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‡Laboratoire de Probabilités et Modèles Aléatoires (LPMA), UMR 7599, UPMC-CNRS,

75005 Paris, France

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/078618doi: bioRxiv preprint 

https://doi.org/10.1101/078618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running title: Accuracy of demographic inferences

Key Words: human demography, model identifiability, coalescent theory, site frequency

spectrum

Corresponding Author:

Marguerite Lapierre

Atelier de Bioinformatique
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Abstract1

Some methods for demographic inference based on the observed genetic diversity of current2

populations rely on the use of summary statistics such as the Site Frequency Spectrum (SFS).3

Demographic models can be either model-constrained with numerous parameters such as4

growth rates, timing of demographic events and migration rates, or model-flexible, with an5

unbounded collection of piecewise constant sizes. It is still debated whether demographic6

histories can be accurately inferred based on the SFS. Here we illustrate this theoretical issue7

on an example of demographic inference for an African population. The SFS of the Yoruba8

population (data from the 1000 Genomes Project) is fit to a simple model of population9

growth described with a single parameter (e.g., founding time). We infer a time to the most10

recent common ancestor of 1.7 million years for this population. However, we show that the11

Yoruba SFS is not informative enough to discriminate between several different models of12

growth. We also show that for such simple demographies, the fit of one-parameter models13

outperforms the model-flexible method recently developed by Liu and Fu. The use of this14

method on simulated data suggests that it is biased by the noise intrinsically present in the15

data.16
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INTRODUCTION17

Inference of human population history based on demographic models for genomic data can18

complement archaeological knowledge, owing to the large amount of polymorphism data now19

available in human populations. Polymorphism data can be viewed as an imprint left by20

past demographic events on the current genetic diversity of a population (see, e.g., review21

by Pool et al. 2010).22

There are several means of analyzing this observed genetic diversity for demographic23

inference. The polymorphism data can be used to reconstruct a coalescence tree of the sam-24

pled individuals. The demography of the sampled population can be inferred by comparing25

this reconstructed tree with theoretical predictions under a constant size model (Pybus26

et al. 2000). For example, in an expanding population, the reconstructed coalescent tree will27

have relatively longer terminal branches than the reference coalescent tree in a population28

of constant size. However, methods based on a single reconstructed tree are flawed because29

of recombination (Lapierre et al. 2016), since the genealogy of a recombining genome is30

described by as many trees as there are recombining loci.31

The genome-wide distribution of allele frequencies is a function of the average genealogies,32

and can thus be used as a summary statistic for demographic inference. This distribution,33

called the Site Frequency Spectrum (SFS), reports the number of mutated sites at any34

given frequency. The demographic history of a population affects the shape of its SFS35

(Adams and Hudson 2004; Marth et al. 2004). For example, an expanding population36

carries an excess of low-frequency variants, compared with the expectation under a constant37

size model. The shape of the SFS is also altered by selection, which results in an excess38

of low- and high-frequency variants (Fay and Wu 2000). However, selection acts mainly39

on the coding parts of the genome and the non-coding segments linked to them, while40

demography impacts the whole genome. Furthermore, unlike reconstructed trees, the SFS is41

not biased by recombination (Wall 1999). Quite on the contrary, by averaging the SFS over42

many correlated marginal genealogies, recombination lowers the variance of the SFS while43
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its expectation remains unchanged. Therefore, the SFS of a sample is a summary of the44

genetic diversity, averaged over all the genome due to recombination, that can be analyzed45

in terms of demography.46

Several types of methods exist to infer the demography of a population based on its SFS. A47

specific demographic model can be tested by computing a pseudo-likelihood function for this48

model, based on the comparison of the observed SFS and the SFS estimated by Monte Carlo49

coalescent tree simulations (Nielsen 2000; Coventry et al. 2010; Nelson et al. 2012).50

This method can be extended to infer demographic scenarios of several populations, using51

their joint SFS (Excoffier et al. 2013). Methods based on Monte Carlo tree simulations52

are typically very costly in computation time. Other approaches rely on diffusion processes:53

they use the solution to the partial differential equation of the density of segregating sites54

as a function of time (Gutenkunst et al. 2009; Lukić et al. 2011).55

Whereas all these methods are model-constrained, i.e., they use the SFS to test the like-56

lihood of a given demographic model, more flexible methods have been developed. Recently,57

Bhaskar et al. (2015) derived exact expressions of the expected SFS for piecewise-constant58

and piecewise-exponential demographic models. Liu and Fu (2015) developed a model-59

flexible method based on the SFS: the stairway plot. This method infers the piecewise-60

constant demography which maximizes the composite likelihood of the SFS, without any61

previous knowledge on the demography. This optimization is based on the estimation of a62

time-dependent population mutation rate θ. Although they show that their method infers63

efficiently some theoretical demographies, they do not test the goodness of fit of the ex-64

pected SFS, reconstructed under the demography they infer, with the input SFS on which65

they apply their method.66

All these methods are widely used for the inference of demography in humans and other67

species, but doubts remain on the identifiability of a population demography based on its68

SFS. It has been shown theoretically that certain population size functions are unidentifiable69

from the population SFS (Myers et al. 2008; Terhorst and Song 2015). Myers et al.70
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(2008) showed that for any given population size function N(t), there exists an infinite71

number of smooth functions F (t) such that ξN = ξN+F where ξN is the SFS of a population72

of size function N(t). However, other theoretical works have recently shown that for many73

types of population size functions commonly used in demography studies, such as piecewise74

constant or piecewise exponential functions, demography can be inferred based on the SFS,75

provided the sample is large enough (Bhaskar and Song 2014). These studies argued76

that the unidentifiability proven by Myers et al. (2008) relied on biologically unrealistic77

population size functions involving high frequency oscillations near the present. Lately, two78

studies (Kim et al. 2015; Terhorst and Song 2015) have provided bounds on the amount79

of demographic information contained in the SFS or in coalescent times.80

In this study, we use the SFS of an African population (the Yoruba population, data from81

The 1000 Genomes Project Consortium 2015) as an example of a somewhat simple82

demography, to illustrate the risks of over-confidence in demographic scenarios inferred.83

Namely, we highlight two issues potentially arising even in the case of simple demogra-84

phies: unidentifiability of models and poor goodness of fit of inferences. We first infer the85

Yoruba demography with a model-constrained method, using diverse one-parameter models86

of growth, and then with a model-flexible method, the stairway plot (Liu and Fu 2015).87

For the model-constrained method, we test four different growth models derived from the88

standard neutral framework used in the vast majority of population genetics studies, also89

compared with a more uncommon type of model based on a branching process. Individual-90

based models such as the branching process are widely used in population ecology (Lambert91

2010): the population is modeled as individuals which die and give birth at given rates in-92

dependently. These models are not commonly used in population genetics although they93

provide interesting features of fluctuating population sizes for example, and benefit from a94

strong mathematical framework.95
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MATERIALS AND METHODS96

1 000 Genomes Project data: Variant calls from the 1 000 Genomes Project phase 397

were downloaded from the project ftp site (The 1000 Genomes Project Consortium98

2015). The sample size for the Yoruba population is n = 108 individuals (polymorphism99

data available for both genome copies of each individual, i.e., 2n = 216 sequences). We100

kept all single nucleotide bi-allelic variants to plot the sample SFS. The number of bi-allelic101

sites is S = 20 417 698. The average distance between two sites is 136 bp (median 81 bp).102

The number of sites for which the ancestral allele is known is S ′ = 19 441 528. To avoid103

possible bias due to sequencing errors, we ignored singletons (mutations appearing in only104

one chromosome of one individual in the sample) for the rest of the study. The implications105

of ignoring singletons are examined in the discussion.106

Site Frequency Spectrum definition and graphical representation: The Site Fre-107

quency Spectrum (SFS) of a sample of n diploid individuals is described as the vector108

ξ = (ξ1, ξ2, ..., ξ2n−1) where for i ∈ [1, 2n− 1], ξi is the number of dimorphic (i.e., with ex-109

actly two alleles) sites with derived form at frequency i/2n. To avoid potential orientation110

errors, we assumed that the ancestral form is unknown for all sites: we worked with a folded111

spectrum, where we consider the frequency of the less frequent (or minor) allele. In this112

case, the folded SFS is described as the vector η = (η1, η2, ..., ηn) where ηi = ξi + ξ2n−i for113

i ∈ [1, n− 1] and ηn = ξn. The folded SFS of the Yoruba sample is plotted in Figure S1. For114

a better graphical representation, all SFS were transformed as follows: we plot φi normalized115

by its sum, where116

• for unfolded SFS, φi = i ξi for i ∈ [1, 2n− 1]117

• for folded SFS, φi = ηi
i(2n−i)

2n
for i ∈ [1, n− 1] and φn = n ηn118

The transformed SFS has a flat expectation (i.e., constant over all values of i) under the119

standard neutral model (Nawa and Tajima 2008; Achaz 2009).120
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Demographic models used for the model-constrained methods: We inferred the121

demography of the Yoruba population using five growth models (Figure 1), compared with122

the predictions of the standard model with constant population size. Time is measured in123

coalescent units of 2N generations, where the scaling parameter N has the same dimension124

as the current population size, which we will not estimate. Time starts at 0 (present time)125

and increases backward in time. Four models are based on the standard Kingman coalescent126

(Kingman 1982), amended with demography. Three of them are described with an explicit127

demography: either Linear growth since time τ , Exponential growth at rate 1/τ or Sudden128

growth from a single ancestor to the entire population at time τ . We also use another model129

based on the Kingman coalescent, with an implicit demography: the Conditioned model.130

This model is based on a standard constant size model, but the Time to the Most Recent131

Common Ancestor (TMRCA) is conditioned on being reached before time τ . The fifth model,132

Birth-Death, is not based on the standard Kingman coalescent, but on a critical branching133

process measured in units of 2N generations. Forward in time, the process starts with a134

founding event of one individual. Individuals give birth and die at equal rate 1. The process135

is conditioned on not becoming extinct before a period of time τ , and on reaching on average136

2N individuals.137

Stairway plot inference on the Yoruba SFS: We applied the model-flexible stairway138

plot method developed by Liu and Fu (2015) on the unfolded Yoruba SFS. Inferences are139

made on 200 SFS as suggested by their method. We use the script they provide to create140

199 bootstrap samples of the Yoruba SFS. We also ignore the singletons for this method,141

and use the default parameter values suggested in their paper for the optimization.142

SFS simulation with demography: We used two different method to simulate SFS under143

the four demographic models derived from the Kingman coalescent (Linear, Exponential,144

Sudden and Conditioned) or under a piecewise-constant demography reconstructed by the145
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stairway plot method.146

Method 1: Simulate l independent topologies under the Kingman coalescent on which mu-147

tations are placed at rate θ (population mutation rate) (Hudson et al. 1990). This allows148

to simulate the SFS of l independent loci.149

Method 2: Another way to simulate SFS is using the following formula:150

E[ξi] =
θ

2

2n−i+1∑
k=2

k E[tk]P(k, i) (1)

where θ is the population mutation rate, tk is the time during which there are k lines in the151

tree (hereafter named state k) and P(k, i) is the probability that a randomly chosen line at152

state k gives i descendants in the sample of size 2n (i.e., at state 2n) (Fu 1995). For all153

models, the neutrality assumption ensures that154

P(k, i) =

(
2n−i−1
k−2

)(
2n−1
k−1

)
for i ∈ [1, 2n− 1] and k ∈ [2, 2n− i+ 1]. Using this probability allows to average over the155

space of topologies. This reduces considerably computation time since the space of topologies156

is very large, and produces smooth SFS for which only the tk need to be simulated to obtain157

the expectations E[tk].158

The expectations E[tk] are obtained as follow: for k ∈ [2, 2n], times in the standard159

coalescent t∗k are drawn from an exponential distribution of parameter
(
k
2

)
. For the Linear160

and Exponential models, and for the piecewise-constant demographies reconstructed by the161

stairway plot method, these times are then rescaled to take into account the given explicit162

demography (see, e.g., Hein et al. 2004, chap.4). For the Sudden model, we assume the163

coalescence of all lineages at time τ if the common ancestor has not been reached yet.164

For the Conditioned model, we keep only simulations for which
2n∑
k=2

t∗k ≤ τ where τ is the165

model parameter. The expectations E[tk] are obtained by averaging over 107 simulations.166
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Alternatively, the expectations E[tk] could also be obtained with analytic formulae provided167

by Polanski and Kimmel (2003).168

For the Birth-Death model, we use the explicit formula for the SFS given in Delaporte169

et al. (2016).170

We normalize the SFS computed under all these models so that their sum equals 1. This171

normalization removes the dependence on the mutation rate parameter θ. Consequently, the172

standard model has no parameters while all others have exactly one (τ).173

Optimization of the parameter τ : For each demographic model, we optimize the pa-174

rameter τ by minimizing the weighted square distance d2 between the observed SFS of the175

Yoruba population and the predicted SFS under the model (simulated with Method 2 ). Both176

SFS are normalized for comparison. The distance is computed for all τ values in a given177

interval (no specific optimization method was used to find the minimum). With η̃model and178

η̃obs the folded and normalized SFS in the tested model and in the data respectively,179

d2(η̃model, η̃obs) =
n∑

i=2

(η̃model
i − η̃obsi )2

η̃i
model

The sum starts at i = 2 because we ignore η̃obs1 , corresponding to singletons. To calculate180

the distance d2
′

between the SFS predicted by two models A and B, we weight the terms by181

the mean of the two models:182

d2
′
(η̃A, η̃B) =

n∑
i=2

(η̃Ai − η̃Bi
)

2

(η̃Ai + η̃Bi )/2

nference of the Yoruba demography with ∂a∂i: We inferred the demography of the183

Yoruba population with the software ∂a∂i v1.7 (Gutenkunst et al. 2009), testing the three184

models of explicit demography (Linear, Exponential and Sudden). The demographic models185

were specified so that the only parameter to optimize is τ like for the distance-based inference186

method. Singletons were masked and the method was applied on the folded Yoruba SFS.187

Details on the demographic functions and parameter values used for the optimization in ∂a∂i188
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are provided in the Supplementary Methods. We ran the method 100 times for each model189

and kept the parameter value with the best maximum log composite likelihood over the 100190

runs. In Figure S4, we plot the best log composite likelihood of the 100 runs.191

Scaling of the coalescent time: Optimized values of the parameter τ̂ for each model are192

expressed in coalescent time units, i.e., scaled in 2N(0) generations. As the model population193

size at time zero, 2N(0), is unknown, to scale these coalescent time units in numbers of194

generations and consequently in years, we used the expected number of mutations per site195

M . From the dataset, we have M obs = S/L where S is the number of single nucleotide196

mutations (a k-allelic SNP accounts for k−1 mutations) and L is the length of the accessible197

sequenced genome in the 1 000 genomes project (90% of the total genome length, The 1000198

Genomes Project Consortium). For the theoretical value, we get that M theo = µ T̂totC,199

where we know the mutation rate µ from the literature and the total tree length expressed200

in coalescent time units T̂tot from the SFS simulations. Here C is the coalescent factor, that201

is the number of generations per coalescent time unit, also corresponding to 2Ne(0) where202

Ne(0) is the effective population size at present time. The total number of generations in203

the tree is T̂totC from which we derive the total number of mutations per site M theo. Thus,204

using the observed value M obs, we can estimate C by S/(µL T̂tot). We assumed a mutation205

rate of 1.2× 10−8 per base pair per generation (Conrad et al. 2011; Campbell et al. 2012;206

Kong et al. 2012). With the coalescent factor C, we can then convert a coalescent time207

unit into a number of generations, or into a number of years assuming 24 years as generation208

time (Scally and Durbin 2012).209

Graphical representation of the inferred demographies: To represent the inferred210

explicit demographies (models Linear, Exponential and Sudden), we plot the shape of the211

demography with the optimized value τ̂ for each model. For the implicit demographies212

(models Conditioned and Birth-Death), as there is no explicit demographic shape, we plot213
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the mean trajectory of fixation of a new allele in the population: forward in time, these214

fixation trajectories illustrate the expansion of the descendance of the sample’s ancestor in215

the population (see the Supplementary Methods for details).216

Comparing the model-constrained and model-flexible methods to infer Linear217

growth: We applied both methods (the one-parameter inference method and the stairway218

plot method) on SFS simulated under Linear growth. To test the stairway plot method219

on a Linear growth demography, we simulate 200 independent SFS using Method 1, with220

sample size 2n = 216, θ = 100 (arbitrary value removed by normalization) and a founding221

time τ = 2.48 (estimated for the Yoruba population, see Results). The SFS are simulated222

with either 103, 104 or 105 independent loci. We scaled the simulated SFS to obtain a total223

number of S = 20 417 698 variants, so that the total number of variants in the simulated SFS224

is the same as in the Yoruba SFS. We ran the stairway plot method on these 200 independent225

SFS with the default parameter values suggested in the method, and with the same mutation226

rate (1.2× 10−8 per base pair per generation) and generation time (24 years) as in our study.227

We report the median demography of these 200 independent inferences.228

To test the one-parameter inference method on these SFS simulated under the Linear229

model, we run the parameter optimization on a SFS simulated with either 103, 104, 105 or230

106 loci. The search of the parameter value that minimizes the distance d2 was optimized231

with a Newton-Raphson algorithm. Derivatives were calculated at τ ± 0.05 where τ is the232

parameter value being optimized. The optimization stopped when the optimization step of233

the parameter value was smaller than 10−3.234

Data and software availability The 1000 genomes project data used in this study is235

publicly available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.236

The code in Python and C written for the study is available at https://github.com/237

lapierreM/Yoruba_demography. The code in C used for the Method 1 of SFS simulation is238
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available upon request to G. Achaz.239

RESULTS240

We inferred the demography of the Yoruba population (Africa), from the whole-genome241

polymorphism data of 108 individuals (data from the 1 000 Genomes Project, The 1000242

Genomes Project Consortium), with SFS-based methods, either model-constrained or243

model-flexible.244

It has been shown that human populations have been growing since their emergence245

in Africa, and that African populations were supposedly not affected by the Out-of-Africa246

bottleneck described for Eurasian populations (Marth et al. 2004; Atkinson et al. 2008;247

Gutenkunst et al. 2009; Gronau et al. 2011; Tennessen et al. 2012). Analyses using248

the PSMC method (Li and Durbin 2011) have shown a reduction of the African popula-249

tion size after the divergence with non-African populations. However, Mazet et al. (2016)250

have recently shown that these analyses could be biased by population structure. Based on251

this previous knowledge, for the model-constrained method, we chose to infer the Yoruba252

demography with simple models of growth, i.e., with only one phase of growth characterized253

by a single parameter. These five models are: Linear, Exponential or Sudden growth, a254

Conditioned model where the TMRCA is conditioned on being smaller than the given param-255

eter, and a critical Birth-Death model based on a branching process (Figure 1). To infer the256

Yoruba demography, we fit the SFS predicted under each model with the observed Yoruba257

SFS (all SFS are folded). The SFS were normalized to remove the population mutation258

rate parameter θ, so that each model is characterized by one single parameter τ which has259

the dimension of a time duration. We fit this parameter by least-square distance between260

the observed SFS and the predicted SFS, and by maximum likelihood using the ∂a∂i soft-261

ware (Gutenkunst et al. 2009). For the model-flexible inference, we used the stairway262

plot method developed recently by Liu and Fu (2015), which infers a piecewise-constant263

demography based on the SFS. For this method, the number of parameters to be estimated264
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is determined by a likelihood-ratio test. It can range from 1 to 2n−1 where 2n is the number265

of sequences in the sample.266

The Yoruba SFS was constructed by taking into account the entire genome. Removing267

the coding parts of the genome to avoid potential bias due to selection does not affect the268

shape of the SFS substantially (Figure S2), since the coding parts represent a very small269

fraction of the human genome. The first bin of the observed SFS, accounting for mutations270

found in one chromosome of one individual in the sample (black dot in the observed SFS271

in Figure 3B), seemed to lie outside the rest of the distribution. This could be due to272

sequencing errors being considered as singletons (Achaz 2008), and thus we chose to ignore273

this value for the model optimization. We have also made sure that the SFS shape was not274

affected greatly by the sample size. We compared the SFS of a subsample of half the Yoruba275

individuals (2n = 108) with the full sample SFS (2n = 216) (Figure S3). This shows that276

the only bin of the SFS which is significantly affected by this subsampling is the first one,277

containing the singletons. As we ignore it in our study, it does not influence our results.278

The analysis of the Yoruba SFS with the stairway plot method results in a complex279

demography with several bottlenecks in the last 160 000 years (Figure 2). The current280

effective population size Ne(0) is 28 500 (time 0 does not correspond to present time as we281

ignored singletons, see discussion). The demographic history earlier than 160 000 years ago282

shows spurious patterns that should not be interpreted, according to Liu and Fu (2015).283

The inference of the Yoruba demography with one-parameter models was done by min-284

imizing the distance between observed and predicted SFS. This gave an optimized value τ̂285

of the parameter τ (Figure 3A and Table 1) (with τ̂ in coalescent units, Linear : τ̂ = 2.48,286

Exponential : τ̂ = 1.82, Sudden: τ̂ = 1.36, Conditioned : τ̂ = 1.89, Birth-Death: τ̂ = 2.28).287

Plotting the predicted SFS with the optimized parameter value τ̂ confirmed their goodness288

of fit with the observed Yoruba SFS (Figure 3B). Compared to the standard model with-289

out demography, the addition of just one parameter allows for a surprisingly good fit of290

the observed Yoruba SFS. The Yoruba demography thus seems to be compatible with a291
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simple scenario of growth. On the other hand, the demography inferred by the stairway292

plot predicts a SFS which does not fit well the observed Yoruba SFS: the distance between293

the observed Yoruba SFS and the expected SFS under the stairway plot demography is ten294

times the distance between any of the one-parameter model SFS and the data (Figure 3B295

and Table 1).296

The best fitting SFS under each of the five demographic models all have a square dis-297

tance d2 of the order of 10−4 with the observed Yoruba SFS (Figure 3A and Table 1) and298

have highly similar shapes (Figure 3B). This suggests that the five demographic models used299

to infer the demography of the Yoruba are hard to distinguish based only on the observed300

SFS. To validate the use of a least square distance to find the best fitting SFS, we also301

infered the Yoruba demography using the ∂a∂i software. This model-constrained method302

based on the SFS uses a diffusion approximation to simulate SFS and a likelihood framework303

for the parameter optimization. We tested the three models of explicit demography (Linear,304

Exponential and Sudden growth) parametrized in the same way as in our method. The best305

parameter values found by ∂a∂i by maximum log composite likelihood are the same as by306

our method (with τ̂ in coalescent units, Linear : τ̂ = 2.48, Exponential : τ̂ = 1.82, Sudden:307

τ̂ = 1.36). Moreover, the log composite likelihoods of the best fitting SFS under each model308

are on the same scale (the likelihoods are directly comparable because the number of param-309

eters is the same for each model) : Linear : ln(L) = −3107, Exponential : ln(L) = −3953,310

Sudden: ln(L) = −3393 (Figure S4). They rank the explicit demography models in the same311

order as the least square distance d2 would rank them: the best model is Linear growth,312

then Sudden and finally Exponential growth.313

We computed the expected TMRCA based on the predicted SFS using (1): as the SFS314

predicted under each model are very similar, it means that they have roughly the same315

estimated time durations tk while there are k branches in the coalescent tree of the Yoruba316

sample. From these expected tk we can compute TMRCA =
2n∑
i=2

tk. This is the TMRCA of the317

sample, but we can assume that it is the same as the TMRCA of the population, because with318
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such a large sample size, the probability that the TMRCA of the population is different from319

the TMRCA of the sample becomes very small. Under each of four models (excluding the320

Birth-Death model for which there is no obvious common time scaling), the expected TMRCA321

for the Yoruba population is 1.3 in coalescent units. By using the number of mutations322

per site in the data and the total tree length inferred from the simulations, we scaled back323

this TMRCA in number of generations and in years, assuming a mutation rate of 1.2× 10−8324

per base pair per generation (Conrad et al. 2011; Campbell et al. 2012; Kong et al.325

2012) and a generation time of 24 years (Scally and Durbin 2012) (see Methods). The326

TMRCA of the Yoruba population inferred under the four demographic models is of 87 100327

generations corresponding to 1.7 million years. The inferred demographic models, with328

scaling in coalescent units, number of generations and number of years, are shown in Figure329

4. The coalescent unit of 67 000 estimated to scale the inferred coalescent times in number330

of years corresponds to a present effective population size Ne(0) of 33 500.331

The demography inferred by the stairway plot method for the Yoruba population is a332

piecewise-constant demography showing much more complex patterns of growth and bottle-333

necks than the one-parameter models (Figure 2). Moreover, the expected SFS under this334

inferred demography does not fit well the observed Yoruba SFS (Figure 3B). To understand335

what could produce such a complex demography, we simulated SFS under a Linear growth336

with the founding time τ̂ = 2.48 inferred for the Yoruba population. We simulated three sets337

of 200 SFS, with respectively 103, 104, and 105 loci, to obtain SFS with more or less noise338

(solid lines on Figure 5A). We applied the two inference methods to these SFS. The median339

demographies inferred by the stairway plot method are strongly affected by the noise of the340

SFS, as shown on Figure 5B. When the number of simulated loci is very large (median of 200341

independent demographies inferred with 106 loci), the stairway plot gives a good approxima-342

tion of the true demography, and the expected SFS under the inferred demography fits the343

input SFS. However, for smaller numbers of loci (median of 200 independent demographies344

inferred with 105 loci or less), the stairway plot shows complex patterns of growth and bot-345
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tlenecks incompatible with the true demography, and the expected SFS under the inferred346

demographies do not fit the input SFS. On the contrary, the one-parameter method infers a347

Linear demography with a founding time close to the true value for SFS simulated with 104
348

loci or more (Table 2).349

DISCUSSION350

In this study, we fit the SFS of the Yoruba population with five simple demographic models351

of growth described by one parameter. Surprisingly, even though these five models are352

quite distinct in the way they model population growth, fitting them on the Yoruba data353

results in strongly similar SFS, which all show an excellent goodness of fit with the observed354

Yoruba SFS. Fitting the same SFS with the stairway plot method (Liu and Fu 2015), a355

model-flexible method which infers a piecewise-constant demography, resulted in a complex356

demography with several bottlenecks in the last 160 000 years. The poor goodness of fit of357

the expected SFS under this inferred demography with the Yoruba SFS indicates that this358

complex demography is not to be trusted and suggests that the way the method estimates359

the number of change points is too flexible.360

The results obtained by the model-constrained and model-flexible methods showed some361

similarities: the current population size Ne(0) of about 30 000 inferred with the stairway362

plot corresponds roughly to the coalescent unit of 67 000 generations (equivalent to 2Ne(0)363

in the coalescent theory) found with the one-parameter models. Similarly, the TMRCA of364

∼1.7 million years inferred with the one-parameter models seems to match with the last365

time point of the stairway plot, at about 1.9 million years.366

We hypothesize that the complexity of the demography inferred by the stairway plot367

method is caused by the irregularities of the observed Yoruba SFS. Two concurrent non-368

exclusive explanations can be put forward for these irregularities. First, they can be due369

to the sampling and thus be considered as noise that should not be interpreted as evidence370

for demography. Second, these irregularities could be biologically relevant and result from371
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a very complex demographic history. To assess the impact of noise on the stairway plot372

method, we tested it on simulated SFS under a Linear growth. These SFS were simulated373

with different numbers of independent loci: the more loci, the less noise in the simulated374

SFS. The stairway plot inference on these SFS shows that the method is strongly affected375

by the noise in the SFS simulated data: whereas the demography inferred for a smooth SFS376

(corresponding to a high number of independent loci) corresponds to the true demography377

approximated as piecewise constant, the demographies inferred for smaller numbers of loci378

show complex patterns of bottlenecks and deviate strongly from the true demography. It379

could be that this method captures the signal contained in these irregularities and infers380

a demography taking them into account, whereas the one-parameter models fit the global381

trend of the SFS shape and can thus infer the true demography for much smaller numbers382

of loci. One solution could be to constrain the number of parameters allowed for model-383

flexible methods: it seems that determining it by likelihood-ratio test, as it is done in the384

stairway plot method, is not conservative enough, as it does not prevent from overfitting385

the noise. If the number of parameters was forced to be small, the method might capture386

the global trend of the demography and avoid this issue. The SFS reconstructed under the387

demographies inferred by the stairway plot, however, differ strongly from the input SFS.388

If the issue was the overfitting of noise, we would expect the reconstructed SFS to fit the389

data more closely. The method is clearly biased by noise on the SFS but it remains unclear390

why. It would require further investigation to analyze how the different characteristics of391

this particular method, such as the parametrization of population size history, respond to392

noise, and what is responsible for this bias.393

The five one-parameter demographic models all predict virtually the same SFS for the394

Yoruba population. Therefore, they also predict the same TMRCA for the Yoruba population.395

This TMRCA of ∼1.3 in coalescent units corresponds, with our scaling of coalescent time based396

on the number of mutations per site, to ∼1.7 million years. This estimation is similar to397

results concerning the whole human population, obtained by Blum and Jakobsson (2011)398
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or reviewed in Garrigan and Hammer (2006). Although the commonly admitted date399

of emergence of the anatomically modern human is around 200 000 years ago, Blum and400

Jakobsson showed that finding a much older TMRCA was compatible with the single-origin401

hypothesis, assuming a certain ancestral effective population size. These ancient times to402

most recent common ancestor could also be explained by gene flow in a structured ancestral403

population (Garrigan and Hammer 2006).404

Although all five models predict the same TMRCA, the inferred demographies differ sub-405

stantially between the models (Figure 3A). In the time range further beyond the TMRCA, no406

information is carried by the sample. Thus, the inferred demographies differ in this time407

range (Figure 4), making the inferred founding time of the Yoruba population unreliable.408

Our results with one-parameter models are reproducible with another model-constrained409

method, ∂a∂i, which uses different approaches both for the theoretical SFS simulations (dif-410

fusion approximation) and the parameter optimization (composite likelihood). This shows411

that, for models having the same number of parameters, a distance-based approach finds412

the same ranking of models as a likelihood framework, while being computationally less in-413

tensive. Furthermore, the distance-based approach allows for intuitive evidence on the fact414

that these different models actually all perform very well to fit the Yoruba SFS: the small415

differences of distance between the best SFS predicted by each model and the observed SFS416

could be due only to the noise in the observed SFS and thus do not mean that one model is417

better than another.418

Among the five tested demographic models, two pairs of models seem to predict partic-419

ularly similar SFS (pairs of models with the two smallest values of d2 in Table 1). First,420

the Linear (L) and Exponential (E) growth models predict almost identical SFS for the421

Yoruba population (d2(η̃L, η̃E) = 2.2× 10−5). Figure 4 shows that, in the time range where422

information is conveyed by the mean coalescent tree of the population, i.e., between present423

time and the TMRCA, these two demographies are very similar. This explains why their SFS424

are almost indistinguishable, and shows that in this parameter range, it is impossible to dis-425
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tinguish linear from exponential growth. Second, the SFS predicted under the two models426

with implicit demography, Conditioned (C) and Birth-Death (BD), are so similar that they427

are undistinguishable in Figure 3B (d2(η̃C , η̃BD) = 3.5× 10−6). This raises a question on428

how these two models, based on different processes — a Wright-Fisher model or a branching429

process — compare and in particular why their SFS are so similar.430

As we compute the distance statistic to optimize the models on normalized SFS, the431

information of the magnitude of the SFS (often referred to as θ, the population mutation432

rate) is lost. However, as the inferred SFS under the five demographic models all have the433

same shape, the constant θ by which they should be multiplied to fit the real, not normalized,434

Yoruba SFS would be the same for all five models. Thus, this information would not allow435

to choose which model infers the most realistic value of θ.436

The outlying first bin of the Yoruba SFS, corresponding to singletons, was removed437

from our inference because it can be affected by sequencing errors. As the relatively low to438

moderate coverage of the 1000 Genomes project could also result in an underestimation of439

doubletons and tripletons, we optimized τ masking also these values. It did not change the440

estimation of τ̂ and thus had no effect on the inferred demographies. As the first bin of the441

SFS accounts for the mutations that occur in the terminal branches of the coalescent tree, a442

large part of the excess of singletons can be due to very recent and massive growth. Recent443

studies with deep sequencing coverage have shown that there is a large abundance of rare444

variants in human populations (Coventry et al. 2010; Nelson et al. 2012; Gazave et al.445

2014). As the dataset we used for this study had a limited sample size and low-coverage,446

we focused on the inference of demography in the more distant past. Thus, because of both447

sequencing errors and incompatibility with our one-parameter models, singletons were not448

taken into account. Our inferences concern the population before this recent and massive449

growth. It should also be noted that Liu and Fu (2015) emphasize that the strength of their450

method is in capturing recent demographic history. Thus, ignoring singletons, although it is451

an existing feature of their software, might not be the most appropriate use of the stairway452
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plot.453

For non-African human population, the SFS based on the 1 000 Genomes Project data454

are not monotonous: their shape is more complex than the SFS of the Yoruba population.455

Thus, one-parameter models cannot capture the complexity of the demographic histories456

underlying these types of observed SFS. Even for the Yoruba population, capturing the457

recent growth event, by taking into account the singletons, would have required adding458

another parameter. The stairway plot method shows more flexibility and could capture the459

signal for more complex demographic histories, provided that the number of independent460

loci is very large so that there is no bias due to noise.461

Overall, this study shows that even in the case of a simple demography, the scenario462

inferred by the stairway plot, a model-flexible method, can show spuriously complex patterns463

of growth and decline and can predict SFS poorly fitting with the initial SFS data. This464

might be explained by overfitting of the method to the noise present in the observed SFS,465

which can be expected for a reasonable number of loci. We also show that simple models466

described by one parameter can have an excellent goodness of fit to the data and avoid the467

issue of noise overfitting. The results indicate that the demography of the Yoruba population468

is compatible with simple one-parameter models of growth, and that the expected TMRCA of469

this population can be estimated at ∼1.7 million years. However, the SFS is not sufficient to470

determine which model better characterizes the Yoruba demographic growth, and estimations471

of the founding time of the population, that depend on the chosen model, are thus unreliable.472

More generally, this study illustrates the issue of non-identifiability of demographies based473

on the SFS of a finite sample.474

Our comparison of a model-constrained method using one parameter models with a475

model-flexible method using a potentially large number of parameters highlights the im-476

portance of the model complexity. How many parameters should we use to “properly”477

characterize a demography? We argue that low complexity models should be tested first.478

For model-flexible methods, the number of parameters is usually unbounded and determined479
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by successive likelihood ratio tests. This statistical framework implies that a certain risk is480

taken at each successive step, and that with the repetition of steps, errors can potentially481

be made. For example, these errors can lead to spurious inferences in noisy data (i.e., any482

real data). We recommend (visually) monitoring the improvement in goodness of fit when483

adding new parameters on statistical grounds. Examination of the intermediate steps of484

fitting would likely prevent an unnecessary increase in the model complexity.485
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Figure 1: The five demographic models. Each model has one single time parameter τ .
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Figure 2: Stairway plot inference of the Yoruba demography. The inferred effective size Ne

of the Yoruba population is plotted from present time (0) to the past. The inset is a zoom
between 0 and 160 000 years. The thick brown line is the median Ne, the light brown area
is the [2.5, 97.5] percentiles interval. The inference is based on 200 bootstrap samples of the
unfolded Yoruba SFS. The singletons are not taken into account for the optimization of the
stairway plot.
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Figure 3: Inference of the Yoruba demography with one-parameter models. A) Weighted
square distance d2(η̃, η̃obs) between the normalized Yoruba SFS η̃obs and the normalized pre-
dicted SFS η̃ under each of the five models, depending on the value of the parameter τ
(Purple: Sudden, Blue: Conditioned, Red: Birth-Death, Yellow: Exponential, Green: Lin-
ear). B) Predicted SFS under each of the five models, with the optimized value τ̂ of the
parameter, and under the demography inferred by the stairway plot (brown dotted line).
The Yoruba SFS is shown in empty circles. The first dot, colored in black, accounting for
the singletons, was not taken into account for the optimization of τ to avoid potential bias
due to sequencing errors. The grey dashed line is the expected SFS under the standard
neutral model without demography. Colors match the plot above (the predicted SFS un-
der the models Birth-Death and Conditioned are indistinguishable). The SFS are folded,
transformed and normalized (see Methods).

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/078618doi: bioRxiv preprint 

https://doi.org/10.1101/078618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Birth-Death

0      0.5  1    ~1.3      1.5   2        2.5 (coalescent unit)   

0  67 000   134 000 (Wright-Fisher generations)

0  1.34   2.7 (million years)

Sudden

Conditioned

Exponential

Linear

1

0.8

0.6

0.4

0.2

R
el

at
iv

e 
po

pu
la

tio
n 

si
ze

Backward time

Figure 4: Demographic histories and reconstructed tree estimated from the Yoruba SFS.
The tree shown has internode durations tk during which there are k lineages consistent with
the SFS (the topology was chosen uniformly among ranked binary trees with 2n tips). Time
is given in coalescent units, and scaled in number of generations and in millions of years.
The demographic histories (solid lines: explicit models, dashed lines: implicit models) are
plotted with their optimized τ̂ values. See the supplementary methods for details on the
demographic histories plotted for the models with implicit demographies (Birth-Death and
Conditioned)
.
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Figure 5: Stairway plot inference of a linear demography SFS with noise. A) Solid lines:
mean of 200 SFS simulated independently under the Linear growth model, with either 105

loci (purple), 104 loci (blue) or 103 loci (yellow). Dotted lines: expected SFS under the
demography reconstructed by the stairway plot method for different number of loci (same
colors than solid lines). The grey dashed line is the expected SFS under the standard neutral
model without demography. The SFS are transformed and normalized (see Methods). B)
Stairway plot demographic inference: Median of 200 independent demographies inferred with
200 independently simulated SFS for each number of loci (colors match the plot above). The
true demography is the green dashed line. The inferred effective size Ne is plotted from
present time (0) to the past. 32
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Data Linear Exponential Sudden Conditioned Birth-Death
Linear 3.0× 10−4 0
Exponential 4.1× 10−4 2.2× 10−5 0
Sudden 3.4× 10−4 3.5× 10−4 5.5× 10−4 0
Conditioned 2.3× 10−4 1.6× 10−4 5.5× 10−4 3.7× 10−5 0
Birth-Death 2.2× 10−4 1.7× 10−4 3.1× 10−4 4.1× 10−5 3.5× 10−6 0
Stairway plot 2.9× 10−3 3.1× 10−3 3.3× 10−3 2.8× 10−3 2.8× 10−3 2.9× 10−3

Table 1: Least-square distance d2 between pairs of observed Yoruba SFS and optimized SFS
under the five demographic models or the stairway plot method.
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Number of loci 5% percentile Mean τ̂ 95% percentile
103 2.569 2.713 2.893
104 2.463 2.503 2.540
105 2.473 2.485 2.498
106 2.478 2.483 2.487

Table 2: Inference of the founding time τ̂ under the Linear model on SFS with noise. Mean,
5% and 95% percentile of the founding time inferred with a Linear model. The SFS on which
the inference is made are simulated with a founding time τ of 2.48, with different number of
loci, using the method with topology reconstruction.
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