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Abstract

Mitochondrial dysfunction is involved in a wide array of devastating diseases but the heterogeneity and
complexity of these diseases’ symptoms challenges theoretical understanding of their causation. With the
explosion of -omics data, we have the unprecedented ability to gain deep understanding of the biochemical
mechanisms of mitochondrial dysfunction. However, there is also a need to make such datasets interpretable,
and quantitative modelling allows us to translate such datasets into intuition and suggest rational biomedical
treatments. Working towards this interdisciplinary goal, we use a recently published large-scale dataset,
and develop a mathematical model of progressive increase in mutant load of the MELAS 3243A>G mtDNA
mutation to develop a descriptive and predictive biophysical model. The experimentally observed behaviour
is surprisingly rich, but we find that a simple, biophysically-motivated model intuitively accounts for this
heterogeneity and yields a wealth of biological predictions. Our findings suggest that cells attempt to maintain
wild-type mtDNA density through cell volume reduction, and thus energy demand reduction, until a minimum
cell volume is reached. Thereafter, cells toggle from demand reduction to supply increase, upregulating
energy production pathways. Our analysis provides further evidence for the physiological significance of
mtDNA density, and emphasizes the need for performing single-cell volume measurements jointly with mtDNA
quantification. We propose novel experiments to verify the hypotheses made here, to further develop our
understanding of the threshold effect, and connect with rational choices for mtDNA disease therapies.

Author Summary

Mitochondria are organelles which produce the major energy currency of the cell: ATP. Mitochondrial
dysfunction is associated with a multitude of devastating diseases, from Parkinson’s disease to cancer. Large
volumes of data related to these diseases are being produced, but translation of these data into rational
biomedical treatment is challenged by a lack of theoretical understanding. We develop a mathematical model
of progressive increase of mutant load in mitochondrial DNA, for the mutation associated with MELAS (the
most common mitochondrial disease), to address this. We predict that cells attempt to maintain the ratio
of healthy mtDNA to cell volume by reducing their cell volume until they reach a minimum cell volume.
As mutant load continues to increase, cells switch strategy by increasing their energy supply pathways.
Our work accounts for large-scale experimental data and makes testable predictions about mitochondrial
dysfunction. It also provides support for increasing mitochondrial content, as well as reduction in dependence
upon mitochondrial metabolism via the ketogenic diet, as relevant treatments for mitochondrial disease.

Introduction

Mitochondria are organelles known for their role in the production of ATP, the major energy currency of the
cell. Their dysfunction is implicated in a host of diseases because of their role in biosynthesis [1] and energy
supply, as well as their importance in cell death signalling [2], implicating them in diseases ranging from
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neurodegeneration [3] to cancer [4]. Fundamental understanding of these organelles and their dysfunction is
therefore of far-reaching biomedical importance.

Mitochondria generate ATP by pumping electrons across their inner membrane, to generate an electro-
chemical gradient, which is used by ATP synthase to convert ADP to ATP. The process of electron pumping
is known as the electron transport chain (ETC), and this pathway of ATP generation is called oxidative
phosphorylation (OXPHOS). Mitochondria also possess their own circular DNA (mtDNA), which are held in
multiple copy number per cell. These genomes encode 13 proteins (which encode subunits of complexes I, III
and IV of the ETC and ATP synthase), 22 tRNAs and 2 rRNAs. An important class of diseases which affect
mitochondria are those which are caused by a mutation in mtDNA. The most common [5,6], and most studied,
of these is MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome,
which is often associated with a mitochondrial tRNA mutation at position 3243A>G of the mitochondrial
genome. Its incidence rate shows large regional variability, with prevalence of 1:6000 in Finland [7], to 1:424
in Australia [8]. tRNAs affected by the mutation cause amino-acid misincorporations during translation,
generating defective mitochondrial protein, and defective respiration, when mutant load (or heteroplasmy) is
high [9].

A common feature in many diseases associated with mutations of mitochondrial DNA, including MELAS,
is the non-linear physiological response of cells and tissues to increasing levels of mtDNA heteroplasmy. In
particular, cells appear to be able to withstand high levels of heteroplasmy without showing any significant
metabolic or physiological defect. For instance, fibroblasts possessing the MELAS mutation were shown to
have unaffected respiratory enzyme activity until mutant load exceeded around 60% [10]. Also, Chomyn et
al. [11] showed that oxygen consumption of cells does not significantly reduce until MELAS heteroplasmy
exceeds ∼90%. This observation has been named the threshold effect (reviewed in [12]).

It has been argued that the threshold effect occurs because mitochondria possess spare capacity at the
translational, enzymatic and biochemical levels, which are each able to absorb some degree of stress, and thus
delay the phenotypic response of increasing heteroplasmy, until a particular threshold heteroplasmy is exceeded,
which is typically large [12]. Within this picture, each physiological feature (such as enzymatic activity or
oxygen consumption), may be expected to display step-like behaviour with respect to increasing heteroplasmy.
Asynchrony of thresholds between different features, such as 60% for enzyme activity [10] and 90% for oxygen
consumption [11], may be explained by spare capacity at intermediate levels: a biochemical threshold effect in
this example, where metabolic fluxes are altered to compensate for fewer functional enzymes [12].

A recent study published by Picard et al. [13] established 143B TK− osteosarcoma cell lines containing the
MELAS 3243A>G mutation across the full dose response of mutant load. They measured a diverse array of
features including RNA expression, protein expression, cell volume, growth rates, mitochondrial morphology
and mtDNA content. The sheer diversity of data collected, across multiple levels of heteroplasmy, makes
this an important dataset in understanding the threshold effect and mitochondrial dysfunction. Under the
interpretation of the threshold effect presented above, one might expect a monotonic response to heteroplasmy,
as spare capacity is depleted and the cell seeks alternative means of energy provision. However, Picard et
al. observed complex multiphasic responses across numerous physiological readouts as heteroplasmy was
increased [13].

The authors of that study identified four distinct transcriptional phases in the gene expression profiles of
MELAS 3243A>G cells: 0%, 20-30%, 50-90% and 100% mutant load. They argue that continuous changes
in heteroplasmy results in discrete changes in phenotype, because there exists a limited number of states
that the nucleus can acquire in response to progressive changes in retrograde signalling [13]. In this work, by
considering a distilled subset of the data from [13], and using simple, physically motivated arguments, we
attempt to provide a simplified account of this dataset to gain better understanding of the consequences of
this mutation and the threshold effect.

Our mathematical model suggests that cells attempt to maintain homeostasis in wild-type mtDNA density
at low heteroplasmies, through reduction of cell volume and therefore cellular energy demand. We propose
the existence of a single critical heteroplasmy, where cells are no longer able to maintain this homeostasis,
and toggle from energy demand reduction to supply increase. In this regime, energy supply pathways are
upregulated. Our model also identifies an additional bioenergetic transition, in excess of 90% mutant load,
as cells become fully homoplasmic. We explore the possibility of reduced transcriptional activity in mutant
mtDNAs/mitochondria, limited tRNA diffusivity, and a connection between cellular proliferation rate and cell
volume, finding all of the above to have explanatory power. We propose new experiments to verify the novel
hypotheses made here, to drive forward understanding of the threshold effect.
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Results

Per-cell Interpretation of Omics Data Highlights Multiphasic Dynamics in Re-
sponse to Heteroplasmic Load

We aim to understand mean cellular behaviour in response to rising levels of 3243A>G heteroplasmy. It is
therefore important that the data we use to build this description is in per-cell dimensions. We perform
normalisations of the data from [13] to create measures of overall gene expression of bioenergetic pathways
from measurements of individual genes, and adjust for potential bias from variable cell volume induced by
heteroplasmy (see Materials and Methods). Fig. 1 shows the core subset of physiological features from [13] we
attempt to describe here, after these normalisations.

A simple interpretation of the threshold effect predicts the existence of spare capacity in the transcription,
translation, enzyme complex and biochemical levels of the cell, in response to increasing heteroplasmy [12].
Under this interpretation of the threshold effect, we might expect all of these functions to have no more than
one turning point with increasing heteroplasmy.

However, the data in Fig. 1, and indeed the dataset of Picard et al. [13] overall, shows a much more
complex response. For instance, ETC transcripts clearly show two turning points, suggesting some kind of
transient compensatory response. Across the features, these data also appear to be asynchronous in their
turning points, for instance ETC transcripts peak at h = 0.6, but glycolysis transcripts peak at h = 0.9. This
highlights the need for an extension in our understanding of the threshold effect, as well as the challenge in
trying to parsimoniously model such a complex dataset.

We note that the measurement uncertainty, where reported in [13], for our selected features of interest are
small relative to the variation with respect to heteroplasmy (see Fig. 1), justifying a non-linear fit to the data.
It should be noted, however, that this uncertainty only reflects the technical variability in measurement, and
does not include potential biological variability of these features. We use a Bayesian approach to appropriately
account for this uncertainty, see Generative Model Description.

Integrated Omics Data Motivates a Model of the Causal Relationships between
Bioenergetic Variables

We present a qualitative description of our model in Fig. 2, which we will develop into a full quantitative
description below. One of our central claims is the existence of a single transition in cellular behaviour, in
response to increasing heteroplasmy of the 3243A>G mutation, over the 0-90% heteroplasmy range. We
propose that, at low heteroplasmy values, cells attempt to maintain homeostasis in wild-type mtDNA density
by reducing their volume. This reduces biosynthetic and translational energy demands, by the simplifying
assumption that energy demand scales directly with cell volume.

Our model suggests that at a critical heteroplasmy, h∗, cells undergo a demand/supply toggle where energy
supply is upregulated. Electron transport chain (ETC) transcripts are stabilized through reduced degradation,
and glycolysis is increased. This bioenergetic compensatory behaviour at intermediate heteroplasmies allows
cell volume to recover.

As heteroplasmy continues to increase, we claim that degradation of ETC transcripts becomes negligible.
Thus, further increases in heteroplasmy results in reduction in ETC protein content and ETC exhaustion
ensues.

These behaviours are captured in the mathematical framework of our model. However, as cells transition
from 90% to 100% mutant mtDNA, another transition in cellular behaviour appears to occur, according to
the data of [13]. Cells downregulate glycolysis, and yet retain cell volume and growth rate. The mode of
energy production in this case is unclear, and opens new questions as to the most relevant energy supplies
and demands in homoplasmic cells (see Key Claims and Predictions of Biophysical Model of Heteroplasmy).

Interactions between Bioenergetic Variables can be Cast as a Bottom-up Quan-
titative Model

We now present a quantitative description of our model, see Table 1, whose mechanistic interpretations will be
more fully explored in Key Claims and Predictions of Biophysical Model of Heteroplasmy. Our model attempts
to unify the experimentally-measured features of [13] within a simple, physically plausible, bottom-up cell
biological representation. We stress that our choice of model structure was not developed independently of
the data in [13]; hence, at the level of choice of model structure, we have limited control of over-fit. However,
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Figure 1. Multiphasic physiological response to increasing heteroplasmy – core data
considered from Picard et al. renormalized to be in per-cell dimensions. Selected measurements
of 143B TK- osteosarcoma cells heteroplasmic in MELAS 3243A>G, from Ref. [13]. A. mRNA levels for 11
mitochondrially-encoded electron transport chain subunits (COX3, ND2, ND5, CYTB, ND3, ND6, COX1,
ND4, COX2, ND1, ND4L). B. Protein levels for complexes I, III and IV. C. Glycolysis mRNA levels, for
genes (PKM2, ENO1, PGAM4, PGK1, GAPDH, ALDOA, PFKP, GPI, HK2 and SLC2A1). All errors in
A-C are the standard error of the transformed renormalised mean (see Data Normalization for details of how
data for these genes are combined, and Error Propagation for associated errors). D. Mean cell volume of an
asynchronous population of growing cells ± SEM. E. Growth rate, determined by linear regression (see
Growth Rate Determination). Error is the standard error in the slope from linear regression F. Maximum
respiratory capacity. See [13] for experimental protocols.
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Figure 2. Qualitative description of continuous increase in MELAS mutant load. A. At low
levels of heteroplasmy (h), cells attempt to maintain homeostasis in wild-type mtDNA density by reducing
their volume (V ). This reduces energy demands, allowing energy supply/demand balance to be maintained
despite rising heteroplasmy. Further increase in heteroplasmy triggers a energy demand/supply toggle at a
critical heteroplasmy h∗, where energy provision pathways are upregulated. This includes upregulation of
both oxidative phosphorylation, by reduction in mRNA degradation (δm), and glycolysis transcripts (Mgly).
Cell volume consequently recovers. Further increase in heteroplasmy exhausts ETC stabilization, as δm → 0,
and ETC protein (P+) continues to deplete. In the transition to homoplasmy, glycolysis and ATP levels
reduce, and yet cell volume and growth rate are retained. In this regime, the mode of energy production is
unclear. B. Flow of causality in our mathematical model. N+ = wild-type mtDNA copy number, METC =
ETC mRNA, Rmax = maximum respiratory capacity, and G = cellular growth rate. Heteroplasmy shown in
red connecting to variables with explicit dependence.

the uncertainty in its parameters, given the data and a set of priors (see Generative Model Description), was
computed using Bayesian inference. So whilst our parametrization of the model has statistical control for
uncertainty, we have not employed a statistical model selection framework. We believe this to be appropriate
and practically unavoidable, as our objective is to yield a new reduced account for these heterogeneous data,
present novel hypotheses and propose new experiments.

Wild-type mtDNA scaling A theme apparent in the data of Picard et al. is an overall downward trend
of ETC mRNA and ETC protein with increasing heteroplasmy (h). We therefore use the hypothesis that these
quantities scale with the amount of wild-type mtDNA (N+). We assume that N = mtDNA copy number
= const (set to 1 after normalisation, without loss of generality) which then defines N+, see Eq.(1). The
successful performance of this simple model for N+ is shown in Figure S1. Note that this model has no free
parameters, so was neglected in our Bayesian inference.

ETC mRNA Transcript copy number is determined by the balance of transcription (β) and degradation
(δm) rates. Given our assumption of N+ scaling, it can be shown (see Text S1) that Eq.(2) may be used
to model the ETC mRNA pool size (METC). We further assume a constant mean transcription rate β for
parsimony, and allow the degradation rate δm to vary with heteroplasmy in response to cellular signals. We
require the degradation rate to be high for low heteroplasmies, and low at high heteroplasmies, to describe the
ability of cells to upregulate their transcript copy number with rising heteroplasmy. A biologically-motivated
choice of function which achieves this is a sigmoid, see Eq.(3), where kmRNA, km and h0 are constants.

ETC protein It is intuitive to assume that mean protein levels scale with transcript levels, although this
relationship may be noisy [14]. Following a similar assumption for ETC mRNA, we also assume that ETC
protein (P+) scales with wild-type mtDNA levels. Using analogous arguments to METC (see Text S1), we
show that a reasonable model for ETC protein is Eq.(4), where δp = const, denotes the baseline degradation
of mitochondrial protein.
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Table 1. Mathematical model of MELAS 3243 A>G mutation with progressive mutant load. See Table S2
for parameter descriptions. Heteroplasmy = h, mtDNA copy number = N .

Description Equation
Equation
number

Wild-type mtDNA,
N+ N+ = N(1− h) (1)

ETC mRNA, METC METC = β
δm+1

N+ (2)

δm(h) = kmRNA
1+exp[km(h−h0)]

(3)

ETC protein, P+ P+ = N+METC
δp

(4)

Glycolysis mRNA,
Mgly

Mgly =

{
c1, h ≤ h∗

m2h+ c2, h > h∗
(5)

Cell volume, V
koP

+ + kgMgly︸ ︷︷ ︸
supply

= V︸︷︷︸
demand

(6)

Growth rate, G G =
kgr
V

(7)

Maximum respiratory
capacity, Rmax

Rmax = kpP+ (8)

Glycolysis mRNA We assume that the glycolysis mRNA pool size (Mgly) is invariant to heteroplasmy,
until a critical heteroplasmy h∗, where glycolysis is gradually upregulated as a result of cellular control. It is
therefore parsimonious to assume that glycolysis regulation obeys a spline of a constant and linear model
which toggles at h∗, see (5), where c1 and m2 are free parameters, and c2 = c1 −m2h

∗, by continuity.

Cell volume We propose that the energy demands of the cell may be well approximated as scaling with cell
volume, see Text S1 for further discussion. As glycolysis and OXPHOS provide energy supply to first order,
we assume that mean cell volume in an asynchronous population of cells (V ) is effectively determined by a
scaled sum of glycolysis and OXPHOS contributions to energy balance, such that the cell obeys an energy
supply = energy demand relationship, see Eq.(6), where ko, kg = const.

From Fig. 1, it is clear that this assumption fails at h = 1, where glycolysis levels and cell volume are
comparable to h = 0 levels, and yet ETC proteins are only 30% of wild-type levels. As ATP levels are below
wild-type levels in these cells (see Fig. S6E in [13]), the mode of energy production is not clear and further
metabolomic data may be required. We therefore exclude all h = 1 data, and limit the domain of our model
to 0 ≤ h ≤ 0.9.

Growth rate We observe that the cellular proliferation rate (which we call growth rate, G, for consistency
with [13]) varies with heteroplasmy (see Fig. 1). We hypothesize that there exists a relationship between
mean cell volume and growth rate. It can be shown that, assuming individual cells increase their volume
linearly through the cell cycle, growth rate varies inversely with mean cell volume (shown in Text S1). This is
shown in Eq.(7), where kgr is a constant.

We show in Text S1 that, under an exactly exponential model of cell growth, G is independent of V .
However, given that there is presumably a wide class of cytoplasmic growth-vs-time profiles which cells may
obey, we use a linear model as a parsimonious example of how cell growth may be connected to cytoplasmic
volume.

Maximum respiratory capacity It has long been recognised that cells carrying the MELAS mutation
experience a respiratory defect when heteroplasmic load exceeds approximately 90% [11,15], and that this is
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Figure 3. A simple biophysical model is consistent with complex observations across range of
heteroplasmic load A-F. Approximations for the maximum a posteriori estimate (black line), posterior
mean (red line) and 25-75% confidence intervals (pink bands), for the model fits to selected data from [13].
The model makes predictions over the range 0 ≤ h ≤ 0.9, see Main Text. Data for h = 1 have been plotted in
grey, as they have not been used to train the model. Error bars are conservative and merely show the
technical variability reported in [13], see Materials and Methods.

due to a defect in protein synthesis [9,11]. We therefore assume that maximum respiratory capacity (Rmax) is
always determined by protein content. This yields a simple linear expression, see Eq.(8), where kp = const.

Model summary In summary, our model of mean cellular behaviour with respect to heteroplasmy describes
7 features from Picard et al. [13] (N+,METC, P

+,Mgly, V,G,Rmax) and has 12 adjustable parameters (as
discussed later this is fewer than the number required for 7 linear models), a table of which is shown in
Table S2. In writing down this phenomenological model, we have attempted to account for a physiologically
important subset of the data generated in [13], using bottom-up arguments wherever possible. In doing so, a
number of novel, falsifiable, hypotheses are made.

Parametrizations of a Simple Biophysical Model Account for Complex Observa-
tions Across Range of Heteroplasmic Load

The fit of the model described above is shown in Fig. 3. Between 0 ≤ h ≤ h∗, h∗ being the critical heteroplasmy
where glycolysis is upregulated (0.34 ≤ h∗ ≤ 0.44, 25-75% CI), our model reproduces the reduction in ETC
transcript pool size. Similarly, we observe that ETC protein pool size also reduces, as does cell volume and
maximum respiratory capacity.
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Our model is able to successfully capture the transient compensatory responses in ETC mRNA, ETC
protein and cell volume which begin around the critical heteroplasmy h∗. For heteroplasmies between
h∗ . h . 0.5, ETC mRNA degradation reduces causing ETC mRNA to be upregulated, along with ETC
protein and maximum respiratory capacity. In this region, glycolysis becomes induced above wild-type levels,
and cell volume can be observed to also recover.

In excess of h ≈ 0.5, our model shows the observed reductions in ETC mRNA, ETC protein and maximum
respiratory capacity. We see that continued upregulation of glycolysis mRNA allows cell volume to remain at
an approximately constant value, although diminished relative to a wild-type cell. Consequently, heteroplasmic
cells between 0.2 ≤ h ≤ 0.9 are predicted to proliferate at a faster rate than wild-type cells (see Fig. 3E).

Key Claims and Predictions of Biophysical Model of Heteroplasmy

Here, we revisit the interpretations of our model in light of the mathematical description developed above, and
explore the evidence for the biological insights it provides. We make experimental proposals to validate our
claims, which are given in Text S2. The set of mechanistic interpretations which follow from our mathematical
model, see Fig. 4, are:

• Wild-type mtDNA density is maintained homeostatically at low heteroplasmy

• There exists a minimum cell volume which is approached at the critical heteroplasmy

• Cells toggle from demand reduction (i.e. cell volume reduction) to supply increase (i.e. glycolysis and
ETC mRNA upregulation), at the critical heteroplasmy

• Mutant mtDNAs do not significantly contribute to the mitochondrial mRNA pool

• Mitochondrial tRNAs remain moderately localised to their parent mtDNA

• Maximum respiratory capacity is determined by ETC protein levels through a linear relationship

• Cell growth rate is the reciprocal of mean volume, thus smaller cells grow faster

Wild-type mtDNA density homeostasis is maintained until a minimum volume is reached near
the critical heteroplasmy The parameter h∗ determines the extent of mutant load, for which the cell
begins to upregulate ETC mRNA and glycolysis mRNA. But what causes this change in behaviour, at this
particular value of heteroplasmy? By examining the posteriors of our model fit (Fig. 3) we infer that cell
volume takes its minimum value shortly before the most probable value of h∗ (see Fig. 5). We hypothesize
that an attempt to conserve wild-type mtDNA density (N+/V ) determines the position of h∗.

For h . h∗, wild-type mtDNA density is maintained despite increasing heteroplasmy, because cell volume
diminishes. As a result of this reduced demand, the cell can tolerate diminished mitochondrial power supply.
However, cell shrinkage cannot continue indefinitely and we hypothesize that the cell reaches a minimum cell
volume at h ≈ h∗. Once heteroplasmy exceeds this value, the cell toggles its energy balance strategy from
demand reduction to supply increase, and the cell recovers in volume.

There is evidence in the literature that wild-type mtDNA density is an important quantity. Bentlage and
Attardi [15] observed that long-term culture of heteroplasmic MELAS cells resulted in an increase in mtDNA
copy number, resulting in increased oxygen consumption. Whilst this was often accompanied by a decrease in
heteroplasmy, some cell lines also exhibited this at constant heteroplasmy. This is consistent with the cell
attempting to increase the absolute number of wild-type mtDNAs, perhaps to compensate for heteroplasmic
load, and suggests that the absolute value of N+ is a physiologically important quantity.

The density of mitochondrial content per unit cytoplasmic volume has been observed by many authors to
be tightly regulated and physiologically predictive. The historical observations of Posakony et al. [16] showed
that the mean ratio of mitochondrial content to cytoplasmic volume is kept relatively constant throughout
the cell cycle in HeLa cells, occupying ∼10-11% of cytoplasmic area throughout. Similar observations have
been reproduced in more recent studies, in various other systems. Rafelski et al. found in budding yeast that
mitochondrial content was proportional to bud size, and that all buds attain the same average ratio regardless
of the mother’s age or mitochondrial content [17], suggesting a stable scaling relation. Also, Johnston et
al. [18] found that the density of mitochondrial mass was predictive of cell cycle dynamics, indicating that
N/V (N = total number of mtDNAs) is physiologically relevant and potentially linked to cell energy supply
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Figure 4. Claims and interpretations of biophysical model A. Wild-type mtDNA density is
maintained by the cell when heteroplasmy is below the critical heteroplasmy, h∗. B. Cells achieve this
through reduction of their cell volume, and therefore energy demand, as wild-type mtDNA copy number
diminishes. This continues until a minimum cell volume is reached at h∗. C. At heteroplasmies above h∗,
wild-type mtDNA homeostasis cannot be maintained through volume reduction due to the existence of a
minimum cell volume. Cells therefore switch their strategy to increase energy supply. D. Mutant mtDNAs
have a much lower contribution to the transcript pool than wild-type mtDNAs. E. tRNAs stay local to their
parent mtDNA, meaning that mRNA must come into contact with a wild-type mtDNA to be translated into
normal protein. F. Maximum respiratory capacity is linearly proportional to ETC protein. G. Assuming that
cytoplasm grows linearly through the cell cycle, smaller cells proliferate faster than larger cells.

9

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078519doi: bioRxiv preprint 

https://doi.org/10.1101/078519
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5. Wild-type mtDNA density (N+/V ) homeostasis may trigger supply/demand toggle
Posterior statistics show an initial maintenance of N+/V . When cell volume (V ) takes its minimum value,
the most probable value of h∗ shortly follows. N+/V then reduces. We suggest that the inability of the cell
to maintain N+/V = const, due to the existence of a minimum cell volume, causes cells to toggle in their
strategy at h∗, from demand reduction to supply increase. Data from [13].

and growth dynamics. Indeed Jajoo, Paulsson and co-workers [19] found that the density of mitochondrial
DNA tracks the quantity of cytoplasm inherited upon division in wild-type fission yeast. Finally, Otten et al.
found a positive correlation between cell volume and mtDNA copy number in zebrafish oocytes [20].

We may speculate as to the interpretation of a minimum cell volume. One straightforward interpretation
is that a minimum cell volume corresponds to a mechanical constraint: a cell may only become so small
because the machinery required to perform tissue-specific metabolic and structural tasks require a minimum
amount of space.

An alternative to this is a bioenergetic minimum cell volume. Numerous historical studies have shown
that there exist appreciable energy demands which do not scale linearly with volume [21–23]; for instance,
processes which only serve the nucleus such as DNA-replication, or demands associated with the plasma
membrane. If a unit volume of cytoplasm has a particular energy output, which satisfies the energy demand
of that unit volume plus an energy surplus, then continued reduction of cell volume results in the total energy
surplus of the cytoplasm being unable to meet the demands of the nucleus and plasma membrane. At this
bioenergetic minimum cell volume, the nucleus may signal to increase energy production pathways to restore
the energy surplus of a unit volume of cytoplasm. If we assume that power supply per unit volume must
be maintained, then as cells become smaller in radius (r), surface area demands per unit volume scale with
r2/r3 = 1/r whereas constant energy demands per cell per unit volume scale with 1/r3. In this way, demands
associated with cell surface area may be the first to become prohibitive as cells reduce in size, more so than
constant demands which scale with a larger negative power of r. Both mechanical and bioenergetic limits no
doubt exist, but which of these constraints is first encountered upon volume reduction is open.

ETC mRNA degradation diminishes at the critical heteroplasmy contributing to energy de-
mand/supply toggle The induction of glycolysis at the critical heteroplasmy is observed in our model by
construction, see Eq.(5), since glycolysis is modelled to increase linearly when heteroplasmy exceeds this point.
However, by observing the posterior distribution of the ETC mRNA degradation rate (see Fig. 6), we see that
the critical heteroplasmy also coincides with the beginning of reduction in ETC transcript degradation with
respect to heteroplasmy. Since ETC mRNA pool size varies with the inverse of this degradation rate (see
Eq.(2)), ETC transcripts are consequently upregulated in tandem with glycolysis transcripts. This occurs
until ETC degradation diminishes to negligible levels around h ≈ 0.5, where this particular control mechanism
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Figure 6. Critical heteroplasmy induces ETC mRNA stabilization Posterior distributions for
ETC mRNA degradation rate and critical heteroplasmy (0.34 ≤ h∗ ≤ 0.44, 25-75% CI and 0.27 ≤ h∗ ≤ 0.89
5-95% CI). It can be seen that the critical heteroplasmy coincides with the reduction in ETC degradation,
signalling an energy demand/supply toggle.

becomes exhausted. Thus, the critical heteroplasmy coincides with a shift from energy demand reduction, to
supply increase from both glycolysis and OXPHOS contributions.

Since mtDNA is transcribed as a single polycistronic transcript [24], the stoichiometry of individual mRNA
species must be controlled via active degradation. This is achieved by a balance between processes which
stabilize and degrade mRNA [25]. The Picard data set can be explored further to seek corroborating evidence,
by observing the ratio of ETC mRNA degraders to stabilizers. We find a qualitative similarity between this
ratio (see Figure S7) and the posterior distribution of the ETC degradation rate (see Fig. 6), both displaying
a substantial reduction between h = 0.3 and h = 0.5.

Mutant mtDNAs do not significantly contribute to the mitochondrial mRNA pool Our hypoth-
esis that ETC mRNA transcript pool size is proportional to wild-type mtDNA copy number, i.e. METC ∝ N+,
was invoked as a simple explanation for the overall downward trend with heteroplasmy. We favoured this
explanation over, for instance, allowing the transcript birth rate to decrease with heteroplasmy, as such
behaviour would contradict the behaviour of the degradation rate which acts to increase transcript pool size.
The implication of this model is that mutant mtDNAs do not contribute strongly to the transcript pool,
either through a transcription defect or selective degradation of all transcripts from mutated mtDNAs, the
precise mechanism is not prescribed by the model. (We discuss alternative models to N+ scaling for METC in
Alternative Hypotheses)

Mitochondrial tRNAs are relatively localised to their parent mtDNA It has been observed that
homoplasmic MELAS cells are able to translate mitochondrially-encoded proteins; however, misincorporations
cause these translation products to become unstable [9]. Assuming rapid degradation of such proteins, mutant
mtDNAs are not expected to contribute strongly to the total ETC protein content of the cell, which has been
confirmed by experimental observation in homoplasmic cells [9]. We adopted the model of ETC protein being
proportional to wild-type mtDNA copy number, i.e. P+ ∝ N+, as a parsimonious model for such scaling.

One interpretation of this assumption is that we can identify Eq.(4) as obeying mass-action kinetics
between ETC mRNA and wild-type mtDNA molecules, with a constant baseline degradation rate. A simple
interpretation of this, is that ETC mRNAs must come into the proximity of wild-type mtDNAs, to be
translated.
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One way in which this might be achieved is if tRNAs remain spatially localised to their parent mtDNA; in
other words, tRNAs have low diffusivity. ETC mRNAs which come into contact with mutant mtDNAs are
translated into mutated protein only, since mutated tRNAs are much more available, which are then rapidly
degraded. Conversely, mRNAs which localise with wild-type mtDNAs are only translated into normal protein,
since only wild-type tRNAs are available. (We discuss alternative models to N+ scaling for P+ in Alternative
Hypotheses)

Evidence in the literature for this claim is mixed. It has been observed that mitochondrial mRNAs, such
as ND6, localise to mtDNA suggesting that mtDNA may be a site for mitochondrial translation [26]. However,
cybrid experiments involving homoplasmic tRNA mutants 3243A>G and 4269A>G are able to recover their
respiratory function by fusing such cells together to form hybrids [27]. Their recovery is presumably due to
the diffusion of the healthy form of each tRNA, so that normal proteins may be translated. See Text S2 and
Table S1 for experimental suggestions to determine the extent of tRNA diffusivity.

Cell volume is not explained by cell cycle variations Our model predicts that cells, on average,
change their size as heteroplasmy is varied, due to variation in power supply from OXPHOS and glycolysis.
However, since cells vary their volume by a factor of 2 throughout the cell cycle, it is possible that cells with
different heteroplasmies spend different durations at various stages of the cell cycle, explaining the observed
variation in expected cell volume with heteroplasmy (see Fig. 1D). We sought evidence for this hypothesis,
by computing the ratio of the expression level, for genes associated different stages of the cell cycle [28], see
Figure S8. However, we found little evidence to support the enrichment of cell cycle markers at any particular
level of heteroplasmy.

OXPHOS contributions to energy supply are stabilized at the critical heteroplasmy The relative
contribution of OXPHOS to energy supply, i.e. koP

+/(koP
+ + kgMgly), is also interesting to observe as

heteroplasmy is varied. We observed a transient stabilization in OXPHOS contributions around h∗. A
discussion of this is presented in Text S3.

Cells proliferate inversely with their size Due to our reciprocal model connecting cell volume and
growth (see Eq.(7)), our model suggests that wild-type cells proliferate more slowly relative to heteroplasmic
cells due to their larger size.

Maximum respiratory capacity linearly tracks ETC protein content It has long been suggested
that cells above a particular threshold heteroplasmy experience a respiratory defect [10,11, 15]. In our model,
we found that a simple linear relationship between ETC protein and maximum respiratory capacity was
sufficient to describe the data available (see Eq.(8)). With a more classical interpretation, we might have
expected the need to deploy a model which has switching behaviour in excess of 60% heteroplasmy [10] for
maximum respiratory capacity, in analogy with glycolysis transcript levels (see Eq.(5)).

Reactive oxygen species may explain the transition to homoplasmy but mode of energy pro-
duction remains unclear In Eq.(6), we claim that cell volume is determined by the weighted sum of
glycolysis transcripts and ETC protein. Over the range 0.9 < h ≤ 1, glycolysis transcripts reduce by 57%,
whereas ETC protein and cell volume remain comparable, thus breaking the supply = demand relationship,
as we have modelled it. Consequently, our model fails to describe the transition from h = 0.9→ 1.

A potential explanation for the reduction in glycolysis transcripts over this range, comes from the fact
that glycolysis provides substrate for oxidative phosphorylation. Damaged electron transport chain proteins
may produce an excess of reactive oxygen species (ROS) [29], which can damage mitochondrial proteins, DNA
and membranes. If, at high heteroplasmy, any flux through the electron transport chain causes high levels of
ROS, then cells may attempt to reduce flux through glycolysis, to avoid production of these species.

Some evidence from Picard et al. supports this hypothesis, where superoxide dismutase (SOD) activity is
largely constant with heteroplasmy, except for homoplasmic mutant MELAS cells, which have ∼ 20% higher
SOD activity than wild-type cells (see Fig. S7D of [13]). Furthermore, it is known that ROS can reversibly
inhibit the activity of GAPDH, one of the enzymes involved in glycolysis [30,31].

However, given that fatty acid oxidation (see Figure S9) is strongly downregulated over this range, it
remains unexplained how homoplasmic mutant cells maintain their cell volume (and growth rate), given their
reduced reliance upon mitochondrial and glycolytic metabolism. Further metabolomic measurements may be
required to uncover this mode of energy production.
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ATP levels are also observed to decrease over this range (see Fig. S6E of [13]), which may even suggest
that an alternative fuel currency besides ATP supports the growth and size of these cells. However, more
careful investigation of this observation may be of value, since it is important to draw the distinction between
ATP pool sizes and ATP fluxes, the latter perhaps being more indicative of ATP usage, and the former being
indicative of only relative production/consumption rates.

Alternative Hypotheses

Here we explore several alternative hypotheses, and point out a number of reservations in accepting these
alternatives over the model presented above.

Wild-type mtDNA copy number scaling for ETC mRNA Our claim that ETC mRNA scales with
wild-type mtDNA copy number linearly (see Eq.(2)) was used for parsimony, but other models exist. We know
that mtDNA exists in multiple copy number per organelle, one estimate is that there exists between 4-40
mtDNAs per mitochondrion [32]. If we use the model that mitochondria containing only mutated mtDNA
are unable to transcribe, and mitochondria are otherwise able to transcribe, then this results in a non-linear
scaling of METC with h. Instead of scaling with N+, ETC mRNA would scale with the probability that 100%
of mtDNAs per organelle are mutated (p100, which follows a binomial distribution with probability h). We
might think of this as an organellar threshold effect. This model is plausible if we assume that mitochondria
power their own transcription, and even a single mtDNA is able to power transcription for the entire organelle.

However, since there exists a range of possible values for the number of mtDNAs per mitochondrion in a
cell, this non-linearity is likely to be somewhat smoothed out. So having ETC mRNA scaling with N+ is still
plausible at a cellular level, even under this hypothesis, and is more parsimonious.

We also investigated the possibility that ETC mRNA scales with N+ + µN−, where N− = the number of
mutant mtDNAs (see Text S4), where we constrained 0 ≤ µ ≤ 1. We found large support for values of µ close
to 1 (see Figure S3), but draws from the posterior distribution of METC were often purely linear and thus
inappropriate for understanding threshold effects (see Figure S15). For this reason, we rejected the mutant
transcription model in favour of the model presented in the main text.

Wild-type mtDNA copy number scaling for ETC protein A similar organellar threshold argument
of scaling with the probability that 100% of mtDNAs per organelle are mutated, p100 scaling (instead of
N+), may hold if mitochondria power their own translation. This would relax the need to invoke low tRNA
diffusivity. But, again, for parsimony we favoured N+ scaling.

We also explored the ability of misincorporation effects to explain the ETC protein data, as opposed to
tRNA localisation (see Text S4). If tRNAs are well mixed, then an ETC protein may possess a tolerance to
the number of misincorporations per protein. Upon performing Bayesian inference, we found that the most
likely tolerance to the MELAS mutation was 100% of residues: in other words, ETC proteins are immune to
the MELAS mutation. This has been shown experimentally to be incorrect [9]. Furthermore, draws from the
posterior distribution of METC were often purely linear and thus inappropriate for understanding threshold
effects (see Figure S15). For these reasons, we rejected the tRNA misincorporation model in favour of the
model presented in the main text.

Discussion

In this study, through use of a distilled subset of data from [13] and using minimal arguments, we have
attempted to explore the apparent marked difference between the complex multiphasic observations of Picard
et al., and the classical step-like models associated with the threshold effect.

We argue that a single critical heteroplasmy, h∗, is sufficient to explain this subset of data over the
heteroplasmy range 0 ≤ h ≤ 0.9 and that other multiphasic behaviour arises naturally from the simple
physical/biological assumptions of our model. Our model suggests that cells undergo an energy demand/supply
toggle at h∗, from demand reduction to supply increase. We hypothesize that homeostasis in wild-type
mtDNA density is maintained via cell volume reduction, ensuring that the available functioning power sources
are matched to a corresponding level of cellular demand, until a minimum cell volume is reached which
coincides with h∗. This triggers the demand/supply bioenergetic toggle where energy production pathways
are upregulated. We believe this re-emphasizes the need for quantification of single-cell mtDNA content
to be associated with volume measurements of the same cell: mtDNA density is a relevant physiological
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variable [16–20]. We find that the mode of energy production over the range 0.9 ≤ h ≤ 1 is unclear, and that
further metabolomic investigations may be required to determine this.

Our model further generates hypotheses that mutant mtDNAs (or alternatively homoplasmic organelles)
have a reduced contribution to transcription, that tRNAs have low diffusivity, and that a relationship exists
between mean cell volume and cell growth. We have proposed novel experiments to verify these hypotheses,
to further develop our understanding of the threshold effect.

A potential consequence of our predictions is that controlling either mtDNA copy number, wild-type
mtDNA copy number, or wild-type mtDNA copy number density, to ensure optimal values of wild-type
mtDNA copy number density could be valuable control axes in therapy. Increasing mitochondrial DNA copy
number, for instance through activation of the PGC-1α pathway, may facilitate the increase of cell volume,
deferring the critical heteroplasmy to higher values by delaying the approach towards a minimum cell volume.
We might reason that this enhances a wild-type phenotype at higher heteroplasmy values, potentially deferring
the full MELAS phenotype to higher heteroplasmies, which typically appears between ∼50-90% mutant
load [33]. Indeed, it has been found that increasing mitochondrial biogenesis can ameliorate mitochondrial
myopathy in vivo [34].

We might also argue that as cells toggle from energy demand reduction to supply increase, further bolstering
of this compensatory response may have clinical significance. For instance, since we observe that cells switch
to glycolytic metabolism to compensate for diminishing mitochondrial power supply, further encouragement
of this energy mode may be therapeutic. This is supported by the recent observation that promoting the
hypoxia response is protective against multiple forms of respiratory chain inhibition [35]. Alternatively, since
we predict that cells innately downregulate ETC mRNA degradation, seeking to upregulate mitochondrial
transcription may aid the cell in maintaining a sufficient mRNA pool size. Furthermore, promoting alternative
energy production pathways such as fatty acid oxidation via the ketogenic diet may also aid in reducing
the dependence on oxidative phosphorylation. This diet has been associated with increased mitochondrial
transcripts [36], mitochondrial content [36,37] and has been shown to slow mitochondrial myopathy progression
in transgenic Deletor mice [37]. Indeed, the diet has recently been used in clinic as an adjunctive therapy
for a patient suffering from MELAS, harbouring the 3260A>G mutation, which successfully decreased the
frequency of seizures and stroke-like episodes [38].

Materials and Methods

Data Normalization

Bioenergetic pathways, such as glycolysis or oxidative phosphorylation, consist of a set of enzymes, whose
corresponding genes may be correlated in their expression. To have some measure of the overall expression
level of a pathway (E), we use the mRNA concentration (in RPMK, reads per kilobase of transcript per million
mapped reads), for each gene corresponding to enzymes of the pathway (ei,k(h), for gene i and technical
replicate k at heteroplasmy h) and take a normalized sum

E =
1

N

1

nr

nr∑
k=1

N∑
i=1

ei,k(h)

1/nr [
∑nr

k=1 ei,k(h = 0)]
(9)

where nr = number of technical replicates, and N = number of genes in the pathway of interest. This quantity
normalizes the expression level of each gene to h = 0 levels, to avoid effects from consistently highly-expressed
genes. The factor of 1/N results in Ē having the value of 1 at h = 0, so may be interpreted as a fold-change
in expression relative to h = 0.

The standard error of Ē is given by

sE =
1

N

1√
nr

(
Vk

[
N∑
i=1

ei,k(h)

1/nr [
∑nr

k=1 ei,k(h = 0)]

])1/2

(10)

where Vk(xk) is the sample variance over xk. Eq.(9) and Eq.(10) are applied to glycolysis and ETC mRNAs
in our main model, which yield dimensionless, normalized, measures of transcript levels for each biological
pathway.

ATP synthase is excluded from both mRNA and protein data, as it is expected to be regulated differently
from other ETC proteins. This difference arises because mitochondrial membrane potential is required for cell
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growth [39], and glycolytic ATP may be used, even in cells without mtDNA, by ATP synthase to maintain
membrane potential [40]. Thus, protein levels of ATP synthase may be expected to be regulated quite
differently to those of the electron transport chain, and not generally indicative of respiratory activity.

For ETC protein, we simply use the sample mean of complexes I, III and IV, since the data given by
Picard et al. [13] is already normalized.

Data Transformation to Per-Cell Dimensions

The data we consider of Picard et al. [13], consists of RNA-seq and Western blot measurements for mRNA and
protein levels respectively. We wish to model the bioenergetic strategy of an average cell, so it is important
that the data we use to parametrize our model is of per-cell dimensions. We show in Text S5 that it is
appropriate to multiply protein and transcript data by cell volume to gain per-cell dimensions.

Error Propagation

Our work focuses on describing mean behaviour with respect to heteroplasmy, so uncertainty in this mean
must be quantified. For Mgly and METC, we used error propagation on the normalised transcript levels E
(see Eq.(9)) and V , to derive the volume-adjusted transcript uncertainties for the data in Fig. 1√

E
2
s2V + V 2s2

E
(11)

where sE is defined in Eq.(10) and sV is the SEM for cell volume (raw data provided by Martin Picard). For
the case of ETC protein data, since the corresponding experiments in Picard et al. [13] had only a single
technical replicate, we derived an uncertainty by simply multiplying the normalised protein value (see Data
Normalization) by sV .

Growth Rate Determination

The speed with which cells proliferate is dependent upon heteroplasmy, as can be seen in Figure S11. However,
by day 6 of growth, cell growth appears to change its behaviour, with evidence of saturation; we therefore
truncate the raw data to day 5 and calculate the exponential growth rate by linear regression in log-lin space.

Generative Model Description

We used a Bayesian framework to find the supported parameter values given the data, using the Metropolis-
Hastings algorithm [41]. To do this, we included an additional 6 noise parameters, for the features where
parameter inference was performed (i.e. all of the features except N+, which has no free parameters, see
Eq.(1)). For these 6 features (METC, P

+,Mgly, V,G,Rmax), we assumed that the data were generated subject
to Gaussian noise (see Generative Model Description).

Thus, the full statistical model contains 12 parameters (excluding 6 noise parameters for each feature),
with 32 data points which enter the likelihood (after excluding h = 1 data). To summarise, counting the 6
features which have free parameters, the model consists of 12/6 = 2 mean parameters per feature, on average.
Note that simply fitting linear models to the 6 features in Fig. 1 would also require 2 parameters per feature.
The model fit is shown in Fig. 3.

To connect our model of mean cellular behaviour S = {METC, P
+,Mgly, V,G,Rmax}, to the data of Picard

et al. [13], we assume that the sample mean of feature i (yi,j) at a discrete value of heteroplasmy h = j is
generated via Gaussian noise (N (µ, σ)) whose mean corresponds to one of the models S,

yi,j =Mi(h) +N (0, σi), (12)

where Mi(h) is an element from the set of models S. We stress that the data we train our model on, yi,j , is
the sample mean, rather than the raw data. This is a less common approach; however, we believe that it is
appropriate as individual replicates only give us information on the technical variability measured in [13],
whereas the total error is a combination of both technical and biological variability. Training our models on
individual replicates would be likely to underestimate the true variability of the data, so we favoured training
on the sample mean only. This raises the challenge of establishing an appropriately permissive model for our
uncertainty in σi.
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We can infer the distribution of the parameters (θ) of the models S, given the data yi,j , using Bayes rule
and a prior distribution over θ (P (θ))

P (θ|yi,j) =
P (yi,j |θ)P (θ)

P (yi,j)
. (13)

The log-likelihood in this case is

log[P (yi,j |θ)] =
∑
i,j

−1/2 log(2π)− log(σi)−
1

2

(
yi,j −Mi(j)

σi

)2

. (14)

We drop the constant
∑

i,j −1/2 log(2π) from our log-likelihood, since we will only be interested in differences
in the log-likelihood to perform Bayesian inference using the Metropolis-Hastings algorithm [41].

We used exponential priors σi
P (σi) ∝ exp(−λiσi) (15)

as our error model. The constant λi was chosen such that the scale of decay of probability was on the same
scale as the range of the data. Noting that 〈P (σi)〉 = 1/λj , we chose

λi =
Ω

max
j
{ŷi,j} −min

j
{ŷi,j}

(16)

where Ω is a hyper-parameter of the prior and Ω ≥ 0. Note that we may interpret Ω = 0 as a uniform prior,
since P (σi) = const in this case. In order to make the posterior distribution well-defined, we may think of the
case of Ω = 0 as a uniform prior P (σi) = unif(0, α) for some α which is large enough to be never encountered
during the finite number of iterations used in our Markov chain Monte Carlo sampling strategy. This is as
opposed to an improper uniform prior which would make the posterior distribution unnormalized. In this
case α = 100 is a sufficiently large upper bound to never be encountered in the 1010 iterations of the sampler.

We began with Ω = 0 as the most permissive choice of prior possible, given the model in Eq.(15). We
found that when Ω = 0 the maximum a posteriori estimates were qualitatively similar to choosing Ω = 2 (our
final choice which we justify below) see Fig. 3 (Ω = 2) and Figure S12A-F (Ω = 0). However, we found that
the posterior 25-75% confidence intervals supported model fits for METC, P+ and Rmax which were relatively
poor when Ω = 0, compared to Ω = 2 (see Figure S12A-F). We determined that large values of h∗ were
indicative of purely linear fits to the data, which is unlikely given the wider body of evidence demonstrating
the nonlinearity of the threshold effect. This is seen in Figure S12G-L (high h∗, poorer fit) when compared
with Figure S12M-R (low h∗, better fit). Comparison between Figure S12G and Figure S12M is particularly
noteworthy, where the 25-75% posterior confidence interval for high h∗ sub-samples predicts METC ≈ 0 for all
values of h, which is physiologically implausible, whereas low h∗ sub-samples display non-linear fits which
more faithfully track the data. Figure S13 shows that the high h∗ mode is of comparable prevalence to the
low h∗ mode when Ω = 0.

We therefore investigated the sensitivity to choice in Ω in Figure S13. We see that increasing Ω reduces
the width of the marginal posterior distribution of h∗, constraining the posterior distribution to lie around
the nonlinear solutions shown in Fig. 3. We found that the permissive prior Ω = 2 was sufficient to strongly
subdue this, physiologically implausible, large h∗ mode. This can be interpreted as a prior belief that our
model uncertainty is, on average, 50% of the range of the data (since 〈P (σi)〉 = λ−1

i ). We believe this to be a
sensible prior choice, encoding our prior belief that the threshold effect is nonlinear while providing only a
gentle constraint on parameters.

We favoured uniform priors on the remaining parameters so that the posterior would be dominated by the
likelihood. However, a number of the parameters in the model were uncertain over orders of magnitude; in
these cases, we allowed the log of these parameters to take uniform distributions. Explicitly, our priors were
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chosen as:

P (h∗) = unif(0, 1) (17)

P (ln(kmRNA)) = unif(−10 ln 10, 2 ln 10) (18)

P (fm) = unif(0, 1) (19)

P (ln(km)) = unif(−10 ln 10, 2 ln 10) (20)

P (ln(δp)) = unif(−10 ln 10, 2 ln 10) (21)

P (ln(ko)) = unif(−10 ln 10, 2 ln 10) (22)

P (ln(kg)) = unif(−10 ln 10, 2 ln 10) (23)

P (c1) = unif(−10, 10) (24)

P (m2) = unif(0, 100) (25)

P (kgr) = unif(0, 100) (26)

P (ln(kp)) = unif(−10 ln 10, 2 ln 10). (27)

The ranges for h∗ and fm are justified since these quantities can physically only be between 0 and 1. c1 and
m2 are parameters of linear models for Mgly (see Table S2 and Eq.(5)) for data which has been normalized to
the scale of 1; therefore priors were chosen with suitably large ranges. Similarly for kgr, a proportionality
constant relating growth to cell volume ((see Table S2 and Eq.(7)), we expect kgr to be of the order of 1,
since the data has been normalized, and chose suitably relaxed priors. The ranges for all other parameters,
which were sampled in log-space due to our greater uncertainty of their values, were chosen to be suitably
large as to be unlikely to reach the boundary of the prior during sampling with MCMC.

The parameters β and kmRNA from Eq.(2) were highly correlated. For more efficient chain mixing, we
rearranged Eq.(2) into the form

METC =
ζ

1
kmRNA

+ 1
1+exp[km(h−h0)]

, (28)

where ζ = β/kmRNA, and used the prior

P (ln(ζ)) ∼ unif(−10 ln 10, 2 ln 10). (29)

and again used relatively relaxed boundaries for the uniform prior.
We performed the Metropolis-Hastings algorithm [41] to sample from the posterior, using a Gaussian

random walk as our transition kernel, whose covariance matrix was determined from a trial run of the adaptive
Metropolis algorithm [42]. All code was written in either Python or C, and is available upon request. The
MCMC chain trajectory is presented in Figure S2.

Supporting Information

Text S1

Justification of ETC mRNA and protein Consider a single molecule of wild-type mtDNA which, when
transcribed, generates mRNA for the electron transport chain (ETC), which we denote as mETC . Transcripts
are generated according to a deterministic process (stochasticity in gene expression [43] is neglected in this
picture) with rate (β) and also passively degrade at some basal rate (δbm). We consider a controlled, active
degradation process (δam) that acts in addition to the background level. Thus, at the single mtDNA level, we
may write down the differential equation

dmETC

dt
= β −

(
δam + δbm

)
mETC, (30)

where we assume that β, δbm are constant.
Control of the expression levels of different mitochondrial genes is manifest at the level of mRNA

degradation [25], because mtDNA is transcribed as a single polycistronic transcript [24]. We therefore use the
simplifying assumption that, in the pathogenic case, mitochondrial mRNA is also controlled at the level of
degradation. Thus we allow the active degradation to vary with heteroplasmy δam = δam(h), and assume the
transcription rate to be constant.
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Cells are measured at steady-state, so setting the derivative to zero yields

mETC =
β

δam + 1
, (31)

where δbm has been absorbed into the definitions of β and δam(h). Assuming N+ scaling at the cellular level
yields the expression

METC =
β

δam + 1
N+

for ETC mRNA at the cellular level. Dropping the a superscript yields Eq.(2).
Note that, in our Bayesian inference, we chose to express the constant h0 in Eq.(3) in terms of the critical

heteroplasmy h∗ using the expression h0 = h∗− ln[(1−fm)/fm]/km, where 0 < fm ≤ 1. This simply expresses
the location of h∗ in terms of the fraction fm of the sigmoid’s maximal value. Intuitively, if fm and km are
sufficiently large, h∗ signals the beginning of reduction in ETC degradation.

For ETC protein, we assume that the following equation holds at the cellular level

dP+

dt
= λMETCN

+ − δbpP+ (32)

where λ = const, and we assume there is no active degradation of ETC protein. At steady-state

P+ =
METCN

+

δbp
(33)

where λ is absorbed into the definition of δbp. Dropping the b superscript yields Eq. (4).

Justification of cell volume scaling for energy demand A reasonable general model for the way in
which energy demands of a mammalian cell scale with its volume (V ) is k1V + k2V

2/3 +K + f(N,V ), where
ki are proportionality constants. Each term may be interpreted as: k1V are demands which scale with cell
volume; k2V

2/3 scale with cell surface area; K are demands which are constant for a cell (for example, the
cost of replicating the genome); and f(N,V ) is an unknown function corresponding to proton leak, which
potentially depends upon mitochondrial mass (or alternatively mtDNA copy number, N) and cell volume.
These are the dominant energy demands of mammalian cells, as determined by [21–23].

Many energy-consuming processes in mammalian cells directly depend upon cell size; for example, a model
system used by Buttgereit et al. found that ∼30% of oxygen consumption corresponded to plasma membrane
transporters, and ∼20% corresponded to protein synthesis [21]. We assume that protein synthesis scales
proportionally with V , because 60% of total cellular dry mass is protein [44] and mass scales with volume.
Also, we may assume that plasma membrane energy consumption scales with cell surface area, which scales
with V 2/3. By using volume and surface area contributions alone, we may account for ∼50% of the energy
demands of the cell, which is 63% of the accountable energy demands for this model system since only 80% of
total respiration rate could be attributed to particular processes in their study [21].

Thus, assuming that all energy consumption is due to surface area or volume contributions then, using the
data of [21], a reasonable model for energy demand might be f(V ) = 0.4V + 0.6V 2/3, the volume parameter
being 20/(20 + 30) = 0.4. However, we see in Fig. 1D that the normalized volume data lie in the range
0.6 . V . 1. In this region, the functions f(V ) and g(V ) = V are similar, with a difference of no more than
∼7%. Thus, g(V ) = V is a reasonable approximation for total energy demands in this case.

We note, however, that the above proportions depend on the environment of the cell [21, 22] as well as
the tissue type (reviewed in [23]), often showing variation on the order of tens of percent. In light of this
uncertainty, and for the sake of parsimony, we make the simplifying assumption that total energy demand
scales purely with cell volume, see Eq.(6).

Expected cell volume and growth rate Two of the simplest models for how cells may grow throughout
the cell cycle are linear and exponential growth. We show below that a relationship exists between growth
rate and the mean cell volume in an asynchronous population of cells under a linear model. Furthermore,
assuming an exponential model, growth rate and mean cell volume are independent.

Firstly, we assume that the number of cells obey a pure-birth process, in other words the death rate of
cells is negligible. If the initial number of cells (N0) is large, then we can use a deterministic model of cell
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growth, N(t) = N0 exp(Gt), where N(t) is the number of cells at time t and G is the growth rate of cells, as
described in Eq.(7). Assuming that the number of cells doubles every cell cycle period (td), then

G =
ln(2)

td
. (34)

Under a linear model of cytoplasmic growth through the cell cycle, the volume of an individual cell may
be written as

Vc(t) = V0 + λt (35)

where Vc is the volume of an individual cell, V0 is the volume of a cell just after division (assumed to be
constant for all cells) and λ = V0/td. In an asynchronous population, we assume that each cell is distributed
uniformly through the cell cycle, in other words

T ∼ unif(0, td) (36)

where T is a random variable describing the position in time, of a cell in its cell cycle.
We wish to find the expected value of cell volume, (E(Vc) ≡ V , as described in Eq.(6)), given the assumption

of Eq.(36). Eq.(35) can be viewed as a transformation of the random variable T . If X is a continuous random
variable, then for any transformation Y = r(X), E(Y ) =

∫
r(x)P (x)dx, where P (x) is the probability

distribution corresponding to the random variable X [45]. This implies that E(Vc) = 1/td
∫ td
0
Vc(t)dt. For

Eq.(35), this yields E(Vc) = 3V0/2, but since V0 = λtd, then Eq.(34) yields

G =
3λ ln(2)

2E(V )
, (37)

i.e. 1/G ∝ E(V ) ≡ V .
If, however, we assume an exponential model of cell growth through the cell cycle

Vc(t) = V0 exp(γt) (38)

then td = ln(2)/γ and E(Vc) = V0/ ln(2) which cannot be written in terms of td and therefore G is independent
of V .

The above makes intuitive sense: if a cell grows linearly, then a larger cell will need more time to double
in size than a smaller cell, if their growth rates are the same. On the other hand, if a cell grows exponentially,
then regardless of its initial size, the doubling time is constant, given a fixed cytoplasmic growth rate.

Since there is presumably a wide class of cell growth dynamics where cell size is dependent on growth
rate, we favoured a linear model for its simplicity. Measurements by Tzur et al. show that, on average, under
both a linear and exponential model of cytoplasmic volume growth, the rate constant varies with time. [46]
However, the implication of this for the relationship between V and G remains unclear.

Text S2

Below, we will propose potential experiments to test the corresponding claims made in Key Claims and
Predictions of Biophysical Model of Heteroplasmy.

Wild-type mtDNA density homeostasis is maintained until a minimum volume is reached at
the critical heteroplasmy If N+/V is a quantity kept under homeostasis, then under wild-type conditions,
perturbations to mtDNA copy number may be expected to cause changes in cell volume. This might be
testable by reducing mtDNA copy number with chemicals such as ddC, or increasing it through PGC-1α
overexpression, which, in the absence of other homeostatic effects, we expect to reduce and increase mean cell
volume respectively.

A second testable prediction is that a minimum cell volume (Vmin) causes bioenergetic toggling at h∗. We
should be aware of the two potential interpretations of Vmin raised: (1) bioenergetic and (2) mechanical. If
Vmin is bioenergetic, then raising the power demands of the cell which do not scale with volume, may induce
h∗ to be encountered earlier. This could be achieved by increasing the amount of DNA in the nucleus which
must be replicated, creating a one-time cost to the cell per cell cycle. This is not expected to affect any
mechanical constraints since DNA content is not directly indicative of nuclear size [47]. Ideally, the amount
of DNA introduced should be large (i.e. billions of base pairs), be replicated, and not interfere with normal
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functioning of the nucleus. This could be achieved by chemically inducing polyploidy, for instance by using
Noscapine [48]. The location of h∗ could again be determined by performing RNA-seq, and observing the
upregulation of glycolysis with heteroplasmy.

If increasing the energy demands of the nucleus yields no change in the distribution of h∗, then a mechanical
constraint could be more relevant. This could be tested by perturbing cell volume. Reducing cell volume
under this hypothesis is expected to shift h∗ to lower values of heteroplasmy, which could be determined via
RNA-seq.

Mutant mtDNAs do not contribute to the mitochondrial mRNA pool If mutant mRNAs have a
transcription defect, then the abundance of mutant tRNAs relative to wild-type mtDNAs would be expected
to be smaller than h. This measurement could be performed by qPCR, to probe mutant and wild-type tRNA
copy numbers.

Mitochondrial tRNAs are relatively localised to their parent mtDNA The spatial distribution
of mitochondrial tRNAs relative to mtDNA would be most directly determined by fluorescent labelling of
mitochondrial tRNA and mtDNA. MtDNA labelling could be achieved through picoGreen staining [49].
Labelling of processed tRNAs within mitochondria is more difficult, but methods exist for labelling mRNA in
both fixed cells [50] and dynamically [26,51] within mitochondria, which may be informative.

Cell volume is not explained by cell cycle variations To separate the potential confounding influence
of the cell cycle on mean cell size, heteroplasmic cells could be transfected with Fucci markers [52], and relative
enrichment of cell cycle stages determined.

Cells proliferate inversely with their size To determine the dependence of growth rate on mean cell
volume, wild-type cells could be synchronised, and sorted by their volume. These cells could then be plated
and released from synchronisation, and the growth rate of cells measured similar to that described in Materials
and Methods. Synchronisation is necessary, because cell volume is expected to vary by a factor of 2 through
the cell cycle, so any sorting would otherwise be strongly confounded by the cell cycle. A potential alternative
to synchronisation, which can be stressful to cells, is to label genes associated with a particular stage of the
cell cycle, and sort based on both this fluorescence signal and cell volume.

Maximum respiratory capacity linearly tracks ETC protein content Measurements of maximum
respiratory capacity at h = 0, as well as measurement of ETC protein levels at h = 0.6, may help determine
whether a simple linear relationship is sufficient, or whether a more complex model is justified.

Summary A summary of the experimental proposals outlined are given in Table S1

Text S3

Relative OXPHOS contribution to energy supply It is interesting to observe the relative contributions
of oxidative phosphorylation and glycolysis to power supply. Since Eq.(6) states that energy supply = demand,
where demand corresponds to cell volume, the ratio fo = koP

+/V determines the relative contribution of
OXPHOS to energy supply, see Figure S14.

For h < h∗, we see that OXPHOS has decreasing contributions to energy power supply. At h∗, OXPHOS
contributions stabilize with 0.28 < fo(h = 0.52 ≈ h∗MAP) < 0.44 (25-75% CI). The heteroplasmy at which
OXPHOS contributions are stabilized corresponds to the hypothesized demand/supply toggle, where the cell
attempts to increase energy supply as opposed to reducing energy demand.

The value of fo where OXPHOS contributions become stabilized (fo(h∗)) may have wider significance.
Mitochondrial metabolism, and especially mitochondrial membrane potential, is connected to a variety of
biosynthetic pathways [1] and crucial for maintaining cellular proliferation [39]. fo(h∗) may represent a
minimum ETC flux, relative to energy demand, for mitochondria to support their mitochondrial membrane
potential without the aid of glycolytic ATP. Below fo(h∗), we might predict that cells run ATP synthase in
reverse, hydrolysing glycolytic ATP to maintain membrane potential.
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Text S4

Alternative models: Mutant mtDNA and transcription Eq.(2) states that mutant mtDNAs do not
contribute significantly to the transcript pool. We can relax this constraint by replacing Eq.(2) with

METC =
β

δm + 1
(N+ + µN−) (39)

where 0 ≤ µ ≤ 1 and N− = hN , where N is the total number of mtDNAs, which we treat as a constant.
Using the uniform prior

P (µ) = unif(0, 1), (40)

we sampled from the posterior, as described in Materials and Methods. The MCMC trajectory is shown in
Figure S3. The marginal posterior density for µ in Figure S3, shows that µ ≈ 1 is the most likely value of the
parameter, in other words mutant mtDNAs contribute equally to the transcript pool, compared to wild-type
molecules. However, observing the model fit for METC in Figure S5 and Figure S15, it is clear that this model
favours a linear fit to the data, with large uncertainty.

Alternative models: tRNA misincorporation model Eq.(4) states that ETC protein is generated
when ETC mRNA is in contact with wild-type mtDNA, suggesting that tRNAs affected by the MELAS
mutation, leucine-UUR, remain local to their parent mtDNAs. The alternative is that mitochondrial tRNAs
are well diffused amongst mitochondrial mRNAs. If we assume that a mutant tRNA causes a misincorporation
during translation with 100% efficiency, then the number of misincorporations per protein follows a binomial
distribution. We assume that the probability of a single misincorporation is h. We further assume that
proteins have a mutational tolerance of x misincorporations, or less, before they are considered mutated (and
consequently degraded). With these assumptions, the expected proportion of mutant proteins (mp) will be

mp = 1− F (x|N,h) (41)

where N is the number of leucine-UUR residues per protein, and F (x|N,h) = P (X ≤ x) is the cumulative
distribution function of the binomial distribution, for N trials, x successes, and probability of success h. A
plot of mp is given in Figure S6, for different mutational tolerances x against heteroplasmy.

We can therefore use an analogous expression to Eq.(4) for P+, in the case of well-diffused tRNAs

P+ =
METCF (x|N,h)

δbp
. (42)

By replacing Eq.(4) with Eq.(42), we again sampled from the posterior as described in Materials and Methods.
We chose N = 8, which is the average number of susceptible residues in the 11 mitochondrially-encoded
subunits considered (see caption of Fig. 1) [9]. Our prior for the unknown tolerance to misincorporations, x,
was chosen as a discrete uniform prior

P (x) =

{
1
9 , x = 0, 1, . . . , 8

0, otherwise.
(43)

The MCMC trajectory is shown in Figure S4, and the model fit in Figure S6. The model fit shows that,
whilst the maximum a posteriori estimate for METC fits the data more closely, the 25-75% confidence interval
is poorer than the model presented in the main text (see Fig. 3 and Figure S15). All other features are
comparable. Furthermore, observing the marginal posterior distribution of the misincorporation tolerance x
in Figure S4, we see that the most likely value of the parameter is x = N = 8. In other words, ETC proteins
are immune to the MELAS mutation, which we believe to be incorrect [9].

Text S5

Transformation to Per-Cell Dimensions using Cell Volume In this section we show that it is necessary
to multiply measurements of protein and mRNA levels, when determined by Western blot and RNA-seq
respectively, by cell volume to transform the data to mean cellular measurements.

Consider a Western blot experiment determining the levels of a gene (gene i) in two conditions (A and B).
Denote the number of proteins per cell of gene i, as nAi , where the superscript denotes condition A. Let us
also denote the total number of proteins per cell as NA.
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When one performs a Western blot, the protein of interest is stained with an antibody, cells are lysed, and
a sample of fixed protein mass (m) is taken from the lysate. If we denote the number of proteins for the gene
of interest in the sample as PA

i , then we may write

PA
i =

nAi
NA

m, (44)

since the proportion of protein i in the sample is determined by the proportion of protein i in the proteome
(nAi /N

A). Western blot experiments also tend to be normalised by a loading control (c), so the normalised
measurement we have access to is

PA
i

PA
c

=
nAi
nAc

(45)

which corresponds to the data given in Picard et al. [13].
Now, consider a perturbation in condition B, causing the amount of protein for gene i to be nBi , and the

mean cell volume to experience a fold-change Vf , as in Figure S10. Consequently, NB = VfN
A, since total

protein content scales with the volume of the cell. Using the reasonable assumption that the loading control
is a gene whose expression also scales with cell volume (e.g. β-actin, as in Picard et al. [13]), then nBc = Vfn

A
c .

It follows that
PB
i

PB
c

=
nBi
VfnAc

. (46)

Then, if we are interested in the relative fold-change expression of the protein between the two conditions,
then we take the ratio

PB
i /P

B
c

PA
i /P

A
c

=
nBi /n

A
c

nAi /n
A
c

· 1

Vf
=
nBi
nAi
· 1

Vf
(47)

Thus, the quantity on the left hand side of Eq. (47), which is what one usually measures in a Western blot,
has a multiplicative-bias of 1/Vf . Therefore, if one is interested in per-cell protein changes, the appropriate
quantity of interest is

PB
i /P

B
c

PA
i /P

A
c

· Vf . (48)

Hence, we multiply each protein measurement by V (h) ≡ Vf (h) = 〈Vk(h)〉k/〈Vk(h = 0)〉k, where 〈. . . 〉k
denotes the sample mean over technical replicates k, such that V (0) = 1.

A similar argument applies to RNA-seq data, since a fixed mass of mRNA is extracted for an RNA-seq
experiment, so an analogous pair of equations to Eq.(44) in conditions A and B holds. Using the assumption
that NB = VfN

A, and denoting the number of mRNA molecules in each sample with M , it can be shown that

MB
i

MA
i

=
nBi
nAi
· 1

Vf
. (49)
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Figure S1
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Figure S1. Model fit for wild-type mtDNA copy number Data for mtDNA copy number from Picard
et al. [13] was multiplied by (1-h), as was the SEM. Displaying the model N+ = N(1− h), for N = const = 1.
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Figure S2

Figure S2. Metropolis-Hastings posterior samples for main model 1010 iterations of
Metropolis-Hastings were performed, which were thinned to 105 samples. The hyperparameter for model
uncertainty, Ω, was chosen as Ω = 2 (see Materials and Methods). A. Trajectory of the unnormalised log
posterior after thinning. Samples are split into bins of 100 iterations; displaying mean, standard deviation
and range of each bin. B. Autocorrelation function for each parameter, on thinned samples. C. Approximate
marginal posterior distributions for each parameter in the model. Exponential priors for model uncertainties
are plotted, all other priors are uniform (see Materials and Methods).
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Figure S3

Figure S3. Metropolis-Hastings posterior samples for mutant transcription model 1010

iterations of Metropolis-Hastings were performed, which were thinned to 105 samples. The hyperparameter
for model uncertainty, Ω, was chosen as Ω = 2 (see Materials and Methods). The prior for the additional
parameter µ was chosen to be a uniform distribution between 0 and 1. A. Trajectory of the unnormalised log
posterior after thinning. Samples are split into bins of 100 iterations; displaying mean, standard deviation
and range of each bin. B. Autocorrelation function for each parameter, on thinned samples. C. Approximate
marginal posterior distributions for each parameter in the model. Exponential priors for model uncertainties
are plotted, all other priors are uniform (see Materials and Methods). Note the marginal distribution of µ
peaks near 1.
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Figure S4

Figure S4. Metropolis-Hastings posterior samples for tRNA misincorporation model 1010

iterations of Metropolis-Hastings were performed, which were thinned to 105 samples. The hyperparameter
for model uncertainty, Ω, was chosen as Ω = 2 (see Materials and Methods). The prior for the additional
parameter x was chosen to be a uniform discrete distribution between 0 and 8. A. Trajectory of the
unnormalised log posterior after thinning. B. Autocorrelation function for each parameter, on thinned
samples. C. Approximate marginal posterior distributions for each parameter in the model. Exponential
priors for model uncertainties are plotted, all other priors are uniform (see Materials and Methods). Note the
marginal distribution of x peaks at 8, which we expect to be incorrect.
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Figure S5

Figure S5. Alternative mutant transcription model. A-F. Model fit when Eq.(2) is replaced with
Eq.(39). The 25-75% CI is flatter when compared with Fig. 3. We find this is due to the model more
frequently selecting linear fits to the data, see Figure S15.
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Figure S6

Figure S6. Alternative tRNA misincorporation model A. Expected proportion of mutant protein
due to the MELAS mutation, given that each protein can tolerate x mutated residues. The chain length used
is N = 8, which is the mean number of susceptible residues across all mitochondrially-encoded peptides,
excluding ATP8 and ATP6 [9]. B-G. Model fit when Eq.(4) is replaced with Eq.(42). METC is qualitatively
fitted more poorly than Fig. 3 (see also Figure S15), although the maximum a posteriori estimate is a closer
fit, when compared with Fig. 3.
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Figure S7
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Figure S7. Corroborating evidence for ETC mRNA degradation from Picard et al . Ratio of
mitochondrial mRNA degraders (PDE12, PNPT1, SUPV3L1) to stabilizers (MTPAP, LRPPRC, SLIRP), see
Ref. [25] and references therein. We observe qualitative similarity in δam (see Fig. 6) and the ratio of
normalised genes, both showing strong downregulation between h = 0.3 and h = 0.5. The numerator and
denominator were normalised according to Eq.(9). Errors result from error propagation of a ratio, where the
error for the numerator and denominator are derived using Eq.(10).

Figure S8

Figure S8. Variation of cell cycle markers with heteroplasmy A list of cell cycle markers, taken
from [28] were normalised according to Eq.(9), yielding gene lists for G1/S, S, G2 and G2/M phases. A. The
ratio of G2/M to G1/S genes yielded no obvious trend with heteroplasmy. B. G2/M and G2 gene lists were
combined (G2/M

⋃
G2), as were G1/S and S (G1/S

⋃
S). This again yielded no obvious trend with

heteroplasmy. Errors result from error propagation of a ratio, where the error for the numerator and
denominator are derived using Eq.(10).
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Figure S9
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Figure S9. Expression of fatty acid oxidation enzymes with heteroplasmy. Showing variation of
the genes (ACADVL, ECHS1, HADH and ACAA2) with heteroplasmy, normalised according to Eq.(9). It
can be seen that these metabolites are downregulated between h = 0.9→ 1, so fatty acid oxidation does not
appear to be supporting the maintained cell volume and growth rates, over this range of heteroplasmy. Errors
are calculated using Eq.(10).
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Figure S10

Figure S10. Transformation of Western blot (or RNA-seq) data to per-cell dimensions.
Consider a Western blot experiment, where we are interested in the fold-change expression of gene i per cell
(ni), and cell volume has a fold change Vf = 2 between conditions A and B. In this example, nAi = nBi .
Taking an unbiased sample of size m = 12 from each condition, and dividing by the loading control, yields a
quantity 1/Vf too small. It is necessary to multiply the ratio by Vf , to get an accurate measurement of gene
i, in the context of strongly varying cell volume, as is the case in Picard et al. [13]. A similar argument holds
for RNA-seq data, which also uses a fixed mass of RNA as the starting sample.
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Figure S11

Figure S11. Cell proliferation data from [13]. A-D. Number of cells (N) versus number of days of
incubation, for different heteroplasmies, where a number of data points have been truncated (Trunc) from the
right. Growth appears to be non-exponential by day 6, and is therefore removed subsequently. E. Slope of
linear regression with associated standard error, to derive the growth rate in dimensions of days-1, as used in
Fig. 1E. Raw data provided by Martin Picard.
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Figure S12

Figure S12. Hyperparameter choice for error model A-F: Model support for when Ω = 0,
corresponding to a uniform prior on the variance of each feature. G-L: Sub-samples of posterior where
0.85 ≤ h∗ ≤ 0.9. M-R: Sub-samples of posterior where 0.3 ≤ h∗ ≤ 0.35. We see a physiologically implausible
fit for 0.85 ≤ h∗ ≤ 0.9, whereas when 0.3 ≤ h∗ ≤ 0.35 model fits were better able to describe the data (for
instance, by comparing G to M).
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Figure S13
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Figure S13. Choice of uncertainty prior affects distribution of critical heteroplasmy and
model fit Larger values of Ω suppresses large values of model uncertainty (σi, see Eq.(15)), and
consequently forces the model fit to more closely match the data. This corresponds to the h∗ mode
approximately between 0.3-0.4 see Figure S12.

Figure S14

Figure S14. Relative contribution of OXPHOS to total energy supply across heteroplasmy
Posterior statistics for the ratio of OXPHOS energy supply (koP

+) to total energy supply
koP

+ + kgMgly = V . The contribution of ETC power production reduces until the critical heteroplasmy h∗,
where a compensatory response stabilizes OXPHOS contributions. As δam → 0 at h ≈ 0.5 (see Fig. 6),
OXPHOS energy contributions continue to diminish.
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Figure S15

Figure S15. Comparison of ETC mRNA levels for alternative models. Sample of 20 randomly
sampled trajectories from the posterior distribution of METC for A. Main model (see Interactions between
Bioenergetic Variables can be Cast as a Bottom-up Quantitative Model); B. Mutant transcription model (see
Text S4); C. tRNA misincorporation model (see Text S4). In models (B) and (C), we find that linear fits are
more frequently selected when compared to our main model (A), despite being more complex in terms of
number of parameters.

Table S1

Table S1. Summary of experimental proposals, corresponding to the claims of the model.

Claim Experiment

MtDNA copy number affects volume Perturb mtDNA copy number (ddC or PGC1-α), measure volume

Wild-type mtDNA density affects h∗ (bioenergetic) Increase nDNA content, perform RNA-seq

Wild-type mtDNA density affects h∗ (mechanical) Reduce cell volume, perform RNA-seq

Mutant mtDNAs have transcription defect Measure normal/mutant tRNA abundance with qPCR

Mitochondrial tRNAs have low diffusivity Fluorescent labelling of mtDNA and tRNA or mRNA encoding tRNA

Cell cycle variation with heteroplasmy Fucci markers in heteroplasmic cells

Mean cell volume affects growth rate Synchronise, sort by volume, and measure growth rate

Maximum respiratory capacity ∝ ETC protein Measure Rmax at h = 0 and P+ at h = 0.6

Table S2

Table S2. Table of observables, and their corresponding parameters

Observables Parameter Description

METC and Mgly h∗ Critical heteroplasmy
METC kmRNA Maximum ETC mRNA degradation rate

fm Relative ETC mRNA degradation rate at h∗

km ETC mRNA degradation steepness
ζ β/kmRNA where β = ETC mRNA transcription rate

P+ δp ETC protein passive degradation rate
Mgly c1 Glycolysis mRNA pool size for h ≤ h∗

m2 Glycolysis rate of increase with h, for h > h∗

V ko ETC protein constant of proportionality
kg Glycolysis mRNA constant of proportionality

G kgr Constant of proportionality
Rmax kp Constant of proportionality
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