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Abstract	24	
Cross	experiment	comparisons	in	public	data	compendia	are	challenged	by	unmatched	25	
conditions	and	technical	noise.	The	ADAGE	method,	which	performs	unsupervised	integration	26	
with	neural	networks,	can	effectively	identify	biological	patterns,	but	because	ADAGE	models,	27	
like	many	neural	networks,	are	over-parameterized,	different	ADAGE	models	perform	equally	28	
well.	To	enhance	model	robustness	and	better	build	signatures	consistent	with	biological	29	
pathways,	we	developed	an	ensemble	ADAGE	(eADAGE)	that	integrated	stable	signatures	30	
across	models.	We	applied	eADAGE	to	a	Pseudomonas	aeruginosa	compendium	containing	31	
experiments	performed	in	78	media.	eADAGE	revealed	a	phosphate	starvation	response	32	
controlled	by	PhoB.	While	we	expected	PhoB	activity	in	limiting	phosphate	conditions,	our	33	
analyses	found	PhoB	activity	in	other	media	with	moderate	phosphate	and	predicted	that	a	34	
second	stimulus	provided	by	the	sensor	kinase,	KinB,	is	required	for	PhoB	activation	in	this	35	
setting.	We	validated	this		relationship	using	both	targeted	and	unbiased	genetic	approaches.	36	
eADAGE,	which	captures	stable	biological	patterns,	enables	cross-experiment	comparisons	that	37	
can	highlight	measured	but	undiscovered	relationships. 38	
 39	
	40	
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Introduction	45	
Available	gene	expression	data	are	outstripping	our	knowledge	about	the	organisms	that	we’re	46	
measuring.	Ideally	each	organism’s	data	reveals	the	principles	underlying	gene	regulation	and	47	
consequent	pathway	activity	changes	in	every	condition	in	which	gene	expression	is	measured.	48	
Extracting	this	information	requires	new	algorithms,	but	many	commonly	used	algorithms	are	49	
supervised.	These	algorithms	require	curated	pathway	knowledge	to	work	effectively,	and	in	50	
many	species	such	resources	are	biased	in	various	ways	(Gillis	and	Pavlidis,	2013;	Greene	and	51	
Troyanskaya,	2012;	Schnoes	et	al.,	2013).	Annotation	transfer	can	help,	but	such	function	52	
assignments	remain	challenging	for	many	biological	processes	(Jiang	et	al.,	2016).		An	53	
unsupervised	method	that	doesn’t	rely	on	annotation	transfer	would	bypass	the	challenges	of	54	
both	annotation	transfer	and	biased	knowledge.	55	
	56	
Along	with	our	wealth	of	data,	abundant	computational	resources	can	now	power	deep	57	
unsupervised	applications	of	neural	networks,	which	are	powerful	methods	for	unsupervised	58	
feature	learning	(Bengio	et	al.,	2013).	In	a	neural	network,	input	variables	are	provided	to	one	59	
or	more	layers	of	“neurons”.	Each	neuron	(also	called	node)	has	an	activation	function	that	60	
determines	whether	or	not	it	turns	on	given	some	input.	The	entire	network	is	trained,	which	61	
consists	of	adjusting	the	edge	weights	that	each	node	provides	to	each	other,	by	grading	the	62	
quality	of	the	output	for	some	task.	Denoising	autoencoders	(DAs),	a	type	of	unsupervised	63	
neural	networks,	are	trained	to	remove	noise	that	is	intentionally	added	to	the	input	data	64	
(Vincent	et	al.,	2008).	Masking	noise,	in	which	a	fraction	of	the	inputs	are	set	to	zero,	is	65	
commonly	used	(Vincent	et	al.,	2010)	and	successful	denoising	autoencoders	must	learn	66	
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dependency	structure	between	the	input	variables.	Adding	artificial	noise	helps	a	DA	to	learn	67	
features	that	are	robust	to	partial	corruption	of	input	data.	This	approach	has	properties	that	68	
make	it	particularly	suitable	for	gene	expression	data	(Tan	et	al.,	2015).		First,	the	sigmoid	69	
activation	function	produces	features	that	tend	to	be	on	or	off,	which	helps	to	describe	70	
biological	processes,	e.g.	transcription	factor	activation,	with	threshold	effects.	Second,	the	71	
algorithm	is	robust	to	noise.	We	previously	observed	that	a	one-layer	DA-based	method,	72	
ADAGE	(analysis	using	denoising	autoencoders	of	gene	expression),	was	more	robust	than	73	
linear	approaches	such	as	ICA	or	PCA	in	the	context	of	public	data,	which	employ	74	
heterogeneous	experimental	designs,	lack	shared	controls,	and	provide	limited	metadata	(Tan	75	
et	al.,	2016b).		76	
	77	
Neural	networks	have	many	edge	weights	that	must	be	fit	during	training.	Given	some	gene	78	
expression	dataset,	there	are	many	different	DAs	that	could	reconstruct	the	data	equally	well.	79	
In	a	technical	sense	we	would	say	that	the	objective	functions	of	neural	networks	are	typically	80	
non-convex	and	trained	through	stochastic	gradient	descent.	When	we	train	multiple	models,	81	
each	represents	a	local	minimum.	Yu	recently	emphasized	the	importance	of	patterns	that	are	82	
stable	across	statistical	models	in	the	process	of	discovery	(Yu,	2013).	While	run-to-run	83	
variability	obscures	some	biological	features	within	individual	models,	stable	patterns	across	84	
neural	networks	may	clearly	resolve	biological	pathways.	To	directly	target	stability,	we	85	
introduce	an	unsupervised	modeling	procedure	inspired	by	consensus	clustering	(Monti	et	al.,	86	
2003).	Consensus	clustering	has	become	a	standard	part	of	clustering	applications	for	biological	87	
datasets.	Our	approach	builds	an	ensemble	neural	network	that	captures	stable	features	and	88	
improves	model	robustness.		89	
	90	
To	apply	the	neural	network	approach	to	compendium-wide	analyses,	we	first	sought	to	create	91	
a	comprehensive	model	in	which	biological	pathways	were	successfully	learned	from	gene	92	
expression	data.	We	adapted	ADAGE	(Tan	et	al.,	2016b)	to	capture	pathways	more	specifically	93	
by	increasing	the	number	of	nodes	(model	size)	that	reflect	potential	pathways	from	50	to	300,	94	
a	size	that	our	analyses	indicate	the	current	public	data	compendium	can	support.	We	then	95	
built	its	ensemble	version	(eADAGE)	and	compared	it	with	ADAGE,	PCA,	and	ICA.	While	it	is	96	
impossible	to	specify	a	priori	the	number	of	true	biological	pathways	that	exhibit	gene	97	
expression	signatures,	we	observed	that	eADAGE	models	produced	gene	expression	signatures	98	
that	corresponded	to	more	biological	pathways.	This	indicates	that	this	method	more	99	
effectively	identifies	biological	signatures	from	noisy	public	data.	While	ADAGE	models	reveal	100	
biological	features	perturbed	within	an	experiment,	the	more	robust	eADAGE	models	also	101	
enable	analyses	that	cut	across	an	organism’s	gene	expression	compendium.	102	
	103	
To	assess	the	utility	of	the	eADAGE	model	in	making	predictions	of	biological	activity,	we	104	
applied	it	to	the	analysis	of	the	Pseudomonas	aerguinosa	gene	expression	compendium	which	105	
included	1051	samples	grown	in	78	distinct	medium	conditions,	128	distinct	strains	and	isolates,	106	
and	dozens	of	different	environmental	parameters.	After	grouping	samples	by	medium	type,	107	
we	searched	for	eADAGE-defined	signatures	that	differed	between	medium	types.	This	cross-108	
compendium	analysis	identified	five	media	that	elicited	a	response	to	low-phosphate	mediated	109	
by	the	transcriptional	regulator	PhoB,	and	only	one	of	these	five	media	was	specifically	defined	110	
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as	a	condition	with	low	phosphate.	While	PhoB	is	known	to	respond	to	low	phosphate	through	111	
its	interaction	with	PhoR	in	low	concentrations	(Wanner	and	Chang,	1987),	our	analyses	112	
indicated	that	PhoB	is	also	active	at	moderate	phosphate	concentrations.	Specifically,	in	media	113	
with	moderate	phosphate	concentrations,	the	eADAGE	model	predicted	a	previously	114	
undiscovered	role	for	KinB	in	the	activation	of	PhoB,	and	our	molecular	analyses	of	P.	115	
aeruginosa	confirmed	this	prediction.	Analysis	of	a	collection	of	P.	aeruginosa	mutants	116	
defective	in	kinases	validated	the	specificity	of	the	KinB-PhoB	relationship.		117	
	118	
In	summary,	eADAGE	more	precisely	and	robustly	captures	biological	processes	and	pathways	119	
from	gene	expression	data	than	other	unsupervised	approaches.	The	signatures	learned	by	120	
eADAGE	support	functional	gene	set	analyses	without	manual	pathway	annotation.	The	121	
signatures	are	robust	enough	to	enable	biologists	to	identify	not	only	differentially	active	122	
signatures	within	one	experiment,	but	also	cross-compendium	patterns	that	reveal	123	
undiscovered	regulatory	mechanisms	captured	within	existing	public	data.	124	
	125	
Results	126	
	127	
eADAGE:	ensemble	modeling	improves	the	model	breadth,	depth,	and	robustness		128	
ADAGE	is	a	neural	network	model.	Each	gene	is	connected	to	each	node	through	a	weighted	129	
edge	(Figure	1A).	We	define	a	gene	signature	learned	by	an	ADAGE	model	as	a	set	of	genes	that	130	
contribute	the	highest	positive	or	highest	negative	weights	to	a	specific	node	(Figure	1B,	see	131	
methods	for	detail).	Therefore,	one	node	results	in	two	gene	signatures,	one	on	each	high	132	
weight	side.	The	positive	and	negative	signatures	derived	from	the	same	node	do	not	133	
necessarily	compose	inversely	regulated	processes	(Figure	S1),	so	we	use	them	independently.		134	
	135	
ADAGE	models	of	the	same	size	capture	different	pathways.	This	occurs	because	each	ADAGE	136	
model	is	initialized	with	random	weights,	and	the	training	processes	are	sensitive	to	initial	137	
conditions.	eADAGE,	in	which	we	built	an	ensemble	version	of	individual	ADAGE	models,	took	138	
advantage	of	this	variation	to	enhance	model	robustness.	Each	eADAGE	model	integrated	139	
nodes	from	100	individual	ADAGE	models	(Figure	2A).	To	unite	nodes,	we	applied	consensus	140	
clustering	on	nodes’	weight	vectors	because	the	weight	vector	captures	both	the	genes	that	141	
contribute	to	a	node	and	their	magnitude.	Our	previous	ADAGE	analyses	showed	that	genes	142	
contributing	high	weights	characterized	each	node’s	biological	significance,	so	we	designed	a	143	
weighted	Pearson	correlation	to	incorporate	gene	weights	in	building	eADAGE	models	(see	144	
methods).	We	compared	eADAGE	to	two	baseline	methods:	individual	ADAGE	models	and	145	
corADAGE,	which	combined	nodes	with	an	unweighted	Pearson	correlation.	For	direct	146	
comparison,	the	model	sizes	of	ADAGE,	eADAGE,	and	corADAGE	were	all	fixed	to	300	nodes,	147	
which	we	found	to	be	appropriate	for	the	current	P.	aeruginosa	expression	compendium	148	
through	both	data-driven	and	knowledge-driven	heuristics	(see	supplemental	information).	149	
	150	
While	ADAGE	models	are	constructed	without	the	use	of	any	curated	information	such	as	KEGG	151	
(Kanehisa	and	Goto,	2000)	and	GO	(Ashburner	et	al.,	2000),	we	evaluate	models	by	the	extent	152	
to	which	they	cover	the	pathways	and	processes	defined	in	these	resources	to	see	how	they	153	
capture	existing	biology.	For	each	method,	we	determined	the	number	of	KEGG	pathways	154	
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significantly	associated	with	at	least	one	gene	signature	in	a	model,	referred	to	as	KEGG	155	
coverage.	eADAGE	models	exhibited	greater	KEGG	coverage	than	those	generated	by	other	156	
methods	(Figure	2B).	Both	corADAGE	and	eADAGE	covered	significantly	more	KEGG	pathways	157	
than	ADAGE	(t-test	p-value	of	1.04e-6	between	corADAGE	(n=10)	and	ADAGE	(n=1000)	and	t-158	
test	p-value	of	1.41e-6	between	eADAGE	(n=10)	and	ADAGE	(n=1000)).	Moreover,	eADAGE	159	
models	covered,	on	average,	10	more	pathways	than	corADAGE	(t-test	p-value	of	1.99e-3,	n=10	160	
for	both	groups).	Genes	that	participate	in	multiple	pathways	can	influence	pathway	161	
enrichment	analysis,	a	factor	termed	pathway	crosstalk	(Donato	et	al.,	2013).	To	control	for	this,	162	
we	performed	crosstalk	correction	(Donato	et	al.,	2013).	After	correction,	the	number	of	163	
covered	pathways	dropped	by	approximately	half	(Figure	S2A),	but	eADAGE	still	covered	164	
significantly	more	pathways	than	corADAGE	(t-test	p-value	of	0.02)	and	ADAGE	(t-test	p-value	165	
of	1.29e-05).	We	subsequently	evaluated	each	method’s	coverage	of	GO	biological	processes	166	
(GO-BP)	and	found	consistent	results	(Figure	S2B).	eADAGE	integrated	multiple	models	to	more	167	
broadly	capture	pathway	signals	embedded	in	diverse	gene	expression	compendia.		168	
	169	
We	next	evaluated	how	specifically	and	completely	signatures	learned	by	the	models	capture	170	
known	biology.	We	use	each	gene	signature’s	FDR	corrected	p-value	for	enrichment	of	a	171	
KEGG/GO	term	as	a	combined	measure,	as	it	captures	both	the	sensitivity	and	specificity.	If	a	172	
pathway	was	significantly	associated	with	multiple	gene	signatures	in	a	model,	we	only	173	
considered	its	most	significant	association.	We	found	that	71%	of	KEGG	and	79%	of	GO-BP	174	
terms	were	more	significantly	enriched	(had	lower	median	p-values)	in	corADAGE	models	when	175	
compared	to	individual	ADAGE	models.	This	increased	to	87%	for	KEGG	and	81%	for	GO-BP	176	
terms	in	eADAGE	models.	We	also	directly	compared	eADAGE	and	corADAGE	by	this	measure	177	
and	observed	that	74%	of	KEGG	and	61%	of	GO-BP	terms	were	more	significantly	enriched	in	178	
eADAGE.	We	have	found	that	different	pathways	were	best	captured	at	different	model	sizes	179	
(Figure	2C).	We	next	compared	the	300-node	eADAGE	model	to	ADAGE	models	with	different	180	
number	of	nodes.	Although	the	300-node	eADAGE	models	were	constructed	only	from	300-181	
node	ADAGE	models,	we	found	that	69%	of	KEGG	and	69%	of	GO-BP	terms	were	more	182	
significantly	enriched	(i.e.	lower	median	p-values)	in	eADAGE	models	than	ADAGE	models	of	183	
any	size,	including	those	with	more	nodes	than	the	eADAGE	models.	Three	example	pathways	184	
that	are	best	captured	either	when	model	size	is	small,	large,	or	in	the	middle	are	all	well	185	
captured	in	the	300-node	eADAGE	model	(Figure	2C).	These	results	demonstrate	that	eADAGE’s	186	
ensemble	modeling	procedure	is	effective	in	capturing	consistent	signals	across	models	and	187	
filtering	out	noise.	Thus,	eADAGE	more	completely	and	precisely	captures	the	gene	expression	188	
signatures	of	biological	pathways.	189	
	190	
We	designed	eADAGE	to	provide	a	more	robust	analysis	framework	than	individual	ADAGE	191	
models.	To	assess	this,	we	examined	the	percentage	of	models	that	covered	each	pathway	192	
(coverage	rate)	between	ADAGE	and	eADAGE.	The	pathways	covered	by	each	individual	ADAGE	193	
model	were	highly	variable.	Most	KEGG	pathways	were	covered	by	less	than	half	of	individual	194	
models	but	more	than	half	of	eADAGE	models	(Figure	2D),	suggesting	that	eADAGE	models	195	
were	more	robust	than	individual	ADAGE	models.	Subsequent	evaluations	of	GO-BP	were	196	
consistent	with	this	finding	(Figure	S2C).	We	excluded	KEGG/GO	terms	always	covered	by	both	197	
individual	ADAGE	and	eADAGE	models	and	observed	that	69%	of	the	remaining	KEGG	and	71%	198	
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of	the	remaining	GO	terms	were	covered	more	frequently	by	eADAGE	than	ADAGE.	This	199	
suggests	that	their	associations	are	stabilized	via	ensemble	construction.	In	summary,	these	200	
comparisons	of	eADAGE	and	ADAGE	reveal	that	not	only	are	more	pathways	captured	more	201	
specifically,	but	also	those	that	are	captured	are	captured	more	consistently.	202	
	203	
Principal	component	analysis	(PCA)	and	independent	component	analysis	(ICA)	have	been	204	
previously	used	to	extract	biological	features	and	build	functional	gene	sets	(Alter	et	al.,	2000;	205	
Chen	et	al.,	2008;	Engreitz	et	al.,	2010;	Frigyesi	et	al.,	2006;	Gong	et	al.,	2007;	Lutter	et	al.,	2009;	206	
Ma	and	Kosorok,	2009;	Raychaudhuri	et	al.,	2000,	2000;	Roden	et	al.,	2006).	We	performed	PCA	207	
and	generated	multiple	ICA	models	from	the	same	P.	aeruginosa	expression	compendium	and	208	
evaluated	their	KEGG/GO	term	coverage	following	the	same	procedures	used	for	eADAGE.	209	
eADAGE	substantially	and	significantly	outperforms	PCA	in	terms	of	pathway	coverage	(Figure	210	
2E).	Between	eADAGE	and	ICA,	we	observed	that	eADAGE	represented	KEGG/GO	terms	more	211	
precisely	than	ICA.	Specifically,	among	terms	significantly	enriched	in	either	approach,	68%	212	
KEGG	and	71%	GO	terms	exhibited	more	significant	enrichment	in	eADAGE.	Increasing	the	213	
significance	threshold	for	pathway	coverage	demonstrates	the	advantage	of	eADAGE	(Figure	3D	214	
and	Figure	S2D).	215	
	216	
Pathway	databases	provide	a	means	to	compare	unsupervised	methods	for	signature	discovery.	217	
Not	all	pathways	will	be	regulated	at	the	transcriptional	level,	but	those	that	are	may	be	218	
extracted	from	gene	expression	data.	The	unsupervised	eADAGE	method	revealed	signatures	219	
that	corresponded	to	P.	aeruginosa	KEGG/GO	terms	better	than	PCA,	ICA,	ADAGE,	and	220	
corADAGE.	It	had	higher	pathway	coverage	(breadth),	covered	pathways	more	specifically	221	
(depth),	and	more	consistently	(robustness)	than	existing	methods.		222	
	223	
Elucidating	functional	signatures	that	are	indicative	of	growth	medium	224	
	225	
For	biological	evaluation,	we	built	a	single	new	eADAGE	model	with	300	nodes.	The	model’s	226	
weight	matrix	(Table	S2)	and	all	gene	signatures	(Table	S3)	are	provided.	For	each	signature,	we	227	
calculated	its	activity	in	each	sample	(see	Methods,	Table	S4).	A	high	activity	indicates	that	the	228	
majority	of	genes	in	the	signature	are	highly	expressed	in	the	sample.	229	
	230	
Analysis	of	differentially	expressed	genes	is	widely	used	to	analyze	single	experiments,	but	231	
crosscutting	signatures	are	required	to	reveal	general	response	patterns	from	large-scale	232	
compendia.	Signature-based	analyses	can	suggest	mechanisms	such	as	crosstalk	and	novel	233	
regulatory	networks.	However,	in	order	for	this	to	be	effective,	these	signatures	must	be	robust	234	
and	comprehensive.	By	capturing	biological	pathways	more	completely	and	robustly,	eADAGE	235	
enables	the	analysis	of	signatures,	including	those	that	don’t	correspond	to	any	KEGG	pathway,	236	
across	the	entire	compendium	of	P.	aeruginosa.	237	
	238	
Gene	expression	experiments	have	been	used	to	investigate	a	diverse	set	of	questions	about	P.	239	
aeruginosa	biology,	and	these	experiments	have	used	many	different	media	to	emphasize	240	
different	phenotypes.	Our	manual	annotation	showed	that	78	different	base	media	were	used	241	
across	the	gene	expression	compendium	(Table	S1).	While	the	compendium	contains	125	242	
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different	experiments,	it	is	exceedingly	rare	for	investigators	to	use	multiple	base	lab	media	243	
within	the	same	experiment.	There	were	only	two	examples	in	the	entire	compendium	(Table	244	
S1).	Other	than	LB,	which	is	used	in	43.6%	(458/1051)	of	the	samples	in	the	compendium,	most	245	
media	are	only	represented	by	a	handful	of	samples.		246	
	247	
To	provide	an	illustrative	example	of	cross-experiment	analysis,	we	examined	signature	activity	248	
across	the	six	experiments	in	a	base	of	M9	minimal	medium	(Miller,	1972),	which	used	six	249	
different	carbon	sources.	Node147pos	was	highly	active	in	phosphatidylcholine	compared	to	all	250	
other	media	(Figure	3A).	This	node	was	significantly	enriched	for	the	GO	terms	choline	catabolic	251	
process	(FDR	q-value	of	2.9E-11)	and	glycine	betaine	catabolic	process	(FDR	q-value	of	4.6E-20).	252	
Of	all	signatures,	it	had	the	largest	overlap	with	the	regulon	of	GbdR,	the	choline-responsive	253	
transcription	factor	(Hampel	et	al.,	2014)	(FDR	q-value	of	2.5E-47),	suggesting	that	choline	254	
catabolism	is	active	in	this	medium.	Consistent	with	this,	phosphatidylcholine,	but	not	255	
palmitate,	citrate,	or	glucose,	serves	as	a	source	of	choline	for	P.	aeruginosa	(Wargo	et	al.,	256	
2011,	2009).	Importantly,	while	Node147pos	was	differentially	active	within	a	single	257	
experiment	containing	samples	in	phosphatidylcholine	and	palmitate	(E-GEOD-7704),	it	was	258	
also	identifiable	in	comparisons	to	samples	grown	in	M9	medium	with	different	carbon	sources	259	
in	experiments	performed	in	different	labs	at	different	times.	This	illustrates	how	medium-260	
specific	signatures	can	be	identified	without	experiments	designed	to	explicitly	test	the	effect	of	261	
a	specific	medium	component	on	gene	expression.	262	
	263	
Distinct	aspects	of	the	response	to	low	phosphate	are	captured	among	the	most	active	264	
signatures	265	
To	broadly	examine	signatures	across	all	media,	we	calculated	a	medium	activation	score	for	266	
each	signature-medium	combination.	This	score	reflected	how	a	signature’s	activity	in	a	267	
medium	differed	from	its	activity	in	all	other	samples	(Figure	S3,	see	methods	for	details).	Table	268	
S5	lists	signatures	with	activation	scores	in	a	specific	medium	above	a	stringent	threshold.	A	269	
signature	could	be	active	in	multiple	media	(Figure	S3),	so	we	averaged	their	activation	scores	270	
when	this	occurred.	Table	S6	lists	signatures	that	are	most	active	in	a	group	of	media	(a	271	
complete	list	of	signature-media	group	associations	is	in	Table	S7).	272	
	273	
The	two	signatures	with	the	highest	pan-media	activation	scores	were	Node164pos	and	274	
Node108neg	(Table	S6).	To	evaluate	the	basis	for	the	high	activation	scores,	we	examined	their	275	
underlying	activities	across	all	media	(Node164pos	is	shown	Figure	3A),	and	found	that	both	276	
were	highly	active	in	King’s	A	medium,	Peptone	medium,	and	NGM+<0.1mM	phosphate	277	
(NGMlowP),	but	not	in	NGM+25mM	phosphate	(NGMhighP).	The	activity	differences	between	278	
NGMlowP	and	NGMhighP	suggested	that	these	signatures	respond	to	phosphate	levels.	The	279	
other	two	media	(Peptone	and	King’s	A)	in	which	Node164pos	had	high	activity	also	had	low	280	
phosphate	concentrations	(0.4	mM)	relative	to	other	media.	For	example,	commonly	used	LB	281	
has	a	phosphate	concentration	of	~4.5	mM	(Bertani,	2004)	and	many	others	have	282	
concentrations	above	20	mM.	283	
	284	
KEGG	pathway	enrichment	analysis	of	Node164pos	genes	showed	enrichment	in	phosphate	285	
acquisition	related	pathways	(Table	S6).	One	Node164pos	gene	encodes	PhoB,	a	transcription	286	
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factor	in	the	PhoR-PhoB	two-component	system	that	responds	to	low	environmental	287	
phosphate	in	P.	aeruginosa	(Bielecki	et	al.,	2015;	Blus-Kadosh	et	al.,	2013;	Santos-Beneit,	2015).	288	
Further,	Node164pos	is	the	signature	most	enriched	for	a	previously	defined	PhoB	regulon	(FDR	289	
q-value	of	8.1e-29	in	hypergeometric	test).	290	
	291	
Expression	levels	of	genes	in	Node164pos	are	higher	in	Peptone,	King’s	A,	and	NGMlowP	than	292	
in	NGMhighP	(Figure	3B),	including	phoA	which	encodes	alkaline	phosphatase,	an	enzyme	293	
whose	activity	can	be	monitored	using	a	colorimetric	assay.	As	expected,	PhoA	was	activated	294	
when	phosphate	concentrations	were	low	(Figure	4A).	Furthermore,	PhoA	activity	was	295	
dependent	on	PhoB	and	the	PhoB-activating	histidine	kinase	PhoR,	consistent	with	published	296	
work	(Bielecki	et	al.,	2015).	Notably,	PhoA	activity	was	evident	on	King’s	A	and	Peptone	(Figure	297	
4B).	Although	King’s	A	and	Peptone	are	not	considered	to	be	phosphate-limited	media,	these	298	
results	provide	striking	evidence	that	they	induced	PhoB	activity	as	predicted	by	Node164pos’s	299	
signature-medium	relationship.		300	
	301	
While	Node108neg	is	not	significantly	associated	with	phosphate	acquisition-related	KEGG	302	
pathways,	it	is	enriched	for	the	PhoB	regulon	(FDR	q-value	of	5.2e-9	in	hypergeometric	test,	303	
Table	S6)	and	shares	over	half	of	its	thirty-two	genes	with	Node164pos.	Six	of	the	seven	PhoB-304	
regulated	genes	present	in	Node108neg	are	also	regulated	by	TctD,	a	transcriptional	repressor	305	
described	by	Haussler	and	colleagues	(Bielecki	et	al.,	2015).	Therefore,	Node108neg	primarily	306	
represents	genes	that	are	both	PhoB-activated	and	TctD-repressed.	Subsequent	analyses	found	307	
that	Node108neg	was	the	most	differentially	active	signature	between	a	∆tctD	strain	and	the	308	
wild	type	in	an	RNAseq	experiment	(E-GEOD-64056).	Importantly,	eADAGE	learned	this	TctD	309	
regulon	even	though	the	expression	compendium	did	not	contain	any	samples	of	tctD	mutants.	310	
This	demonstrates	the	utility	of	eADAGE	in	learning	regulatory	programs	uncharacterized	by	311	
KEGG.		312	
	313	
We	evaluated	whether	the	PhoB	and	TctD	signals	were	also	extracted	by	PCA,	ICA,	or	ADAGE.	314	
ICA	and	ADAGE	captured	signatures	enriched	of	the	PhoB	regulon	less	than	those	of	eADAGE	315	
(Table	S8).	PCA	captured	a	strong	PhoB	signal	in	its	19th	principal	component.	However,	it	did	316	
not	learn	the	subtler	TctD	signal.	In	summary,	the	other	methods	were	able	to	capture	some	of	317	
this	signature	but	in	a	manner	that	was	less	complete	or	failed	to	separate	TctD.	318	
	319	
Cross-compendium	analysis	of	Node164pos	activity	reveals	a	role	for	the	histidine	kinase	KinB	320	
in	the	regulation	of	PhoB		321	
Interestingly,	Node164pos	activity	exhibited	a	wide	spread	in	PIA	medium,	with	six	samples	322	
having	high	activities	and	the	other	six	having	low	activities	(Figure	3A).	All	of	the	strains	in	323	
which	Node164pos	was	low	were	from	a	study	that	used	a	PAO1	kinB::GmR	mutant	background	324	
(Damron	et	al.,	2012).	The	PIA-grown	samples	with	high	Node164pos	activity	used	a	PAO1	325	
strain	with	kinB	intact	(Damron	et	al.,	2013)	leading	us	to	propose	that	KinB	may	be	a	regulator	326	
of	PhoB	on	PIA.	We	confirmed	that	PhoA	activity	dependents	on	PhoB,	PhoR,	KinB	on	PIA	327	
medium	(Figure	4B)	as	illustrated	by	the	fact	that	a	screen	of	63	histidine	kinase	in-frame	328	
deletion	mutants	(Table	S9)	found	only	∆phoR	and	∆kinB	had	no	PhoA	activity	on	PIA,	like	the	329	
phoB	mutant.	These	kinases	appear	to	regulate	PhoB	non-redundantly	and	to	different	extents	330	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


in	PIA,	as	the	∆phoR	mutant	regained	PhoA	activity	at	later	time	points	but	the	∆kinB	mutant	331	
did	not	(Figure	4C).		332	
	333	
Although	the	phosphate	concentration	of	PIA	(0.8mM)		is	lower	than	that	of	rich	media	such	as	334	
LB	(~4.5mM),	it	is	higher	than	that	of	Peptone	and	King’s	A	(0.4mM).	Therefore,	we	tested	335	
whether	a	moderately	low	level	of	phosphate	provokes	KinB	regulation	of	PhoA.	Like	in	PIA,	we	336	
found	that	PhoA	activity	was	evident	at	concentrations	up	to	0.5	mM	phosphate	in	MOPS	337	
medium	in	the	wild	type,	but	only	at	lower	concentrations	in	the	∆kinB	strain	suggesting	that	338	
KinB	plays	a	role	at	intermediate	concentrations	(Figure	4D).		To	our	knowledge,	KinB	has	not	339	
been	previously	implicated	in	the	activation	of	PhoB.		340	
 341	
In	summary,	eADAGE	effectively	extracted	biologically	meaningful	features,	accurately	342	
indicated	their	activity	in	multiple	media	spanning	numerous	independent	experiments,	and	343	
revealed	a	novel	regulatory	mechanism.	By	summarizing	gene-based	expression	information	344	
into	biologically	relevant	signatures,	eADAGE	greatly	simplifies	analyses	that	cut	across	large	345	
gene	expression	compendia.	346	
	347	
Discussion	348	
Our	eADAGE	algorithm	combines	multiple	ADAGE	models	into	one	ensemble	model	to	address	349	
model	variability	due	to	stochasticity	and	local	minima.	The	algorithm	is	inspired	by	consensus	350	
clustering,	which	reconciles	the	differences	in	cluster	assignments	in	multiple	runs.	Comparable	351	
approaches	have	also	been	applied	for	ICA,	where	researchers	have	used	the	centrotypes	in	352	
clustering	multiple	models	as	the	final	model	(Himberg	et	al.,	2004).	The	ICA	centrotype	353	
approach	for	ADAGE	corresponds	to	corADAGE,	and	our	comparison	of	eADAGE	and	corADAGE	354	
shows	that	eADAGE	not	only	covers	more	biological	pathways,	but	also	results	in	cleaner	355	
representations	of	biological	pathways.	This	direct	comparison	suggests	that	placing	particular	356	
emphasis	on	the	genes	most	associated	with	a	particular	feature	may	be	a	useful	property	for	357	
other	unsupervised	feature	construction	algorithms.	While	our	results	demonstrate	that	this	358	
ensemble	process	can	help	improve	the	biological	interpretability	of	neural	networks,	we	do	359	
not	expect	it	to	increase	prediction	accuracies	in	supervised	learning	problems.		360	
	361	
eADAGE	revealed	patterns	that	were	detectable	from	a	large	data	compendium	containing	362	
experiments	performed	in	78	different	media	but	that	were	not	necessarily	evident	in	individual	363	
experiments.	For	example,	one	eADAGE	signature	revealed	media	in	which	P.	aeruginosa	had	364	
high	PhoB	activity.	PhoB	is	a	global	regulator,	and	understanding	its	state	in	different	media	can	365	
provide	important	insight	into	medium-specific	phenotypes.	King’s	A	and	PIA,	on	which	the	366	
PhoB	signature	was	active,	are	known	to	stimulate	robust	production	of	colorful	secondary	367	
metabolites	(King	et	al.,	1954)	called	phenazines.	Separate	studies	have	shown	that	PhoB	can	368	
influence	phenazine	levels	(Jensen	et	al.,	2006).	Future	studies	will	reveal	whether	or	not	the	369	
low	phosphate	levels	in	these	media	contribute	to	this	characteristic	phenotype. We	expect	370	
that	other	signatures	extracted	from	the	compendium	by	eADAGE	will	serve	as	the	basis	for	371	
additional	work	in	which	the	patterns	are	not	only	examined	but	also	validated.		372	
	373	
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We	also	uncovered	a	subtle	aspect	of	the	phosphate	starvation	response	that	depends	on	KinB,	374	
a	histidine	kinase	not	previously	associated	with	PhoB.	Bacterial	two-component	systems	are	375	
often	insulated	from	each	other	(Podgornaia	and	Laub,	2013).	Though	sensor	kinase/response	376	
regulator	cross-talk	has	been	hypothesized	as	a	mechanism	of	explaining	the	complexity	of	377	
signaling	networks	(Fisher	et	al.,	1995;	Ninfa	et	al.,	1988),	it	is	challenging	to	find	conditions	378	
where	two	kinases	are	needed	for	full	response	regulator	activation	(Verhamme	et	al.,	2002).	379	
We	propose	that	moderate	levels	of	phosphate,	like	those	in	PIA,	provide	a	niche	for	crosstalk:	380	
the	activity	of	PhoR	is	low	enough	that	the	interaction	with	KinB	is	needed	for	full	PhoB	activity	381	
on	this	medium.	Together,	PhoR	and	KinB	may	enable	a	more	sensitive	and	effective	response	382	
to	phosphate	limitation.	Alternatively,	KinB	may	influence	PhoB	activity	indirectly	by	regulating	383	
activities	that	affect	PhoB	levels,	phosphorylation	state,	or	protein-protein	interactions.	This	384	
relationship	was	not	observed	in	experiments	designed	to	perturb	this	process,	which	use	high	385	
and	very	low	phosphate	concentrations.	Instead,	eADAGE	analysis	of	Pseudomonas	aeruginosa	386	
transcriptomic	measurements	across	multiple	experiments	in	different	media	were	required	to	387	
reveal	this	nuanced	mechanism. 388	
	389	
Existing	public	gene	expression	data	compendia	for	more	than	one	hundred	organisms	are	of	390	
sufficient	size	to	support	eADAGE	models	(Greene	et	al.,	2016).	Cross-compendium	analyses	391	
provide	the	opportunity	to	efficiently	use	existing	data	to	identify	regulatory	patterns	that	are	392	
evident	across	multiple	experiments,	datasets,	and	labs.	To	tap	this	potential,	we	will	require	393	
algorithms	like	eADAGE	that	robustly	integrate	these	diverse	datasets	in	a	manner	that	is	not	394	
tied	to	only	aspects	of	biology	that	are	well	understood.	Furthermore,	while	public	compendia	395	
tend	to	be	dominated	by	expression	data,	autoencoders	have	also	been	successfully	applied	to	396	
datasets	based	on	large	collections	of	electronic	health	record	(Beaulieu-Jones	et	al.,	2016;	397	
Miotto	et	al.,	2016).	Within	the	health	records	space,	these	methods	are	particularly	effective	398	
at	dealing	with	missing	data	(Beaulieu-Jones	et	al.,	2016;	Beaulieu-Jones	and	Moore,	2017).	399	
These	features,	along	with	their	unsupervised	nature,	make	DAs	a	promising	approach	for	the	400	
integration	of	heterogeneous	data	types.	We	find	that	ensembles	of	DAs	construct	clearer	401	
features	that	more	robustly	capture	biological	processes.	Ultimately,	we	expect	unsupervised	402	
algorithms	to	be	most	helpful	when	they	lead	users	to	discover	new	underlying	mechanisms,	403	
which	require	models	that	are	accurate,	robust,	and	interpretable.		404	
	405	
Acknowledgements	406	
This	work	was	supported	in	part	by	a	grant	from	the	Gordon	and	Betty	Moore	Foundation	407	
(GBMF	4552)	to	CSG.	This	work	was	supported	by	National	Institutes	of	Health	(NIH)	grant	RO1-408	
AI091702	to	DAH.	MTL	is	an	investigator	of	the	Howard	Hughes	Medical	Institute.		This	work	409	
was	supported	by	a	pilot	grant	from	the	Cystic	Fibrosis	Foundation	(STANTO15R0)	to	CSG	and	410	
DAH.	The	authors	would	like	to	thank	Gregory	Way	and	René	Zelaya	for	helpful	code	review.	411	
The	authors	also	would	like	to	thank	Anastasia	Baryshnikova	for	providing	critical	feedback	on	a	412	
preprint	of	this	work.	413	
	414	
Author	contributions	415	
JT,	DAH	and	CSG	conceived	and	designed	the	research.	JT,	GD	and	KMC	performed	416	
computational	analyses.	GD,	KAL	and	CEP	performed	molecular	experiments.	KC,	BP	and	MTL	417	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


constructed	and	contributed	the	histidine	kinase	knock	out	collection.	JT,	GD,	KMC,	DAH	and	418	
CSG	wrote	the	manuscript,	and	KAL,	CEP,	KMC,	KD,	BP	and	MTL	provided	critical	feedback. 419	
	420	
Conflict	of	interest	421	
The	authors	have	no	conflicts	of	interest	to	report.	422	
	423	
Reference	424	
Alter,	O.,	Brown,	P.O.,	and	Botstein,	D.	(2000).	Singular	value	decomposition	for	genome-wide	425	

expression	data	processing	and	modeling.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	97,	10101–6.	426	
Ashburner,	M.,	Ball,	C.A.,	Blake,	J.A.,	Botstein,	D.,	Butler,	H.,	Cherry,	J.M.,	Davis,	A.P.,	Dolinski,	K.,	427	

Dwight,	S.S.,	Eppig,	J.T.,	et	al.	(2000).	Gene	Ontology:	tool	for	the	unification	of	biology.	428	
Nat.	Genet.	25,	25–29.	429	

Beaulieu-Jones,	B.K.,	Greene,	C.S.,	and	Pooled	Resource	Open-Access	ALS	Clinical	Trials	430	
Consortium	(2016).	Semi-supervised	learning	of	the	electronic	health	record	for	phenotype	431	
stratification.	J.	Biomed.	Inform.	64,	168–178.	432	

Beaulieu-Jones,	B.K.,	and	Moore,	J.H.	(2017).	MISSING	DATA	IMPUTATION	IN	THE	ELECTRONIC	433	
HEALTH	RECORD	USING	DEEPLY	LEARNED	AUTOENCODERS,	in:	Biocomputing	2017.	434	
WORLD	SCIENTIFIC,	pp.	207–218.	435	

Bengio,	Y.,	Courville,	A.,	and	Vincent,	P.	(2013).	Representation	Learning:	A	Review	and	New	436	
Perspectives.	IEEE	Trans.	Pattern	Anal.	Mach.	Intell.	35,	1798–1828.	437	

Bertani,	G.	(2004).	Lysogeny	at	mid-twentieth	century:	P1,	P2,	and	other	experimental	systems.	438	
J.	Bacteriol.	186,	595–600.	439	

Bielecki,	P.,	Jensen,	V.,	Schulze,	W.,	Gödeke,	J.,	Strehmel,	J.,	Eckweiler,	D.,	Nicolai,	T.,	Bielecka,	440	
A.,	Wille,	T.,	Gerlach,	R.G.,	et	al.	(2015).	Cross	talk	between	the	response	regulators	PhoB	441	
and	TctD	allows	for	the	integration	of	diverse	environmental	signals	in	Pseudomonas	442	
aeruginosa.	Nucleic	Acids	Res.	43,	6413–25.	443	

Blus-Kadosh,	I.,	Zilka,	A.,	Yerushalmi,	G.,	and	Banin,	E.	(2013).	The	effect	of	pstS	and	phoB	on	444	
quorum	sensing	and	swarming	motility	in	Pseudomonas	aeruginosa.	PLoS	One	8,	e74444.	445	

Chen,	L.,	Xuan,	J.,	Wang,	C.,	Shih,	I.-M.,	Wang,	Y.,	Zhang,	Z.,	Hoffman,	E.,	Clarke,	R.,	Devore,	J.,	446	
Peck,	R.,	et	al.	(2008).	Knowledge-guided	multi-scale	independent	component	analysis	for	447	
biomarker	identification.	BMC	Bioinformatics	9,	416.	448	

Damron,	F.H.,	Barbier,	M.,	McKenney,	E.S.,	Schurr,	M.J.,	and	Goldberg,	J.B.	(2013).	Genes	449	
required	for	and	effects	of	alginate	overproduction	induced	by	growth	of	Pseudomonas	450	
aeruginosa	on	Pseudomonas	isolation	agar	supplemented	with	ammonium	metavanadate.	451	
J.	Bacteriol.	195,	4020–36.	452	

Damron,	F.H.,	Owings,	J.P.,	Okkotsu,	Y.,	Varga,	J.J.,	Schurr,	J.R.,	Goldberg,	J.B.,	Schurr,	M.J.,	and	453	
Yu,	H.D.	(2012).	Analysis	of	the	Pseudomonas	aeruginosa	regulon	controlled	by	the	sensor	454	
kinase	KinB	and	sigma	factor	RpoN.	J.	Bacteriol.	194,	1317–30.	455	

Donato,	M.,	Xu,	Z.,	Tomoiaga,	A.,	Granneman,	J.G.,	Mackenzie,	R.G.,	Bao,	R.,	Than,	N.G.,	456	
Westfall,	P.H.,	Romero,	R.,	and	Draghici,	S.	(2013).	Analysis	and	correction	of	crosstalk	457	
effects	in	pathway	analysis.	Genome	Res.	23,	1885–93.	458	

Edgar,	R.	(2002).	Gene	Expression	Omnibus:	NCBI	gene	expression	and	hybridization	array	data	459	
repository.	Nucleic	Acids	Res.	30,	207–210.	460	

Engreitz,	J.M.,	Daigle,	B.J.,	Marshall,	J.J.,	and	Altman,	R.B.	(2010).	Independent	component	461	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


analysis:	mining	microarray	data	for	fundamental	human	gene	expression	modules.	J.	462	
Biomed.	Inform.	43,	932–44.	463	

Fisher,	S.L.,	Jiang,	W.,	Wanner,	B.L.,	and	Walsh,	C.T.	(1995).	Cross-talk	between	the	histidine	464	
protein	kinase	VanS	and	the	response	regulator	PhoB.	Characterization	and	identification	465	
of	a	VanS	domain	that	inhibits	activation	of	PhoB.	J.	Biol.	Chem.	270,	23143–9.	466	

Frigyesi,	A.,	Veerla,	S.,	Lindgren,	D.,	Höglund,	M.,	Quackenbush,	J.,	Jutten,	C.,	Herault,	J.,	467	
Chiappetta,	P.,	Roubaud,	M.,	Torrésani,	B.,	et	al.	(2006).	Independent	component	analysis	468	
reveals	new	and	biologically	significant	structures	in	microarray	data.	BMC	Bioinformatics	469	
7,	290.	470	

Gillis,	J.,	and	Pavlidis,	P.	(2013).	Assessing	identity,	redundancy	and	confounds	in	Gene	Ontology	471	
annotations	over	time.	Bioinformatics	29,	476–82.	472	

Gong,	T.,	Xuan,	J.,	Wang,	C.,	Li,	H.,	Hoffman,	E.,	Clarke,	R.,	and	Wang,	Y.	(2007).	Gene	module	473	
identification	from	microarray	data	using	nonnegative	independent	component	analysis.	474	
Gene	Regul.	Syst.	Bio.	1,	349–63.	475	

Greene,	C.S.,	Foster,	J.A.,	Stanton,	B.A.,	Hogan,	D.A.,	and	Bromberg,	Y.	(2016).	Computational	476	
Approaches	to	Study	Microbes	and	Microbiomes.	Pac	Sym	Biocomput	557–567.	477	

Greene,	C.S.,	and	Troyanskaya,	O.G.	(2012).	Accurate	evaluation	and	analysis	of	functional	478	
genomics	data	and	methods.	Ann.	N.	Y.	Acad.	Sci.	1260,	95–100.	479	

Ha,	D.-G.,	Richman,	M.E.,	and	O’Toole,	G.A.	(2014).	Deletion	mutant	library	for	investigation	of	480	
functional	outputs	of	cyclic	diguanylate	metabolism	in	Pseudomonas	aeruginosa	PA14.	481	
Appl.	Environ.	Microbiol.	80,	3384–93.	482	

Hampel,	K.J.,	LaBauve,	A.E.,	Meadows,	J.A.,	Fitzsimmons,	L.F.,	Nock,	A.M.,	and	Wargo,	M.J.	483	
(2014).	Characterization	of	the	GbdR	regulon	in	Pseudomonas	aeruginosa.	J.	Bacteriol.	196,	484	
7–15.	485	

Himberg,	J.,	Hyvärinen,	A.,	and	Esposito,	F.	(2004).	Validating	the	independent	components	of	486	
neuroimaging	time	series	via	clustering	and	visualization.	Neuroimage	22,	1214–1222.	487	

Jensen,	V.,	Lons,	D.,	Zaoui,	C.,	Bredenbruch,	F.,	Meissner,	A.,	Dieterich,	G.,	Munch,	R.,	and	488	
Haussler,	S.	(2006).	RhlR	Expression	in	Pseudomonas	aeruginosa	Is	Modulated	by	the	489	
Pseudomonas	Quinolone	Signal	via	PhoB-Dependent	and	-Independent	Pathways.	J.	490	
Bacteriol.	188,	8601–8606.	491	

Jiang,	Y.,	Oron,	T.R.,	Clark,	W.T.,	Bankapur,	A.R.,	D’Andrea,	D.,	Lepore,	R.,	Funk,	C.S.,	Kahanda,	I.,	492	
Verspoor,	K.M.,	Ben-Hur,	A.,	et	al.	(2016).	An	expanded	evaluation	of	protein	function	493	
prediction	methods	shows	an	improvement	in	accuracy.	Genome	Biol.	17,	184.	494	

Kanehisa,	M.,	and	Goto,	S.	(2000).	KEGG:	kyoto	encyclopedia	of	genes	and	genomes.	Nucleic	495	
Acids	Res.	28,	27–30.	496	

King,	E.O.,	Ward,	M.K.,	and	Raney,	D.E.	(1954).	Two	simple	media	for	the	demonstration	of	497	
pyocyanin	and	fluorescin.	J.	Lab.	Clin.	Med.	44,	301–7.	498	

Lundgren,	B.R.,	Thornton,	W.,	Dornan,	M.H.,	Villegas-Peñaranda,	L.R.,	Boddy,	C.N.,	and	Nomura,	499	
C.T.	(2013).	Gene	PA2449	is	essential	for	glycine	metabolism	and	pyocyanin	biosynthesis	in	500	
Pseudomonas	aeruginosa	PAO1.	J.	Bacteriol.	195,	2087–100.	501	

Lutter,	D.,	Langmann,	T.,	Ugocsai,	P.,	Moehle,	C.,	Seibold,	E.,	Splettstoesser,	W.D.,	Gruber,	P.,	502	
Lang,	E.W.,	and	Schmitz,	G.	(2009).	Analyzing	time-dependent	microarray	data	using	503	
independent	component	analysis	derived	expression	modes	from	human	macrophages	504	
infected	with	F.	tularensis	holartica.	J.	Biomed.	Inform.	42,	605–611.	505	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


Ma,	S.,	and	Kosorok,	M.R.	(2009).	Identification	of	differential	gene	pathways	with	principal	506	
component	analysis.	Bioinformatics	25,	882–9.	507	

Miller,	J.H.	(1972).	Experiments	in	molecular	genetics.	Cold	Spring	Harbor	Laboratory.	508	
Miotto,	R.,	Li,	L.,	Kidd,	B.A.,	and	Dudley,	J.T.	(2016).	Deep	Patient:	An	Unsupervised	509	

Representation	to	Predict	the	Future	of	Patients	from	the	Electronic	Health	Records.	Sci.	510	
Rep.	6,	26094.	511	

Monti,	S.,	Tamayo,	P.,	Mesirov,	J.,	and	Golub,	T.	(2003).	Consensus	clustering:	a	resampling-512	
based	method	for	class	discovery	and	visualization	of	gene	expression	microarray	data.	513	
Mach.	Learn.	52,	91–118.	514	

Neidhardt,	F.C.,	Bloch,	P.L.,	and	Smith,	D.F.	(1974).	Culture	medium	for	enterobacteria.	J.	515	
Bacteriol.	119,	736–47.	516	

Ninfa,	A.J.,	Ninfa,	E.G.,	Lupas,	A.N.,	Stock,	A.,	Magasanik,	B.,	and	Stock,	J.	(1988).	Crosstalk	517	
between	bacterial	chemotaxis	signal	transduction	proteins	and	regulators	of	transcription	518	
of	the	Ntr	regulon:	evidence	that	nitrogen	assimilation	and	chemotaxis	are	controlled	by	a	519	
common	phosphotransfer	mechanism.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	85,	5492–6.	520	

Park,	H.-S.,	and	Jun,	C.-H.	(2009).	A	simple	and	fast	algorithm	for	K-medoids	clustering.	Expert	521	
Syst.	Appl.	36,	3336–3341.	522	

Piotrowski,	M.,	Forster,	T.,	Dobrezelecki,	B.,	Sloan,	T.M.,	Mitchell,	L.,	Ghazal,	P.,	Mewsissen,	M.,	523	
Petrou,	S.,	Trew,	A.,	and	Hill,	J.	(2011).	Optimisation	and	parallelisation	of	the	partitioning	524	
around	medoids	function	in	R,	in:	2011	International	Conference	on	High	Performance	525	
Computing	&	Simulation.	IEEE,	pp.	707–713.	526	

Podgornaia,	A.I.,	and	Laub,	M.T.	(2013).	Determinants	of	specificity	in	two-component	signal	527	
transduction.	Curr.	Opin.	Microbiol.	16,	156–62.	528	

Raychaudhuri,	S.,	Stuart,	J.M.,	and	Altman,	R.B.	(2000).	Principal	components	analysis	to	529	
summarize	microarray	experiments:	application	to	sporulation	time	series.	Pac.	Symp.	530	
Biocomput.	455–66.	531	

Roden,	J.C.,	King,	B.W.,	Trout,	D.,	Mortazavi,	A.,	Wold,	B.J.,	Hart,	C.E.,	Tavazoie,	S.,	Hughes,	J.,	532	
Campbell,	M.,	Cho,	R.,	et	al.	(2006).	Mining	gene	expression	data	by	interpreting	principal	533	
components.	BMC	Bioinformatics	7,	194.	534	

Rustici,	G.,	Kolesnikov,	N.,	Brandizi,	M.,	Burdett,	T.,	Dylag,	M.,	Emam,	I.,	Farne,	A.,	Hastings,	E.,	535	
Ison,	J.,	Keays,	M.,	et	al.	(2013).	ArrayExpress	update--trends	in	database	growth	and	links	536	
to	data	analysis	tools.	Nucleic	Acids	Res.	41,	D987-90.	537	

Santos-Beneit,	F.	(2015).	The	Pho	regulon:	a	huge	regulatory	network	in	bacteria.	Front.	538	
Microbiol.	6,	402.	539	

Schnoes,	A.M.,	Ream,	D.C.,	Thorman,	A.W.,	Babbitt,	P.C.,	and	Friedberg,	I.	(2013).	Biases	in	the	540	
experimental	annotations	of	protein	function	and	their	effect	on	our	understanding	of	541	
protein	function	space.	PLoS	Comput.	Biol.	9,	e1003063.	542	

Tan,	J.,	Doing,	G.,	Lewis,	K.A.,	Price,	C.E.,	Chen,	K.M.,	Cady,	K.C.,	Perchuk,	B.,	Laub,	M.T.,	Hogan,	543	
D.A.,	and	Greene,	C.S.	(2016a).	eADAGE-1.0.0rc2.	Zenodo.	544	

Tan,	J.,	Hammond,	J.H.,	Hogan,	D.A.,	and	Greene,	C.S.	(2016b).	ADAGE-Based	Integration	of	545	
Publicly	Available	Pseudomonas	aeruginosa	Gene	Expression	Data	with	Denoising	546	
Autoencoders	Illuminates	Microbe-Host	Interactions.	mSystems	1,	e00025-15.	547	

Tan,	J.,	Ung,	M.,	Cheng,	C.,	and	Greene,	C.S.	(2015).	Unsupervised	feature	construction	and	548	
knowledge	extraction	from	genome-wide	assays	of	breast	cancer	with	denoising	549	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


autoencoders.	Pac.	Symp.	Biocomput.	20,	132–43.	550	
Thompson,	J.A.,	Tan,	J.,	and	Greene,	C.S.	(2016).	Cross-platform	normalization	of	microarray	551	

and	RNA-seq	data	for	machine	learning	applications.	PeerJ	4,	e1621.	552	
Verhamme,	D.T.,	Arents,	J.C.,	Postma,	P.W.,	Crielaard,	W.,	and	Hellingwerf,	K.J.	(2002).	553	

Investigation	of	in	vivo	cross-talk	between	key	two-component	systems	of	Escherichia	coli.	554	
Microbiology	148,	69–78.	555	

Vincent,	P.,	Larochelle,	H.,	Bengio,	Y.,	and	Manzagol,	P.-A.	(2008).	Extracting	and	composing	556	
robust	features	with	denoising	autoencoders,	in:	Proceedings	of	the	25th	International	557	
Conference	on	Machine	Learning	-	ICML	’08.	ACM	Press,	New	York,	New	York,	USA,	pp.	558	
1096–1103.	559	

Vincent,	P.,	Larochelle,	H.,	Lajoie,	I.,	Bengio,	Y.,	and	Manzagol,	P.-A.	(2010).	Stacked	denoising	560	
autoencoders:	Learning	useful	representations	in	a	deep	network	with	a	local	denoising	561	
criterion.	J.	Mach.	Learn.	Res.	11,	3371–3408.	562	

Wanner,	B.L.,	and	Chang,	B.D.	(1987).	The	phoBR	operon	in	Escherichia	coli	K-12.	J.	Bacteriol.	563	
169,	5569–74.	564	

Wargo,	M.J.,	Gross,	M.J.,	Rajamani,	S.,	Allard,	J.L.,	Lundblad,	L.K.A.,	Allen,	G.B.,	Vasil,	M.L.,	565	
Leclair,	L.W.,	and	Hogan,	D.A.	(2011).	Hemolytic	phospholipase	C	inhibition	protects	lung	566	
function	during	Pseudomonas	aeruginosa	infection.	Am.	J.	Respir.	Crit.	Care	Med.	184,	567	
345–54.	568	

Wargo,	M.J.,	Ho,	T.C.,	Gross,	M.J.,	Whittaker,	L.A.,	and	Hogan,	D.A.	(2009).	GbdR	regulates	569	
Pseudomonas	aeruginosa	plcH	and	pchP	transcription	in	response	to	choline	catabolites.	570	
Infect.	Immun.	77,	1103–11.	571	

Wilkerson,	M.D.,	and	Hayes,	D.N.	(2010).	ConsensusClusterPlus:	a	class	discovery	tool	with	572	
confidence	assessments	and	item	tracking.	Bioinformatics	26,	1572–3.	573	

Yu,	B.	(2013).	Stability.	Bernoulli	19,	1484–1500.	574	
Zaborin,	A.,	Romanowski,	K.,	Gerdes,	S.,	Holbrook,	C.,	Lepine,	F.,	Long,	J.,	Poroyko,	V.,	Diggle,	575	

S.P.,	Wilke,	A.,	Righetti,	K.,	et	al.	(2009).	Red	death	in	Caenorhabditis	elegans	caused	by	576	
Pseudomonas	aeruginosa	PAO1.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	106,	6327–32.	577	

	578	
Figure	Legends	579	
Figure	1:	ADAGE	model	and	signature	definition.	580	
A	 In	an	ADAGE	model,	every	gene	contributes	a	weight	value	to	every	node.	The	strength	581	
of	weight	values	is	reflected	by	gene-node	edge.	Orange	edges	indicate	high	positive	weight.	582	
Blue	edges	indicate	high	negative	weight.	Dotted	edges	show	low	positive	or	negative	weights.	583	
B	 The	distribution	of	a	node’s	weight	matrix	(Node1	as	an	example)	is	roughly	normally	584	
distributed	and	centered	at	zero.	Genes	with	weights	higher	than	the	positive	high-weight	(HW)	585	
cutoff	(GeneE	and	GeneA)	form	the	gene	signature	Node1pos.	Similarly,	genes	with	weights	586	
lower	than	the	negative	HW	cutoff	(GeneC)	form	the	gene	signature	Node1neg.	587	
	588	
Figure	2:	The	construction	and	performance	of	eADAGE.		589	
A	 eADAGE	construction	workflow.	100	individual	ADAGE	models	were	built	using	the	same	590	
input	dataset	(step	1).	Nodes	from	all	models	were	extracted	(step	2)	and	clustered	based	on	591	
the	similarities	in	their	associated	weight	vectors	(step	3).	Nodes	derived	from	different	models	592	
were	rearranged	by	their	clustering	assignments	(step	4).	Weight	vectors	from	nodes	in	the	593	
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same	cluster	were	averaged	and	thus	becoming	the	final	weight	vector	of	a	newly	constructed	594	
node	in	an	eADAGE	model	(step5).		595	
B	 KEGG	pathway	coverage	comparison	between	individual	ADAGE	and	ensemble	ADAGE.	596	
eADAGE	models	(n=10)	covers	significantly	more	KEGG	pathways	than	both	corADAGE	(n=10)	597	
and	ADAGE	(n=1000).		598	
C	 The	enrichment	significance	of	three	example	KEGG	pathways	in	different	models.	The	599	
three	pathways	show	different	trends	as	model	size	increases	in	individual	ADAGE,	however,	600	
their	median	significance	levels	in	eADAGE	are	comparable	or	better	than	all	individual	models	601	
with	different	sizes.	The	grey	dotted	line	indicates	FDR	q-value	of	0.05	in	pathway	enrichment.		602	
D	 The	distribution	of	KEGG	pathway	coverage	rate	of	ADAGE	(n=1000)	and	eADAGE	(n=10).	603	
eADAGE	models	have	larger	proportion	on	the	high	coverage	side	than	ADAGE	models,	604	
indicating	pathways	were	captured	more	robustly	in	eADAGE.	605	
E	 Comparison	among	PCA,	ICA,	and	eADAGE	in	KEGG	pathway	coverage	at	different	606	
significance	levels.	eADAGE	outperforms	PCA	at	all	significance	levels.	eADAGE	and	ICA	show	607	
similar	pathway	coverage	at	the	cutoff	q-value	=	0.05.	However,	ICA	covers	less	pathways	than	608	
eADAGE	as	the	significance	cutoff	becomes	more	stringent.		609	
	610	
Figure	3:	eADAGE	signatures	that	show	medium-specific	patterns.	611	
A	 Activity	of	Node147pos	in	M9-based	media.	Its	activity	is	high	in	M9	with	612	
phosphatidylcholine	but	low	in	other	M9-based	media.	613	
A	 Activity	of	Node164pos	in	all	media.	NGM+<0.1phosphate,	peptone,	and	King’s	A	media	614	
have	evident	elevation	in	Node164pos’s	activity.	PIA	medium	show	a	wide	range	in	615	
Node164pos’s	activity.	All	other	media	have	very	low	activities.	616	
B	 Expression	heatmaps	of	genes	in	Node164pos	across	samples	in	NGM+<0.1phosphate,	617	
peptone,	King’s	A,	and	PIA	media.	Heatmap	color	range	is	determined	by	the	Z-scored	gene	618	
expression	of	all	samples	in	the	compendium.	These	genes	are	highly	expressed	in	all	samples	619	
grown	on	NGM	+	<0.1mM	phosphate,	peptone,	King’s	A,	and	half	of	samples	on	PIA,	but	not	620	
expressed	in	samples	grown	on	NGM	+	25mM	phosphate.	621	
	622	
Figure	4:	PhoA	activity,	as	seen	by	the	colorimetric	BCIP	assay	in	various	media		623	
A	 PhoA	activity,	as	seen	by	the	blue-colored	product	of	BCIP	cleavage,	is	dependent	on	624	
low	phosphate	concentrations,	phoB,	phoR	and,	in	NGM,	kinB.		625	
B	 PhoA	is	active	in	King’s	A,	Peptone	and	PIA	and	is	dependent	on	phoB	and	phoR	on	626	
King’s	A	and	peptone	but	dependent	on	kinB	as	well	on	PIA	at	16	hours.	627	
C	 PhoA	is	active	in	King’s	A,	Peptone	and	PIA	and	is	dependent	on	phoB,	but	no	longer	628	
phoR,	while	still	dependent	on	kinB	on	PIA	after	32	hours.	629	
D	 PhoA	activity	is	dependent	on	phosphate	concentrations	<	0.6	mM,	phoB,	phoR	and	kinB	630	
as	well	at	0.5	mM	phosphate	in	MOPS.	Concentration	0.2	mM	(not	shown)	mimics	0.1mM	and	631	
concentrations	0.7mM	–	0.9mM	(not	shown)	mimic	1.0	mM.	632	
	633	
METHODS	634	
	635	
Data	processing	636	
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We	followed	the	same	procedures	for	data	collection,	processing,	and	normalization	as	(Tan	et	637	
al.,	2016b)	and	updated	the	P.	aeruginosa	gene	expression	compendium	to	include	all	datasets	638	
on	GPL84	platform	from	the	ArrayExpress	database	(Rustici	et	al.,	2013)	as	of	31	July	2015.	This	639	
P.	aeruginosa	compendium	contains	125	datasets	with	1051	individual	genome-wide	assays.	640	
Processed	expression	values	of	the	∆tctD	RNAseq	dataset	were	downloaded	from	ArrayExpress	641	
(E-GEOD-64056)	and	normalized	to	the	range	of	the	compendium	using	TDM	(Thompson	et	al.,	642	
2016).	We	provide	the	P.	aeruginosa	expression	compendium	(Dataset	S1)	along	with	all	the	643	
code	used	in	this	paper	(Tan	et	al.,	2016a).	The	eADAGE	repository	is	also	tracked	under	version	644	
control	at	https://bitbucket.org/greenelab/eadage.	645	
	646	
Construction	of	ADAGE	models	647	
We	constructed	ADAGE	models	as	described	in	(Tan	et	al.,	2016b).	To	summarize	the	process	648	
and	outputs,	we	constructed	a	denoising	autoencoder	for	the	gene	expression	compendium.	649	
Denoising	autoencoders	model	the	data	in	a	lower	dimension	than	the	input	space,	and	the	650	
models	are	trained	with	random	gene	expression	measurements	set	to	zero.	Thus	an	ADAGE	651	
model	must	learn	gene-gene	dependencies	to	fill	in	this	missing	information.	Once	the	ADAGE	652	
model	is	trained,	each	node	in	the	hidden	layer	contains	a	weight	vector.	These	positive	and	653	
negative	weights	represent	the	strength	of	each	gene’s	connection	to	that	node.	654	
	655	
Gene	signatures	as	sign-specific	high-weight	gene	sets	656	
In	previous	work	(Tan	et	al.,	2016b)	we	defined	high-weight	(HW)	genes	as	those	in	the	657	
extremes	of	the	weight	distribution	on	the	positive	or	negative	side	of	a	node.	Here,	we	use	a	658	
more	granular	definition	that	accounts	for	sign	specificity.	Each	node’s	gene	weights	are	659	
approximately	normal	and	centered	at	zero	in	ADAGE	models	(Tan	et	al.,	2016b,	2015).	We	660	
defined	positive	HW	genes	as	those	that	were	more	than	2.5	standard	deviations	from	the	661	
mean	on	the	positive	side,	and	negative	HW	genes	as	those	that	were	more	than	2.5	standard	662	
deviations	from	the	mean	on	the	negative	side.	After	this	split,	a	model	with	n	nodes	provides	663	
2n	gene	signatures.	Because	a	node	is	simply	named	by	the	order	that	it	occurs	in	a	model,	we	664	
named	two	gene	signatures	derived	from	one	node	as	“NodeXXpos”	and	“NodeXXneg”.	665	
	666	
KEGG	pathway	and	GO-BP	term	enrichment	analysis		667	
To	evaluate	the	biological	relevance	of	gene	signatures	extracted	by	an	ADAGE	model,	we	668	
tested	how	they	related	to	known	KEGG	pathways	(Kanehisa	and	Goto,	2000).	We	tested	a	669	
signature’s	association	with	each	KEGG	pathway	using	hypergeometric	test	and	corrected	the	670	
p-value	by	the	number	of	KEGG	pathways	we	tested	following	the	Benjamini–Hochberg	671	
procedure.	We	used	a	false	discovery	rate	of	0.05	as	the	significance	cutoff.	The	same	672	
procedure	was	repeated	using	GO-BP	terms.	We	downloaded	biological	process	GO	terms	from	673	
pseudomonas.com	and	only	used	manually	curated	terms.	For	KEGG	and	GO	terms,	we	only	674	
considered	terms	with	more	than	5	genes	and	less	than	100	genes	as	meaningful	pathways	or	675	
processes.	676	
	677	
Genes	can	be	annotated	to	multiple	pathways.	To	control	for	this	effect	in	our	analysis,	we	also	678	
performed	a	parallel	analysis	after	applying	crosstalk	correction	as	described	in	(Donato	et	al.,	679	
2013).	This	approach	uses	expectation	maximization	to	map	each	gene	to	the	pathway	in	which	680	
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it	has	the	greatest	predicted	impact.	A	gene-to-pathway	membership	matrix,	defined	using	681	
KEGG	pathway	annotations,	initially	makes	the	assumption	that	each	gene’s	role	in	all	of	its	682	
assigned	pathways	remains	constant	independent	of	context.	We	then	applied	pathway	683	
crosstalk	correction	using	genes’	weights	for	each	node	in	the	ADAGE	model.	We	used	the	684	
expectation	maximization	algorithm	to	maximize	the	log-likelihood	of	observing	the	685	
membership	matrix	given	each	node’s	weight	vector.	This	process	inferred	an	underlying	gene-686	
to-pathway	impact	matrix	and	iteratively	estimated	the	probability	that	a	particular	gene	g	687	
contributed	the	greatest	fraction	of	its	impact	to	some	pathway	P.	Upon	convergence,	we	688	
assigned	each	gene	to	the	pathway	in	which	it	had	the	maximum	impact.	The	resulting	pathway	689	
definitions	do	not	share	genes.	We	then	used	these	corrected	definitions	for	an	analysis	parallel	690	
to	the	KEGG	process	described	above.	691	
	692	
Reconstruction	error	calculation	693	
The	training	objective	of	ADAGE	is	to,	given	a	sample	with	added	noise,	return	the	originally	694	
measured	expression	values.	The	error	between	the	reconstructed	data	and	the	initial	data	is	695	
the	‘reconstruction	error.’	To	summarize	the	difference	over	all	genes	we	used	cross-entropy	696	
between	the	original	sample	and	the	reconstruction,	which	has	been	widely	used	with	these	697	
methods	and	in	this	domain	(Tan	et	al.,	2016b;	Vincent	et	al.,	2008).	This	matches	the	statistic	698	
used	during	training	of	the	model.	To	calculate	reconstruction	error	for	a	model,	we	use	the	699	
mean	reconstruction	error	across	samples.	700	
	701	
Model	size	and	sample	size	heuristics	702	
One	important	parameter	of	a	denoising	autoencoder	model	is	the	number	of	nodes	in	the	703	
hidden	layer,	which	we	refer	to	as	the	model	size.	To	evaluate	the	impact	of	model	size	and	704	
choose	the	most	appropriate	size,	we	built	100	ADAGE	models	at	each	model	size	of	10,	50,	100,	705	
200,	300,	500,	750,	and	1000,	using	different	random	seeds.	The	random	seed	determines	the	706	
initialization	values	in	the	weight	matrix	and	bias	vectors	in	ADAGE	construction,	so	different	707	
random	seeds	will	result	in	models	that	reach	different	local	minima.	Other	training	parameters	708	
were	set	to	the	values	previously	identified	as	suitable	for	a	gene	expression	compendium	(Tan	709	
et	al.,	2015).	In	total,	800	ADAGE	models,	i.e.	100	at	each	model	size,	were	generated	in	the	710	
model	size	evaluation	experiment.	711	
	712	
To	evaluate	the	impact	of	sample	size	on	the	performance	of	ADAGE	models,	we	randomly	713	
generated	subsets	of	the	P.	aeruginosa	expression	compendium	with	sample	size	of	100,	200,	714	
500,	and	800.	We	then	trained	100	ADAGE	models	at	each	sample	size,	each	with	a	different	715	
combination	of	10	different	random	subsets	and	10	different	random	training	initializations.	To	716	
evaluate	each	model,	we	randomly	selected	200	samples	not	used	during	training	as	its	testing	717	
set.	We	performed	this	subsampling	analysis	at	model	size	50	and	300.	In	total,	800	ADAGE	718	
models	were	built	in	the	sample	size	evaluation	experiment.		719	
	720	
The	impacts	of	model	size	and	sample	size	on	model	selection	were	evaluated	in	the	721	
supplement	(Figure	S4).	For	subsequent	steps,	we	set	the	model	size	to	300	because	it	was	the	722	
size	that	was	best	supported	in	the	current	P.	aeruginosa	compendium	by	this	evaluation.	723	
	724	
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Construction	of	eADAGE	models	725	
We	constructed	ensemble	ADAGE	(eADAGE)	models	by	combining	many	individual	ADAGE	726	
models	in	to	a	single	model.	For	each	eADAGE	model	we	combined	100	individual	ADAGE	727	
models.	The	100	models	were	trained	with	identical	parameters	but	distinct	random	seeds.	For	728	
an	eADAGE	model	of	size	300,	we	trained	100	individual	models	with	300	nodes	each,	which	729	
provided	30000	total	nodes.	Each	node	has	a	weight	vector.	We	have	previously	observed	that	730	
high-weight	genes	provided	the	most	information	to	each	node	(Tan	et	al.,	2016b),	so	we	731	
calculated	a	weighted	Pearson	correlation	between	each	node’s	weight	vectors.	Our	weighted	732	
Pearson	correlation	used	(|node1	weight|+|node2	weight|)/2	as	the	weight	function	for	each	733	
gene.	We	compared	this	to	an	unweighted	Pearson	correlation	(corADAGE)	as	well	a	baseline	734	
ADAGE	model.	735	
	736	
After	calculating	correlation	(weighted	for	eADAGE	and	unweighted	for	corADAGE),	we	737	
converted	the	correlation	to	distance	by	calculating	(1-	correlation)/2.	This	provided	a	738	
30000*30000	distance	matrix	storing	distances	between	every	two	nodes.	We	clustered	this	739	
distance	matrix	using	the	Partition	Around	Medoids	(PAM)	clustering	algorithm	(Park	and	Jun,	740	
2009).We	implemented	clustering	in	R	using	the	ConsensusClusterPlus	package	(Wilkerson	and	741	
Hayes,	2010)	from	Bioconductor	with	the	ppam	function	from	Sprint	package	to	perform	742	
parallel	PAM	(Piotrowski	et	al.,	2011).	We	set	the	number	of	clusters	to	match	the	individual	743	
ADAGE	model	(e.g.	300)	allowing	for	direct	comparison	between	the	eADAGE	and	ADAGE	744	
methods.		745	
	746	
Clustering	assigned	each	node	to	a	cluster	ranging	from	1	to	300.	We	combined	nodes	assigned	747	
to	the	same	cluster	by	calculating	the	average	of	their	weight	vectors.	These	300	averaged	748	
vectors	formed	the	weight	matrix	of	the	eADAGE	model.	Because	the	ensemble	model	is	built	749	
from	the	weight	matrices	of	individual	models,	it	does	not	have	the	parameters	that	form	the	750	
bias	vectors.	We	built	10	eADAGE	and	10	corADAGE	models	from	1000	ADAGE	models	with	751	
each	ensemble	model	built	upon	100	different	individual	models.	The	individual	eADAGE	model	752	
used	for	biological	analysis	in	this	work	was	constructed	with	random	seed	123,	which	was	753	
arbitrarily	chosen	before	model	construction	and	evaluation.	754	
	755	
PCA	and	ICA	model	construction	756	
We	constructed	PCA	and	ICA	models	and	defined	each	model’s	weight	matrix	following	the	757	
same	procedures	in	(Tan	et	al.,	2016b).	To	compare	with	the	300-node	eADAGE,	we	generated	758	
models	of	matching	size	(300	components).	For	ICA,	we	evaluated	10	replicates.	PCA	provides	a	759	
single	model.	PCA	and	ICA	models	were	evaluated	through	the	KEGG	pathway	enrichment	760	
analysis	described	above.		761	
	762	
Activity	calculation	for	a	gene	signature	763	
We	calculated	a	signature’s	activity	for	a	specific	sample	as	𝐴 =𝑊 ∙ 𝐸 𝑁,	in	which	W	is	a	764	
vector	of	genes’	absolute	weights	in	that	signature,	E	is	a	vector	of	genes’	expression	values	765	
after	zero-one	normalization	in	that	sample,	and	N	is	the	number	of	genes.	It	can	be	viewed	as	766	
an	averaged	weighted	sum	of	genes’	expression	levels	for	genes	in	the	signature.	We	767	
normalized	a	signature’s	activity	by	the	number	of	genes	(N)	in	that	signature,	because	different	768	
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signatures	have	different	number	of	genes.	We	use	gene’s	absolute	weight	value	in	activity	769	
calculation	to	keep	activity	positive.	In	this	way,	a	high	activity	indicates	that	majority	of	genes	770	
in	the	signature	are	highly	expressed	in	the	sample	and	a	low	activity	indicates	that	majority	of	771	
genes	in	the	signature	are	lowly	expressed	in	the	sample.	772	
	773	
Media	annotation	of	the	P.	aeruginosa	compendium	774	
A	team	of	P.	aeruginosa	biologists	annotated	the	media	for	all	samples	in	the	compendium	by	775	
referring	to	information	associated	with	each	sample	in	the	ArrayExpress	(Rustici	et	al.,	2013)	776	
and/or	GEO	(Edgar,	2002)	databases	and	along	with	the	original	publication,	if	reported.	Each	777	
sample	was	annotated	by	two	curators	separately.	Conflicting	annotations,	if	they	occurred,	778	
were	resolved	by	a	third	curator.	The	media	annotation	for	all	samples	in	the	compendium	779	
were	provided	in	Table	S1.	780	
	781	
Identification	of	signatures	activated	across	media	782	
We	calculated	an	activation	score	to	identify	gene	signatures	with	dramatically	elevated	or	783	
reduced	activity	in	a	specific	medium.	We	grouped	samples	by	their	medium	annotation.	For	784	
each	gene	signature	and	medium	combination,	we	calculated	the	absolute	difference	between	785	
the	mean	activity	of	the	signature	for	samples	in	that	medium	as	well	as	the	mean	activity	786	
across	the	remainder	of	samples	in	the	compendium.	We	divided	this	difference	in	the	means	787	
by	the	range	of	activity	for	all	samples	across	the	compendium.	This	score	captures	the	788	
proportion	by	which	the	mean	activity	in	a	medium	differs	relative	to	the	total	difference	across	789	
the	compendium.	We	termed	this	ratio	the	activation	score.	790	
	791	
To	identify	the	most	specifically	active	signatures	for	each	medium,	we	constructed	a	table	for	792	
all	pairs	with	an	activation	score	greater	than	or	equal	to	0.4	(Table	S5).	This	was	highly	793	
stringent:	it	captured	only	the	top	2.4%	of	the	potential	signature-medium	pairs	(Figure	S9).	To	794	
identify	pan-media	signatures,	we	limited	signatures	to	those	that	were	active	in	multiple	795	
media	(greater	or	equal	to	0.4)	and	averaged	their	activation	scores	(Table	S7).	These	signatures	796	
exhibit	parallel	patterns	for	multiple	media	across	multiple	distinct	experiments.	797	
	798	
Definition	of	the	PhoB	regulon	799	
A	PhoB	regulon	for	the	PAO1	genome	was	adapted	from	the	PhoB	regulon	of	PA14	in	(Bielecki	800	
et	al.,	2015)	in	order	to	be	comparable	to	models	built	with	PAO1	genome.	Of	the	187	genes	in	801	
the	PA14	regulon,	160	were	in	the	PAO1	reference	genome	(www.pseudomonas.com).		802	
	803	
Strains	and	Media	804	
Strains	used	were	WT,	∆phoB	(DH2633,	O’Toole	lab	collection),	∆phoR	(DH2516)	and	∆kinB	805	
(DH2517),	all	in	the	PA14	background. All	strains	were	maintained	on	LB	with	1.5%	agar	and	806	
grown	at	37	°C.	For	cross-media	and	phosphate	concentration	comparisons,	BCIP	assays	(see	807	
methods	below)	were	conducted	on	different	base	media	with	1.5%	agar	(Fisher):	King’s	A	808	
(Pancreatic	Digest	of	Gelatin	(Difco)	20g/L;	MgCl2	1.4g/L;	K2SO4	10g/L;	Glycerol	10ml/L)	(King	et	809	
al,	1954),	LB	(Tryptone	(Fisher)	10g/L;	Yeast	Extract	(Fisher)	5g/L;	NaCl	5g/L)	(Bertani,	2004),	810	
MOPS	(morpholinepropanesulfonic	acid	40mM;	Glucose	20	ml/L;	K2SO4	2.67mM;	K2HPO2	0mM,	811	
25mM	or	0.1	–	1	mM)	(Neidhardt	et	al.,	1974),	NGM	(Pancreatic	Digest	of	Gelatin	2.5g/L;	812	
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Cholesterol	5mg/L;	NaCl	3g/L;	MgSO4	1mM;	CaCl2	1mM;	KCl	25mM;	Potassium	Phosphate	813	
buffer	pH6	0	or	25	mM)	(Zaborin	et	al.,	2009),	Peptone	(Pancreatic	Digest	of	Gelatin	10g/L;	814	
MgSO4	1.5g/L;	K2SO4	10g/L)	(Lundgren	et	al.,	2013),	Pseudomonas	Isolation	Agar	(PIA,	prepared	815	
as	per	instructions,	BioWorld).	816	
	817	
BCIP	assay	818	
Various	media	were	supplemented	with	5-bromo-4-chloro-3-indolyl	phosphate	(BCIP)	DMF	819	
solution	to	a	final	concentration	of	60	µg/mL.	BCIP	assay	plates	were	inoculated	with	5	µl	of	820	
overnight	P.	aeruginosa	culture	in	LB	broth.	Colonies	were	grown	for	16	hours	at	37	°C	then	821	
matured	at	room	temperature	until	imaging.	Images	were	collected	16	and	32	hours	post	822	
inoculation.	823	
	824	
Screen	of	a	histidine	kinase	mutant	collection	825	
Molecular	techniques	to	construct	the	histidine	kinase	(HK)	knock	out	collection	were	carried	826	
out	as	previously	described	(Ha	et	al.,	2014).	For	each	strain	in	the	HK	collection,	a	BCIP	assay	827	
was	performed	on	PIA.	Plates	were	struck	with	an	overnight	P.	aeruginosa	culture	concentrated	828	
two-fold	by	centrifugation.	Plates	were	incubated	at	37	°C	12-16	hours	and	matured	at	room	829	
temperature	for	an	additional	12-16	hours	alkaline	phosphatase	activity	was	determined	830	
qualitatively,	based	on	blue	color.	831	
	832	
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