48 

measurements (Olson et al. 2014; Puchta et al. 2015; Li et al. 2016; Wu et al. 2016) and a revolution in our 49 

understanding of molecular evolution (He and Liu 2016).  50 

The distribution of fitness effects (DFE) of mutations is a fundamental entity in genetics and reveals the 51 

local structure of a fitness landscape (Burch and Chao 2000; Eyre-Walker and Keightley 2007; Hietpas et al. 52 

2011; Desai 2013; Jacquier et al. 2013; Bataillon and Bailey 2014; Chevereau et al. 2015; Bank et al. 2015). 53 

Deleterious mutations are usually abundant and impose severe constraints on the accessibility of fitness 54 

landscapes. In contrast, beneficial mutations are rare and provide the raw materials of adaptation. Quantifying 55 

the DFE of viruses is crucial for understanding how these pathogens evolve to acquire drug resistance and 56 

surmount other evolutionary challenges.  57 

A central challenge is to characterize the DFE, and its determinants, in the fluctuating environments 58 

where evolution typically occurs (e.g. varying levels of selection pressure as drug concentration fluctuates 59 

between doses) (Hietpas et al. 2013). One recent empirical study has demonstrated that the strength of 60 

purifying selection modulates the shape of the DFE and determines the evolvability under new environments 61 
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(Stiffler et al. 2015). The effect of positive selection on the DFE, however, has not been investigated 62 

systematically. In this study, we profile the DFE of a drug-targeted viral protein under varying levels of positive 63 

selection by tuning the concentration of an antiviral drug. In addition, we show that viral evolution under drug 64 

selection is constrained by the need to maintain protein stability.  65 

 66 

Results 67 

Profiling the fitness landscape of the drug-interacting domain of HCV NS5A protein 68 

The system used in our study is Hepatitis C Virus (HCV), a positive sense single-stranded RNA virus with a 69 

genome of ~9.6 kb. HCV has been studied extensively in the past two decades in patients and in laboratory 70 

and provides an excellent model system to study viral evolution. We applied high-throughput assays to map 71 

the fitness effects of all single amino acid substitutions in domain IA (amino acid 18-103) of HCV NS5A protein 72 

(Methods). This domain is the target of several directly-acting antiviral drugs, including the potent HCV NS5A 73 

inhibitor Daclatasvir (DCV) (Gao et al. 2010). 74 

To study the DFE of mutations of HCV NS5A protein, we conducted new selection experiments using a 75 

previously constructed saturation mutagenesis library of mutant viruses (Qi et al. 2014). Briefly, each codon 76 

in the mutated region was randomized to cover all possible single amino acid substitutions. We observed 77 

2520 non-synonymous mutations in the plasmid library, as well as 105 synonymous mutations. After 78 

transfection to reconstitute mutant viruses, we performed selection in an HCV cell culture system (Lindenbach 79 

et al. 2005; Wakita et al. 2005). The relative fitness of a mutant virus to the wild-type virus was calculated 80 

based on the changes in frequency of the mutant virus and the wild-type virus after one round of selection in 81 

cell culture (Supplementary Figure 1). In our selection experiment, we grew 5 small sub-libraries (~500 82 

mutants each) separately to reduce the noise in fitness measurements (Methods). The fitness data reported 83 

in this study is highly correlated to an independent experiment using the same plasmid library (Supplementary 84 

Figure 2) (Qi et al. 2014).  85 

Our experiment provides a comprehensive profiling of the fitness effect of single amino acid substitutions 86 

(1565 out of 1634 possible substitutions, after filtering out low frequency mutants in the plasmid library). We 87 

grouped together non-synonymous mutations leading to the same amino acid substitution. As expected, the 88 

fitness effects of synonymous mutations were nearly neutral, while most non-synonymous mutations were 89 

deleterious (Figure 1). We found that the majority of single amino acid mutations had fitness costs and more 90 

than half of them were found to be significantly deleterious, or “lethal” (Methods). The fraction of lethal 91 

mutations (not shown explicitly in Figure 1) is 57.0% (932/1634) for single amino acid substitutions, 1.0% 92 
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(1/105) for synonymous mutations and 90.6% (77/85) for nonsense mutations. The low tolerance of non-93 

synonymous mutations in HCV NS5A, which is an essential protein for viral replication, is consistent with 94 

previous small-scale mutagenesis studies of RNA viruses (Sanjuan et al. 2004). Our data support the view 95 

that RNA viruses are very sensitive to the effect of deleterious mutations, possibly due to the compactness 96 

of their genomes (Elena et al. 2006; Rihn et al. 2013).  97 

Using the distribution of fitness effects of synonymous mutations as a benchmark for neutrality, we 98 

identified that only 2.4% (39/1634) of single amino acid mutations are beneficial (Methods). The estimated 99 

fraction of beneficial mutations is consistent with previous small-scale mutagenesis studies in viruses 100 

including bacteriophages, vesicular stomatitis virus, etc. (Sanjuan et al. 2004; Burch et al. 2007; Silander et 101 

al. 2007; Eyre-Walker and Keightley 2007). Our results indicate that HCV NS5A protein is under strong 102 

purifying selection, suggesting that viral proteins are highly optimized in their natural conditions. 103 

Adaptive potential as a function of positive selection 104 

Beneficial mutations are the raw materials of protein adaptation (Eyre-Walker and Keightley 2007). In this 105 

study, we aimed to study the role of positive selection in modulating the adaptive potential of drug-targeted 106 

viral proteins. In an independent study (Qi et al. 2014), the mutant library of HCV NS5A protein was selected 107 

under a single drug concentration ([DCV]=20 pM) to profile the effects of mutations on drug resistance. In 108 

this study, we selected the mutant library at 10, 40 and 100 pM of DCV. The drug concentrations were chosen 109 

based on in vitro IC50 of wild type HCV virus (~20 pM) to represent different levels of positive selection (mild, 110 

intermediate and strong).  111 

By tuning the concentration of DCV, we observed a shift in the DFE of beneficial mutations (Figure 2A). 112 

At higher drug concentrations, we observed an increase in the median selection coefficient (Figure 2B) as 113 

well as the total number of beneficial mutations (Figure 2C). We further tested whether the shape of this 114 

distribution changed under drug selection. Previous empirical studies supported the hypothesis that the DFE 115 

of beneficial mutations is exponential (Imhof and Schlötterer 2001; Sanjuan et al. 2004; Rokyta et al. 2005; 116 

Cowperthwaite et al. 2005; Kassen and Bataillon 2006; Burch et al. 2007; Carrasco et al. 2007; MacLean 117 

and Buckling 2009; Peris et al. 2010; Bataillon et al. 2011). Following a maximum likelihood approach, we fit 118 

the DFE of beneficial mutations to the Generalized Pareto Distribution (Supplementary Figure 3, Methods). 119 

The fitted distribution is described by two parameters: a scale parameter (τ), and a shape parameter (κ) that 120 

determines the behavior of the distribution’s tail. Using a likelihood-ratio test (Beisel et al. 2007), we found 121 

that our data are consistent with the null hypothesis that the DFE of beneficial mutations is exponential(κ = 122 

0) (Supplementary Table 1).  123 
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The effects of mutations on drug resistance and replication fitness 124 

Our results show that the adaptive potential of proteins is modulated by the strength of positive selection, in 125 

parallel to earlier findings for purifying selection (Stiffler et al. 2015). The changing spectra of beneficial 126 

mutations upon drug treatment can be explained by a pharmacodynamics model describing viral fitness as a 127 

function of drug concentration (i.e. phenotype-fitness mapping) (Figure 3A). Mutations that reduce a protein’s 128 

binding affinity to drug molecules (i.e. with a higher inhibitory concentration than wild-type) may come with a 129 

fitness cost (Wu et al. 2013). Thus, a drug-resistant mutant that is deleterious in the absence of drug may 130 

become beneficial under drug selection, leading to an increase in the number of beneficial mutations. 131 

Moreover, the relative fitness of the drug-resistant mutant is expected to increase with stronger selection 132 

pressure (Figure 3A, dashed line). The dose response curves were previously measured for a set of mutants 133 

constructed by site-directed mutagenesis (Supplementary Figure 4) (Qi et al. 2014). Indeed, we found that 134 

the relative fitness of validated drug-resistant mutants increased at higher drug concentration (Figure 3B); in 135 

contrast, drug-sensitive mutants became less fit under drug selection.  136 

Furthermore, we showed that the effects of mutations on drug resistance can be estimated from the 137 

fitness data and the results were generally consistent with estimates based on the dose response curves 138 

(Supplementary Figure 5, Methods). Among all the non-lethal single amino acid substitutions profiled in our 139 

HCV NS5A protein library, we found that roughly half of the mutations increased resistance to DCV (i.e. 140 

improved new function) at the expense of replication fitness without drug (Figure 3C, Spearman’s ρ= -0.13, 141 

p=8.3×10-4). This group of resistance mutations (lower right section in Figure 3C) can become beneficial 142 

when the positive selection imposed by the antiviral drug is strong, leading to an increase in the supply of 143 

beneficial mutations at higher drug concentrations.  144 

Deleterious mutations as evolutionary constraints  145 

While beneficial mutations open up adaptive pathways to genotypes with higher fitness, mutations that 146 

severely reduce replication fitness impose constraints on the evolution of viruses and are less likely to 147 

contribute to adaptation through gain of function. We analyzed sequence diversity of HCV sequences 148 

identified in patients from the HCV sequence database of Los Alamos National Lab (Methods). As expected, 149 

we found that amino acid sites with high fitness costs are often highly conserved (Figure 4A). The sequence 150 

diversity at each site was highly correlated to the replication fitness measured in our study (Spearman’s 151 

ρ=0.82, p=1.8×10-21).  152 

To understand the biophysical basis of mutational effects (Liberles et al. 2012), we took advantage of the 153 
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available structural information (Supplementary Figure 6). The crystal structure of NS5A domain I is available 154 

excluding the amphipathic helix at N-terminus (Tellinghuisen et al. 2005; Love et al. 2009). We found that the 155 

fitness effects of deleterious mutations at buried sites (i.e. with lower solvent accessibility) were more 156 

pronounced than those at surface exposed sites (Figure 4B, Spearman’s ρ=0.51, p=5.1×10-6) (Ramsey et al. 157 

2011). Moreover, we performed simulations of protein stability for individual mutants using PyRosetta 158 

(Methods) (Das and Baker 2008; Chaudhury et al. 2010). A mutation with ΔΔG>0, i.e. shifting the free energy 159 

difference to favor the unfolded state, is expected to destabilize the protein. We found that mutations that 160 

decreased protein stability led to reduced viral fitness (Figure 4C, Spearman’s ρ= -0.57, p=1.5×10-7). For 161 

example, mutations at a stretch of highly conserved residues (F88-N91) that run through the core of NS5A 162 

protein tended to destabilize the protein and significantly reduced the viral fitness. Mutations that increase 163 

ΔΔG beyond a threshold (~5 Rosetta Energy Unit) were mostly lethal. This is consistent with the threshold 164 

robustness model, which predicts that proteins become unfolded after using up the stability margin (Bloom 165 

et al. 2005; Wylie and Shakhnovich 2011; Olson et al. 2014).  166 

 167 

Discussion 168 

Mutation accumulation experiments (Levy et al. 2015) and site-directed mutagenesis (Visher et al. 2016) are 169 

traditional approaches to examine the DFE. Both methods provide pivotal insights into the shape of the DFE, 170 

yet with limitations. The site-directed mutagenesis approach requires fitness assays for each individual 171 

mutant and can only provide a sparse sampling of mutations. The sampling of sequence space in a mutation 172 

accumulation experiment is biased towards large-effect beneficial mutations, as they are more likely to fix in 173 

the population. In contrast, the deep mutational scanning approach (Wu et al. 2013; Fowler and Fields 2014), 174 

which utilizes high-throughput sequencing to simultaneously assay the fitness or phenotype of a library of 175 

mutants, allows for unbiased and large-scale sampling of fitness landscapes and thus is ideal for studying 176 

the characteristics of empirical DFE. The downside of this high-throughput approach is that the fitness 177 

measurements can be noisy, especially for large mutant libraries (Matuszewski et al. 2016). In our experiment, 178 

we divided the mutant library into smaller sub-libraries (~500 mutants) in selection experiments. We 179 

compared the data to an independent experiment and found that the fitness estimates were largely 180 

reproducible (Supplementary Figure 2). We also showed that the observed shift in the DFE under different 181 

conditions was consistent with validation experiments (Figure 3). Since this study is focused on the properties 182 

of the entire distribution of mutations rather than the effects of specific mutations, our findings on the general 183 

patterns of DFE are robust to the errors in fitness estimates. 184 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2017. ; https://doi.org/10.1101/078428doi: bioRxiv preprint 

https://doi.org/10.1101/078428
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

The shape of the DFE determines mutational robustness (Visser et al. 2003; Draghi et al. 2010; Visher 185 

et al. 2016). Our study quantified the fitness effects of single amino acid substitutions in the drug-targeted 186 

region of an essential viral protein. In general, the empirical DFE of HCV NS5A was consistent with previous 187 

findings that viral proteins were highly optimized in the natural condition and very sensitive to the effects of 188 

deleterious mutations. One crucial but often overlooked point is that DFE will vary as a function of selection 189 

pressure (Martin and Lenormand 2006; Lalić et al. 2011; Stiffler et al. 2015). For example, mutations that 190 

impair function would become more deleterious with increasing pressure of purifying selection, thus leading 191 

to reduced protein evolvability (Stiffler et al. 2015). In this study, we have focused on gain-of-function 192 

mutations in a novel environment. The pleiotropic effect of mutations causes the spectrum of beneficial 193 

mutations to shift among the natural condition and the conditions with drug selection. Moreover, mutations 194 

enabling the new function (e.g. drug resistance) become more beneficial with increasing pressure of positive 195 

selection.  196 

Although different systems have distinct protein-drug interactions that lead to different resistance profiles 197 

(Robinson et al. 2011), the results in our study provide a general framework to study DFE of drug-targeted 198 

proteins. Future studies along this line will further our understanding of how proteins evolve new functions 199 

under the constraint of maintaining their original function (Soskine and Tawfik 2010), as exemplified in the 200 

evolution of resistance to directly-acting antiviral drugs (Rosenbloom et al. 2012). We have also demonstrated 201 

that the fitness data could be utilized to infer drug resistance of mutants and inform predictive modeling of 202 

within-patient viral dynamics (Ke et al. 2015). Quantifying the characteristics of DFE of drug-targeted proteins 203 

under different environments (e.g. varying levels of selection pressure, or conflicting selection pressures), 204 

would allow us to assess repeatability in the outcomes of viral evolution (de Visser and Krug 2014) and guide 205 

the design of therapies to minimize drug resistance (Ogbunugafor et al. 2016). 206 

 207 

Conclusions 208 

Many viruses adapt rapidly to novel selection pressures, such as antiviral drugs. Understanding how 209 

pathogens evolve under drug selection is critical for the success of antiviral therapy against human pathogens. 210 

By combining deep sequencing with selection experiments in cell culture, we have quantified the distribution 211 

of fitness effects of mutations in the drug-targeted domain of Hepatitis C Virus NS5A protein. Our results 212 

indicate that the majority of single amino acid substitutions in NS5A protein incur large fitness costs. By 213 

subjecting the mutant viruses to positive selection under an antiviral drug, we find that the evolutionary 214 

potential of viral proteins in a novel environment is modulated by the strength of selection pressure. Combined 215 
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with stability predictions based on protein structure, our fitness data further reveal the biophysical constraints 216 

underlying the evolution of viral proteins.  217 

 218 

Materials and Methods 219 

Mutagenesis 220 

The mutant library of HCV NS5A protein domain IA (86 amino acids) was constructed using saturation 221 

mutagenesis as previously described (Qi et al. 2014). In brief, the entire region was divided into five sub-222 

libraries each containing 17-18 amino acids (~500 mutants in each sub-library). NNK (N: A/T/C/G, K: T/G) 223 

was used to replace each amino acid. The oligos, each of which contains one random codon, were 224 

synthesized by IDT. The mutated region was ligated to the flanking constant regions, subcloned into the 225 

pFNX-HCV plasmid and then transformed into bacteria. The pFNX-HCV plasmid carrying the viral genome 226 

was synthesized in Dr. Ren Sun’s lab based on the chimeric sequence of genotype 2a HCV strains J6/JFH1.  227 

Cell culture 228 

The human hepatoma cell line (Huh-7.5.1) was provided by Dr. Francis Chisari from the Scripps Research 229 

Institute, La Jolla. The cells were cultured in T-75 tissue culture flasks (Genesee Scientific) at 37 oC with 5% 230 

CO2. The complete growth medium contained Dulbecco's Modified Eagle's Medium (Corning Cellgro), 10% 231 

heat-inactivated Fetal Bovine Serum (Omega Scientific), 10 mM HEPES (Life Technologies), 1x MEM Non-232 

Essential Amino Acids Solution (Life Technologies) and 1x Penicillin-Streptomycin-Glutamine (Life 233 

Technologies).  234 

Selection of mutant viruses 235 

Plasmid mutant library was transcribed in vitro using T7 RiboMAX Express Large Scale RNA Production 236 

System (Promega) and purified by PureLink RNA Mini Kit (Life Technologies). 10 µg of in vitro transcribed 237 

RNA was used to transfect 4 million Huh-7.5.1 cells via electroporation by Bio-Rad Gene Pulser (246 V, 950 238 

µF). The supernatant was collected 6 days post transfection and virus titer was determined by 239 

immunofluorescence assay. The viruses collected after transfection were used to infect ~2 million Huh-7.5.1 240 

cells with an MOI at around 0.1-0.2. The five sub-libraries were passaged for selection separately. For the 241 

three different levels of selection pressure, the growth media was supplemented with 10 pM, 40 pM and 100 242 

pM HCV NS5A inhibitor Daclatasvir (BMS-790052), respectively. The supernatant was collected at 6 days 243 

post infection. 244 

Preparation of Illumina sequencing samples 245 

For each sample, viral RNA was extracted from 700 µl supernatant collected after transfection and after 246 
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selection using QIAamp Viral RNA Mini Kit (Qiagen). Extracted RNA was reverse transcribed into cDNA by 247 

SuperScript III Reverse Transcriptase Kit (Life Technologies). The targeted region in NS5A (51-54 nt) was 248 

PCR amplified using KOD Hot Start DNA polymerase (Novagen). The Eppendorf thermocycler was set as 249 

following: 2 min at 95 °C; 25 to 35 three-step cycles of 20 s at 95 °C,15 s at 52-56 °C (sub-library #1, 52 °C; 250 

#2, 52 °C; #3, 52 °C; #4, 56 °C; #5, 54 °C) and 25s at 68 °C; 1 min at 68 °C. The number of PCR cycles are 251 

chosen based on the copy number of cDNA templates as determined by qPCR (Bio-Rad). The PCR primers 252 

are listed in Supplementary Table 2. The PCR products were purified using PureLink PCR Purification Kit 253 

(Life Technologies) and prepared for Illumina HiSeq 2000 sequencing (paired-end 100 bp) following 5'-254 

phosphorylation using T4 Polynucleotide Kinase (New England BioLabs), 3’ dA-tailing using dA-tailing 255 

module (New England BioLabs), and TA ligation of the adapter using T4 DNA ligase (Life Technologies). Each 256 

sample was tagged with a unique 3-bp customized barcodes, which were part of the adapter sequence and 257 

were sequenced as the first three nucleotides in both the forward and reverse reads (Wu et al. 2015) 258 

(Supplementary Table 3).  259 

Analysis of Illumina sequencing data  260 

The sequencing data were parsed by SeqIO function of BioPython. The reads from different samples were 261 

de-multiplexed by the barcodes and mapped to the entire mutated region in NS5A by allowing at maximum 262 

5 mismatches with the reference genome (Supplementary Table 3) (Qi et al. 2014). Since both forward and 263 

reverse reads cover the whole amplicon, we used paired reads to correct for sequencing errors. A mutation 264 

was called only if it was observed in both reads and the quality score at the corresponding position was at 265 

least 30. Sequencing reads containing mutations not supposed to appear in the mutant library were excluded 266 

from downstream analysis. The sequencing depth for each sub-library is at least ~105 and two orders of 267 

magnitude higher than the library complexity. 268 

Calculation of relative fitness  269 

For each condition of selection experiments (i.e. different concentration of Daclatasvir [DCV]), the relative 270 

fitness (RF) of a mutant virus to the wild-type virus is calculated by the relative changes in frequency after 271 

selection, 272 

2 2

1 1([ ])
T T

mut WT
mut T T

mut WT

f fRF DCV
f f

= =

= =

   
=    
   

 273 

where 
T round

mutf =
and 

T round
WTf =

is the frequency of the mutant virus and the wild-type virus at round 1 (after 274 

transfection) or round 2 (after infection). The fitness of wild-type virus is normalized to 1. The fitness values 275 

estimated from one round (round 1 to round 2) have been shown to be highly consistent to estimated based 276 
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round 0 to round 1 (Supplementary Figure 2), and estimates from multiple rounds of selection (Qi et al. 2014). 277 

A mutant was labeled as “missing” if the mutant’s frequency in the plasmid library was less than 0.0005 278 

(RF=NaN, see Supplementary Data 1 and 2). A mutant was labeled as “lethal” if the mutant’s frequency after 279 

transfection was less than 0.0005, or its frequency after infection was 0 (RF=0) (Qi et al. 2014). 280 

The selection coefficient is defined in the context of discrete generations (Chevin 2010) 281 

log( )mut muts RF=  282 

The thresholds for beneficial mutations were defined as 2 silentσ , where silentσ  is the standard deviation of 283 

the selection coefficients of synonymous mutations (Figure 1). The fitness effects of non-synonymous 284 

mutations leading to the same amino acid substitution were averaged to estimate the fitness effect of the 285 

given single amino acid substitution. 286 

Fitting the distribution of fitness effects of beneficial mutations 287 

The distribution of selection coefficients of beneficial mutations were fitted to a Generalized Pareto 288 

Distribution following a maximum likelihood approach (Beisel et al. 2007),  289 

1

1

( , )

1 (1 ) , 0,   0             (Frechet)

1 (1 ) ,0 ,  i 0   (Weibull)

1 , 0,  if 0                         (Gumbel)
x

F x

x x if

x x f

e x

κ

κ

τ

κ τ

κ κ
τ
κ τ κ
τ κ

κ

−

−

−

=

 − + ≥ >

 − + ≤ < − <

 − ≥ =

 290 

Only mutations with selection coefficients higher than the beneficial threshold 2 silentσ were included in the 291 

distribution of beneficial mutations. The selection coefficients were normalized to the beneficial threshold. 292 

The shape parameter κ determines the tail behavior of the distribution, which can be divided into three 293 

domains of attraction: Gumbel domain (exponential tail, κ = 0), Weibull domain (truncated tail, κ < 0) and 294 

Fréchet domain (heavy tail, κ > 0). For each selection condition, a likelihood ratio test is performed to evaluate 295 

whether the null hypothesis κ = 0 (exponential distribution) can be rejected.  296 

Inferring drug resistance from fitness data 297 

We can quantify the drug resistance of each mutant in the library by computing its fold change in relative 298 

fitness, 299 

([ ])([ ]) mut

mut

RF DCVW DCV
RF

=  300 
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Here mutRF  is the relative fitness of a mutant under the natural condition (i.e. no drug). W is the fold change 301 

in relative fitness and represents the level of drug resistance relative to the wild type. W > 1 indicates drug 302 

resistance, and W < 1 indicates drug sensitivity.  303 

This empirical measure of drug resistance can be directly linked to a simple pharmacodynamics model 304 

(Rosenbloom et al. 2012), where the viral replicative fitness is modeled as a function of drug dose, 305 

([ ])
[ ] [ ]

mut wt
predict

mut wt

IC ICW DCV
DCV IC DCV IC

   
=    + +   

 306 

Here IC denotes the half-inhibitory concentration. The Hill coefficient describing the sigmoidal shape of the 307 

dose response curve is fixed to 1, as used in fitting the dose response curves of wild-type virus and validated 308 

mutant viruses (Supplementary Figure 4). The drug resistance score W inferred from fitness data is 309 

consistent with the drug resistance score predictW  predicted from dose response curves of validated mutants 310 

(Supplementary Figure 5).  311 

Calculation of relative solvent accessibility 312 

DSSP (http://www.cmbi.ru.nl/dssp.html) was used to compute the Solvent Accessible Surface Area (SASA) 313 

(Kabsch and Sander 1983) from the HCV NS5A protein structure (PDB: 3FQM) (Love et al. 2009). SASA was 314 

then normalized to Relative Solvent Accessibility (RSA) using the empirical scale reported in (Tien et al. 2013).  315 

Predictions of protein stability 316 

ΔΔG (in Rosetta Energy Unit) of HCV NS5A mutants was predicted by PyRosetta (version: 317 

“monolith.ubuntu.release-104”) as the difference in scores between the monomer structure of mutants (single 318 

amino acid mutations from site 32 to 103) and the reference (PDB: 3FQM). The score is designed to capture 319 

the change in thermodynamic stability caused by the mutation (ΔΔG) (Das and Baker 2008). The reference 320 

sequence of NS5A in the PDB file (PDB: 3FQM) is different from the WT sequence in our experiment by 20 321 

amino acid substitutions. Thus instead of directly comparing ΔΔG to fitness effects of individual mutations, 322 

we used the median ΔΔG caused by amino acid substitutions at each site. 323 

The PDB file of NS5A dimer was cleaned and trimmed to a monomer (chain A). Next, all side chains were 324 

repacked (sampling from the 2010 Dunbrack rotamer library (Shapovalov and Dunbrack 2011)) and 325 

minimized for the reference structure using the talaris2014 scoring function. After an amino acid mutation 326 

was introduced, the mutated residue was repacked, followed by quasi-Newton minimization of the backbone 327 
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and all side chains (algorithm: “lbfgs_armijo_nonmonotone”). This procedure was performed 50 times, and 328 

the predicted ΔG of a mutant structure is the average of the three lowest scoring structures. 329 

We note that predictions based on NS5A monomer structure were only meant to provide a crude profile of 330 

how mutations at each site may impact protein stability. Potential structural constraints at the dimer interface 331 

have been ignored, which is further complicated by the observations of two different NS5A dimer structures 332 

(Tellinghuisen et al. 2005; Love et al. 2009).  333 

Diversity of HCV sequences identified in patients  334 

Aligned nucleotide sequences of HCV NS5A protein were downloaded from Los Alamos National Lab 335 

database (Kuiken et al. 2005) (all HCV genotypes, ~2600 sequences total) and clipped to the region of 336 

interest (amino acid 18-103 of NS5A). Sequences that caused gaps in the alignment of H77 reference 337 

genome were manually removed. After translation to amino acid sequences, sequences with ambiguous 338 

amino acids were removed (~2300 amino acid sequences after filtering). The sequence diversity at each 339 

amino acid site was quantified by Shannon entropy.  340 

Data and reagent availability 341 

All research materials are available upon request. Raw sequencing data have been submitted to the NIH 342 

Short Read Archive (SRA) under accession number: BioProject PRJNA395730. All scripts have been 343 

deposited to https://github.com/leidai-evolution/DFE-HCV. 344 
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 495 

Figure 1. Distribution of fitness effects (DFE) of single amino acid substitutions in domain IA of HCV 496 

NS5A protein without drug selection. DFE of single amino acid substitutions (A) and synonymous 497 

substitutions (B). Lethal mutations are not shown in the histogram.  498 
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 499 

Figure 2. The spectrum of beneficial mutations shifts under increasing positive selection imposed by 500 

the antiviral drug Daclatasvir. (A) DFE of single amino acid substitutions in domain IA of HCV NS5A protein 501 

under increasing positive selection by Daclatasvir. The black line indicates the threshold used for classifying 502 

beneficial mutations (Methods). (B) The cumulative distribution function of the fitness effect of beneficial 503 

mutations. (C) The number of beneficial mutations as a function of positive selection imposed by Daclatasvir.  504 
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 505 

Figure 3. The adaptive potential under drug selection is determined by the effects of mutations on 506 

replication fitness and drug resistance. (A) Hypothetical dose response curves of the wild-type virus and 507 

a drug-resistant mutant virus. Relative fitness of the drug-resistant mutant is expected to increase with drug 508 

concentration. (B) Relative fitness of validated drug-resistant and drug-sensitive mutants (Supplementary 509 

Figure 4) as a function of [DCV]. (C) The effects of mutations on replication fitness (i.e. fitness without drug) 510 

and drug resistance score W at [DCV]=40 pM (Methods).  511 
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 512 

Figure 4. Mutations with deleterious fitness effects reveal constraints of protein evolution. (A) The 513 

pattern of sequence conservation observed in patient sequences is highly correlated to the replication fitness 514 

measured in cell culture. (B) Mutations at amino acid sites with lower solvent accessibility tend to incur larger 515 

fitness costs. (C) Mutations at amino acid sites with larger effects on destabilizing protein stability (ΔΔG>0) 516 

tend to reduce the viral replication fitness. Changes in folding free energy ΔΔG (Rosetta Energy Unit) of 517 

NS5A monomer were predicted by PyRosetta. The median ΔΔG at each amino acid site is shown. In (B) and 518 

(C), the median fitness of observed mutants at each amino acid site is shown. Red lines represent the fits by 519 

linear regression and are only used to guide the eye. 520 
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