Rapid molecular detection of Zika virus in urine using the recombinase polymerase amplification assay

Ahmed Abd El Wahed¹*, Sabri S. Sanabani², Oumar Faye³, Rodrigo Pessôa², João Veras Patriota⁴, Ricardo Rodrigues Giorgi⁵, Pranav Patel⁶, Susanne Böhlken-Fascher¹, Olfert Landt⁶, Matthias Niedrig⁷, Paolo M. de A. Zanotto⁸, Claus-Peter Czerny¹, Amadou A. Sall³ and Manfred Weidmann⁹

¹Division of Microbiology and Animal Hygiene, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
²Laboratory of Medical Investigation in Dermatology and Immunodeficiency, LIM-56/03, São Paulo Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
³Arbovirus and viral hemorrhagic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
⁴Municipal Hospital of Tuparetama, Pernambuco, Brazil
⁵University of Santo Amaro, São Paulo, Brazil
⁶TIB MOLBIOL Syntheselabor GmbH, Berlin, Germany
⁷Robert Koch Institute, Berlin, Germany
⁸Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
⁹Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom

* Corresponding author
E-mail: abdelwahed@gwdg.de and abdelwahed@me.com
Abstract

Background
Currently the detection of Zika virus (ZIKV) in patient samples is done by real-time RT-PCR. Samples collected from rural areas are sent to highly equipped laboratories for screening. A rapid point-of-care test is needed to detect the virus, especially at low resource settings.

Methodology/Principal Findings
In this report, we describe the development of a reverse transcription isothermal recombinase polymerase amplification (RT-RPA) assay for the identification of ZIKV. RT-RPA assay was portable, sensitive (21 RNA molecules), and rapid (3-15 minutes). No cross-reactivity was detected to other flaviviruses, alphaviruses and arboviruses. Compared to real-time RT-PCR, the diagnostic sensitivity was 92%, while the specificity was 100%.

Conclusions/Significance.
The developed assay is a promising platform for rapid point of need detection of ZIKV in low resource settings and elsewhere (e.g. during mass gathering).
Currently, Dengue (DENV), Zika (ZIKV) and Chikungunya (CHIKV) viruses represent a global threat. The clinical picture of the acute febrile diseases caused by DENV, ZIKV and CHIKV is very similar, in addition, the same mosquito vector is involved in the transmission cycle. The differentiation between them is of great importance as supportive treatment differs and the identification of any of the three viruses prompts implementation of control measures to avoid spreading of an outbreak. We have developed an assay for the detection of ZIKV genome. The assay based on isothermal „recombinase polymerase amplification“ assay, which was performed at one temperature (42°C). The result was obtained in maximum of 15 minutes. Moreover, the assay is easy to be implemented at low resource settings.
Introduction

Zika virus (ZIKV) associated with severe congenital malformations (e.g., microcephaly, hydrocephalus) and neuropathies (e.g. Guillain-Barré-like syndrome) has been declared a public health emergency of International concern by WHO [1, 2]. In the absence of a specific treatment and vaccine, early diagnostics is key to control the epidemic and trigger intervention. Diagnostic challenges are unspecific symptoms in the context of co-circulating Dengue virus and Chikungunya virus, limited laboratory infrastructure in rural areas where most cases occur, cross reactivity impeding serological detection and need for rapid detection. Here we report on the development and use of a simple, mobile, point of need molecular assay based on reverse transcription recombinase polymerase amplification (RT-RPA) assay for detection ZIKV in urine in 15 minutes.

Methods

Ethics statement

Human urine samples tested in Brazil were provided by the Laboratory of Medical Investigation in Dermatology and Immunodeficiency, LIM- 56/03, São Paulo Institute of Tropical Medicine, Faculty of Medicine the University of São Paulo, São Paulo, Brazil, which has obtained the ethical approval from the Faculty of Medicine, São Paulo University Review Board (FMUSP N0 1.184.947). All study participants provided informed consent.

Test development

In order to determine the analytical sensitivity of the RT-RPA assay, ZIKV NS1/NS2 molecular RNA standard was ordered at concentration of $10^{10}/\mu l$ from GenExpress (Gesellschaft für Proteindesign mbH, Berlin, Germany). The RT-RPA primers and probe (FP: 5´-TCTCTTGGAGTGCTTGTGATTCTACTCATGGT-3´; RP, 5´-
GCTTGGCCAGGCTACTCATTGAAAATCCTC-3\'; exo-probe, 5´-
CCAGCAGGTCACTGATTGAAAATCCTC-3\'; exo-probe, 5´-
supernatant.

Fig 1. Analytical sensitivity of ZIKV RT-RPA assay. Fluorescence development via real-time detection in one RT-RPA run by using a dilution range of 10^7-10^1/µl of the RNA molecular standards (Graph generated by ESEquant tubescanner studio software). The limit of detection was 10 RNA copies. Data of eight RT-RPA runs is used for the probit regression analysis in Fig 2. The box in the lower right corner of the figure magnifies the fluorescence signals for the ten RNA copies and the negative control as the signal for ten RNA copies is very low.

Fig 2. The probit regression analysis using data of eight RT-RPA assay runs. The limit of detection at 95% probability (21 RNA molecules) is depicted by a triangle.
155 10^7-10^2 RNA molecules were detected 8 out of 8 runs, while 10^1 copies were identified 2 out of 8 runs of the ZIKV RT-RPA assay.

158 The assay is highly specific as no amplification was observed with the following viruses: Dengue 1-4, West Nile, Yellow Fever, Tick borne encephalitis, Japanese Encephalitis, Rift Valley Fever and Chikungunya. The clinical performance of the RT-RPA assay was tested using 25 positive (Ct values: 30-39, Fig 3) and nine negative urine samples collected during the ZIKV epidemic in Tuparetama, Brazil. The RT-RPA identified 23/25 (Sensitivity: 92%) positive (Fig 3) and 9/9 (specificity: 100%) negative samples.

168 **Fig 3.** Results of screening 25 urine samples with both real-time RT-PCR and RT-RPA assays. Twenty samples are shown as three samples produced identical results and two were negative in RT-RPA assay.
Conclusions

To our knowledge, the developed RT-RPA assay is the first sensitive rapid molecular assay applied on field samples for the detection of ZIKA in 15 minutes, which could be implemented at the point of need in a mobile suitcase laboratory [5] to make testing of pregnant women available directly in rural settings. Moreover, combining it with our developed dengue [6] and chikungunya [7] RT-RPA assays will allow its use during outbreak investigations.

Box 1. Advantages and Disadvantages of the ZIKA RT-RPA assay

Advantages

1. Rapid (15 minutes) and limit of detection is 21 RNA copies
2. Highly specific
3. Easy to use at point of need as all reagents are cold chain independent, the assay is operated via a portable device and the cost per test is 4 Euro

Disadvantages

1. Obtaining sensitive RPA primer and probe is difficult as no strict rules for designing the RPA oligonucleotides are available
2. Slightly less sensitive than the real-time RT-PCR (diagnostic sensitivity is 92%)
3. Do not differentiate between the two lineages of the ZIKV

References

2. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with

