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ABSTRACT 

The perceived effort level of an action shapes everyday decisions. Despite the 

importance of these perceptions for decision-making, the behavioral and neural 

representations of the subjective cost of effort are not well understood. While a number 

of studies have implicated anterior cingulate cortex (ACC) in decisions about 

effort/reward trade-offs, none have experimentally isolated effort valuation from reward 

and choice difficulty, a function that is commonly ascribed to this region. We used 

functional magnetic resonance imaging (fMRI) to monitor brain activity while human 

participants engaged in uncertain choices for prospective physical effort. Our task was 

designed to examine effort-based decision making in the absence of reward and 

separated from choice difficulty – allowing us to investigate the brain’s role in effort 

valuation, independent of these other factors. Participants exhibited subjectivity in their 

decision-making, displaying increased sensitivity to changes in subjective effort as 

objective effort levels increased. Analysis of blood-oxygenation level dependent (BOLD) 

activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the 

subjective valuation of prospective effort and ACC encoded choice difficulty. These 

results provide insight into the processes responsible for decision-making regarding 

effort, dissociating the roles of vmPFC and ACC in prospective valuation of effort and 

choice difficulty. 
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INTRODUCTION 

Our decisions are shaped not only by rewards, but also by the perceived level of 

physical effort required to obtain these rewards. Therefore the subjective perception of 

effort plays a critical role in driving choice - if the perceived effort of an action exceeds 

its subjective reward, the decision maker will optimally choose not to perform the action. 

Moreover, the perception of effort impacts everyday decisions in a variety of contexts 

ranging from job search (DellaVigna and Paserman 2005) and performing labor (Abeler 

et al. 2011; Augenblick et al. 2015), to participating in exercise and physical activity 

(Dishman 1991; Sniehotta et al. 2005). However, little is known about the neural 

representation of these subjective effort costs and how they are used by the brain to 

guide fundamental decisions to exert effort. 

 

Subjective value signals for appetitive and aversive stimuli (e.g., money, food, aversive 

foods a liquids) have been found in the ventromedial prefrontal cortex (vmPFC) for both 

decision and outcome values (for comprehensive reviews of this literature see Bartra et 

al. 2013; Clithero and Rangel 2014; O’Doherty 2014). This body of work implicates 

vmPFC in the computation of subjective value across a multitude of stimuli with both 

positive and negative valence. Rather than experimentally separating such rewarding 

stimuli from effort costs, there have been a number of studies in animals (Walton et al. 

2002; Rudebeck et al. 2008; Floresco et al. 2008; Walton et al. 2009; Hillman and Bilkey 

2012) and humans (Croxson et al. 2009; Kurniawan et al. 2010; Prévost et al. 2010; 

Kurniawan et al. 2013; Skvortsova et al. 2014; Klein-Flügge et al. 2016; Chong et al. 

2017) that examine how the brain makes decisions to trade effort for reward.  This work 
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suggests that anterior cingulate cortex (ACC) encodes the valuation of effort costs and 

effort cost trade-offs, both at the time of decision and at the time of effort exertion.  

 

However, a recent series of studies, investigating neuroeconomic choice for prospective 

rewards, has shown that activity in ACC is best described by choice difficulty rather than 

valuation of the options presented (Shenhav et al. 2014; Shenhav et al. 2016). These 

experiments examined decisions regarding foraging costs and were careful to design 

their tasks such that prospective values were orthogonal to choice difficulty (i.e., the 

proximity in value between alternatives). From these studies it has been suggested that 

brain activity related to executive processing (e.g. choice difficulty) could confound 

valuation signals in ACC and throughout the brain in a variety of experimental contexts 

(Shenhav et al. 2014; Hayden and Heilbronner 2014; Westbrook and Braver 2015; Ebitz 

and Hayden 2016; Kolling et al. 2016b).  

 

Thus, there are two potential limitations to the interpretation of previous work implicating 

a role for ACC in encoding effort costs: (i) effort costs were not experimentally isolated 

from reward; and (ii) effort costs may be correlated with choice. While a key feature of 

previous effort-based choice paradigms was that they examined decisions between 

effort and reward, they were not designed to experimentally isolate subjective effort 

costs from monetary or other reward-based incentives. As such, it is difficult to know if 

the identified neural signals are related to effort valuation per se, or multiplexed signals 

related to the context of effort-reward decision-making. Moreover, none of the previous 

studies of effort-based decision-making were designed to orthogonalize choice difficulty 
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and effort value, which leads to the possibility that the ACC activity reported in these 

works could be related to the cognitive control associated with choice difficulty regarding 

decisions about effort and not effort valuation per se. In this study we attempted to 

address these limitations in the understanding of effort-based decision-making. 

 

Here we investigated the behavioral representations of subjective effort cost and how 

these effort preferences are encoded in the brain’s valuation and decision-making 

circuitry. We had participants perform a novel effort-choice task while their neural 

activity was recorded with functional magnetic resonance imaging (fMRI). Our task did 

not involve monetary earnings, which allowed us to experimentally isolate effort cost 

(i.e., choices did not involve a trade-off between effort and reward). Furthermore, the 

effort choices presented were designed to experimentally separate choice difficulty and 

effort value to better understand the specific role ACC plays in effort-based decision-

making. We hypothesized that, in a similar fashion to monetary rewards (Kahneman 

and Tversky 1979; Holt and Laury 2002), participants would exhibit subjectivity in their 

decisions for prospective effort. That is, effort representations would differ from the 

objective amount of effort, and would instead contain a degree of subjectivity driven by 

an individual’s perception of how effortful a task feels. Since our paradigm was 

designed to isolate subjective effort costs, independent of reward and choice difficulty, 

we hypothesized that behavioral representations of this effort subjectivity would be 

encoded in vmPFC – consistent with findings in human and animal studies investigating 

subjective value of appetitive and aversive stimuli. Additionally, we hypothesized that 
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when choice difficulty and effort value were experimentally isolated, ACC would encode 

the former in concert with previous studies of neuroeconomic choice. 

 

MATERIALS AND METHODS 

Experimental Setup 

Presentation of visual stimulus and acquisition of behavioral data were accomplished 

using custom MATLAB (http://www.mathworks.com) scripts implementing the 

PsychToolBox libraries (Brainard 1997). During functional magnetic resonance imaging 

(fMRI), visual feedback was presented via a projector positioned at the back of the 

room. Participants viewed a reflection of the projector in a mirror attached to the 

scanner head coil. 

 

An MRI compatible hand clench dynamometer (TSD121B-MRI, BIOPAC Systems, Inc., 

Goleta, CA) was used to record grip force effort. During experiments, signals from this 

sensor were sent to our custom designed software for visual real-time feedback of 

participants’ effort exertion. Effort exertion was performed while participants held the 

force transducer in their right hand with arm extended while lying in the supine position. 

 

To record participants’ choices we used an MRI compatible multiple button-press 

response box (Cedrus RB-830, Cedrus Corp., San Pedro, CA). 

 

Experiment Procedures 

Participants 
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All participants were right handed, and were prescreened to exclude those with prior 

history of neurological or psychiatric illness. The Johns Hopkins School of Medicine 

Institutional Review Board approved this study, and all participants gave informed 

consent. 

 

Thirty-eight healthy participants participated in the experiment, eight of which, were 

excluded for one or a combination of behavioral reasons. First, participants were 

excluded if they were unable to generate salient associations between effort levels and 

applied effort (n = 4; r-squared value between reported effort and perfect reporting less 

than 0.5). Second, inconsistent decision-making precluded participants from 

subsequent analyses (n = 5; random or near random choices, characterized by a 

temperature parameter less than 0.005). The final analyses included n = 30 participants 

in total (mean age, 23 years; age range, 18-34 years; 13 females). 

 

Effort Paradigm 

Prior to the experiment, participants were informed that they would receive a fixed 

show-up fee of $30. It was made clear that this fee did not, in any way, depend on 

performance or behavior over the course of the experiment. 

 

The experiment began with acquiring participants’ maximum voluntary contraction 

(MVC) by selecting the maximum force achieved over the course of three consecutive 

repetitions on the hand clench dynamometer. During these repetitions participants did 
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not have knowledge about the subsequent experimental phases, and were instructed 

and verbally encouraged to squeeze with their maximum force. 

 

Next, participants performed an association phase in which they were trained to 

associate effort levels (defined relative to MVC) with the force they exerted against the 

hand dynamometer (Fig. 1A). Effort levels existed on a scale that ranged from 0 

(corresponding to no exertion) to 100 (corresponding to a force equal to 80% of a 

participant’s MVC). A single training block consisted of five trials of training for each 

target level, where the target levels varied from 10 to 80 in increments of 10, and 

training blocks were presented in a randomized order. We did not perform association 

trials at the highest levels of effort to minimize the possibility that participants would 

become fatigued during this phase. A single trial of a training block began with the 

numeric display of the target effort level (2 s), followed by an effort task with visual-

feedback in the form of a black vertical bar, similar in design to a thermometer, which 

increased in white the harder participants gripped the dynamometer (4 s). The bottom 

and top of this effort gauge represented effort levels 0 and 100, respectively. 

Participants were instructed to reach the target zone (defined as ±5 effort levels of the 

target) as fast as possible and maintain their force within the target zone for as long as 

possible over the course of 4 seconds. Visual indication of the target zone was colored 

green if the effort produced was within the target zone, and red otherwise. At the end of 

the effort exertion, if individuals were within the target zone for more than two thirds of 

the total time (2.67 s) during squeezing, the trial was counted a success. These success 

criteria were meant to ensure that participants were exerting effort for a similar duration 
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across all effort conditions. To minimize participants’ fatigue, a fixation cross (2-5 s) 

separated the trails within a training block and 60 seconds of rest were provided 

between training blocks. 

 

Following the association phase, we performed a recall phase to test if participants 

successfully developed an association between the effort levels and the actual effort 

exerted (Fig. 1B). Participants were tested on each of the previously trained effort levels 

(10 to 80, increments of 10), six times per level, presented in a random order. Each 

recall trial consisted of the display of a black horizontal bar that participants were 

instructed to completely fill by gripping the transducer – turning the force-feedback from 

red to green once the target effort level was reached. For the recall phase, the full bar 

did not correspond to effort level 100 as in the previous phase, but instead was 

representative of the target effort level being tested in a particular trial. Participants were 

instructed to reach the target zone as fast as possible, to maintain their produced force 

as long as possible, and to get a sense of what effort level they were gripping during 

exertion (4 s). Following this exertion, participants were presented a number line (from 0 

to 100) and told to select the effort level they believed they had just gripped. Selection 

was accomplished by using two push-buttons to move a cursor left and right along the 

number line, and a third button to enter their believed effort level. Participants had a 

limited amount of time to make this effort assessment (4 s), and if no effort level was 

selected within the allotted time the trial was considered missed. No feedback was 

given to participants as to the accuracy of their selection. 
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Finally, during the choice phase of the experiment we scanned participants’ brains with 

fMRI while they were presented with a series of effort gambles and the choices from 

these gambles were used to characterize how individuals subjectively valued effort (Fig. 

1C). Prior to being presented with the effort gambles participants were told that 10 of 

their decisions would be selected at random at the end of the experiment, and that they 

would have to remain in the testing area until they achieved the exertions required. This 

was done to ensure that participants were properly incentivized on each trial. 

Importantly, effort choices and realization occurred in separate sessions, which allowed 

us to examine the neural signals associated with prospective effort valuation unaffected 

by physical fatigue. A single effort gamble consisted of choosing between two options 

shown on the screen under a time constraint (4 s): one option entailed exerting a low 

amount of force (S) with certainty (known as the “sure” option); whereas the other 

entailed taking a risk which could result in either high exertion (G) or no exertion, with 

equal probability (known as the “flip” option). The effort levels were presented using the 

0 to 100 scale that participants were trained on during the association phase. 

Participants made their choices by pressing one of two buttons on a hand-held button-

box with their right hand with either their first or second digits. Gambles were not 

resolved following choice. Effort gambles (170 in total) were presented consecutively in 

a randomized order. Participants were encouraged to make a choice on every trial, 

however there was no penalty for failing to make a decision within the four second time 

window (average percent of missed trials across subjects 1.8% ± 3.8). Failure to make a 

choice on time was logged as a missed trial, and was not repeated.  
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At the end of the choice phase, the computer selected 10 of the trials at random to be 

implemented. The outcomes of the selected trials, and only those trials, were 

implemented. In this way, participants did not have to worry about spreading their effort 

exertion over all of their trials. Critically participants were instructed that the experiment 

would not be completed, and they were to remain in the testing area, until they achieved 

the exertions randomly implemented from the choice phase. 

 

Our effort-based choice task has three properties that are important to stress. First, in 

our experimental design, we exploit the theoretical equivalence between risk 

preferences and subjective valuation in such a way that we can measure subjective 

valuation via the presentation of risky choices concerning effort, a widely accepted 

practice in economics and decision-neuroscience (Camerer et al. 2005; Rangel et al. 

2008). Second, it is important to note that these effort choices did not involve monetary 

earnings or exertion at the time of choice, which allowed us to experimentally isolate 

prospective effort value representations from reward and fatigue. Third, effort choices 

were designed to span a range of potential effort values, capturing behavioral extremes 

of choice acceptance and rejection, centered at indifference. In doing so, this design 

ensures that choice difficulty, the magnitude of the relative value of effort options 

(behaviorally indexed by reaction time), is orthogonal to the difference in value between 

the options. 

 

Effort Choice Values 
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The effort amounts were chosen to accommodate a range of effort sensitivity. For each 

trial, we denote the ratio Ƞ = G/S, of the worst possible outcome (choosing flip and 

having to exert the positive effort level) to the amount of effort in the sure option. We 

reasoned that participants would primarily exhibit increasing marginal utility for effort, 

and we therefore chose a range of Ƞ ϵ [1.75, 2.75]. In our gamble set, the force level 

associated with the sure option ranged from 5-35 in increments of 3.25 and were 

multiplied by the ratio Ƞ to generate 100 unique effort gambles, all with effort levels 

below 100. To span a broader range of Ƞ, additional gambles were designed in a similar 

method described above, except that the ratio of flip to sure (Ƞ) was halved and then 

multiplied by the sure values (Ƞ1/2 ϵ [0.88, 1.38]). 30 of these 100 additional effort 

gambles resulted in trivial (G,S) pairings with the flip values less than sure values (Ƞ < 

1), and were thus excluded. The end result was 170 unique effort gambles (see 

Supplementary Materials for the full choice set). 

 

Monetary Choice Task (Prospect Theory Task) 

To investigate if there was a relationship between subjective preferences for effort and 

monetary gains and losses (i.e. risk aversion, loss aversion), a subset of participants (n 

= 22) performed a binary forced-choice task for money outside of the scanner. In this 

task participants made series of choices between a certain option involving a payout 

with 100% probability and a risky option involving gain and loss with equal probability. 

This exact paradigm has been used in a number of studies to elicit subjective 

preferences for monetary gains and losses (Sokol-Hessner et al. 2009; Frydman et al. 

2011; Sokol-Hessner et al. 2012; Chib et al. 2014).  
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MRI Protocol 

A 3 Tesla Philips Achieva Quasar X-series MRI scanner and radio frequency coil was 

used for all the MR scanning sessions. High resolution structural images were collected 

using a standard MPRAGE pulse sequence, providing full brain coverage at a resolution 

of 1 mm x 1 mm x 1 mm. Functional images were collected at an angle of 30° from the 

anterior commissure-posterior commissure (AC-PC) axis, which reduced signal dropout 

in the orbitofrontal cortex (Deichmann et al. 2003). Forty-eight slices were acquired at a 

resolution of 3 mm x 3 mm x 2 mm, providing whole brain coverage. An echo-planar 

imaging (FE EPI) pulse sequence was used (TR = 2800 ms, TE = 30 ms, FOV = 240, 

flip angle = 70°). 

 

Data Analysis 

Effort Choice Analysis 

We used a two parameter model to estimate participants’ subjective effort cost 

functions. We assumed a participant’s cost function 𝑉(𝑒) for effort 𝑒 as a power function 

of the form: 

 

𝑉(𝑒) = −(−𝑒) , 𝑒 ≤ 0 

 

In this definition of effort cost, the effort level 𝑒 is defined as negative, with the 

interpretation being that force production is perceived as a loss. The parameter 𝜌 

represents sensitivity to changes in subjective effort value as the effort level changes. A 
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large 𝜌 represents a high sensitivity to increases in absolute effort level.  𝜌 = 1    implies 

that subjective effort costs coincide with objective effort costs.  

 

Representing the effort levels as prospective costs, and assuming participants combine 

probabilities and utilities linearly, the difference in value between the two effort options 

relative to the sure prospect, can be written as follows: 

 

𝐷𝑉 (𝐺, 𝑆) = 𝑉𝑎𝑙𝑢𝑒(𝑠𝑢𝑟𝑒) − 𝑉𝑎𝑙𝑢𝑒(𝑔𝑎𝑚𝑏𝑙𝑒) 

𝐷𝑉 (𝐺, 𝑆) = −(−𝑆) —(−0.5(−𝐺) ) 

𝐷𝑉 (𝐺, 𝑆) = 0.5(−𝐺) − (−𝑆)  

 

Where DVsure denotes the difference in value between the two options, and both G < 0 

and S < 0 for all trials. 

 

We then assume that the probability that a participant chooses the sure option for the kth 

trial is given by the softmax function: 

 

𝑃 𝐷𝑉 (𝐺, 𝑆) = 1/[1 + exp −𝜏𝐷𝑉 (𝐺, 𝑆) ] 

 

where  𝜏 is a temperature parameter representing the stochasticity of a participant’s 

choice (𝜏 = 0 corresponds to random choice). 
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We used maximum likelihood to estimate parameters  𝜌 and 𝜏 for each participant, using 

170 trials of effort choices (𝐺, 𝑆) with a participant’s choice denoted by  𝑦  𝜖  {0,1}. Here, 𝑦 

= 1 indicates that the participant chose the sure option. This estimation was performed 

by maximizing the likelihood function separately for each participant: 

 

𝑦 log 𝑃 (𝐺, 𝑆) + (1 − 𝑦 )log  (1 − 𝑃 (𝐺, 𝑆)) 

 

Monetary Choice Analysis 

A separate maximum likelihood procedure was used to estimate parameters for 

monetary reward in a similar manner described in (Sokol-Hessner et al. 2009; Frydman 

et al. 2011; Chib et al. 2012; Sokol-Hessner et al. 2012), estimating both risk and loss 

aversion parameters for each participant. We expressed participants’ utility function u 

for monetary values x as 

 

𝑢(𝑥) =            𝑥 , 𝑥   ≥ 0
𝜆𝑥 , 𝑥 < 0  

 

In this formulation, λ represents the relative weighting of losses to gains, and α 

represents the degree of a participant’s risk aversion. Assuming that participants 

combine probabilities and utilities linearly, the expected utility of a mixed gamble can be 

written as U(G,L,S) = (0.5 Gα + 0.5 λL) - Sα, where G, L, S are the respective gain, loss, 

and sure options of the presented risky option.  
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The probability that a participant chooses the risky option for the kth trial is given by the 

softmax function: 

 

𝑃 𝑈(𝐺, 𝐿, 𝑆) = 1/[1 + exp(−𝜏𝑈(𝐺, 𝐿, 𝑆))] 

 

where  𝜏 is a temperature parameter representing the stochasticity of a participant’s 

choice. 

 

The maximum likelihood procedure was accomplished using 140 gambles with 

participant response y ϵ {0,1}. Here, y = 1 indicates that the participant chose to make a 

gamble. The estimation was performed by maximizing the likelihood function: 

 

𝑦 log 𝑃 (𝐺, 𝐿, 𝑆) + (1 − 𝑦 )log  (1 − 𝑃 (𝐺, 𝐿, 𝑆)) 

 

Mean and standard deviation for estimates are as follows: risk aversion: α = 0.81 (0.30), 

loss aversion: λ = 1.69 (1.32), temperature parameter: 𝜏 = 1.91 (1.14). Of the twenty-two 

included participants in the subjective effort experiment, four were excluded from this 

monetary analysis on the basis of inconsistent choices (n = 2) and parameter estimates 

beyond two standard deviations from the mean (n = 2). Exclusion from the analysis on 

these grounds was independent of the subjective effort experiment, and vice versa.  

 

Image Processing and fMRI Statistical Analysis 
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The SPM12 software package was used to analyze the fMRI data (Wellcome Trust 

Centre for Neuroimaging, Institute of Neurology; London, UK). A slice-timing correction 

was applied to the functional images to adjust for the fact that different slices within 

each image were acquired at slightly different time-points. Images were corrected for 

participant motion, spatially transformed to match a standard echo-planar imaging 

template brain, and smoothed using a 3D Gaussian kernel (8 mm FWHM) to account for 

anatomical differences between participants. 

 

To examine regions of the brain that encode participants’ subjective effort costs, we 

estimated participant-specific (first level) general linear models (GLM) for the effort 

choice phase of the experiment. This GLM included an event based condition at the 

time of effort choice, and parametric modulators corresponding to both a participant’s 

difference in subjective value between the gamble and sure options DVsure(G,S), and a 

behavioral measure for choice difficulty, log(response time). Trials with missing 

responses were modeled as a separate nuisance regressor. In addition, regressors 

modeling the head motion as derived from the affine part of the realignment procedure 

were included in the model. Using this model we were able to test brain areas in which 

activity was related to participants’ difference in subjective value between the gamble 

and sure effort options and their underlying subjective effort value representations, as 

well as activity related to choice difficulty. Using these conditions we created contrasts 

with the aforementioned parametric modulators, for difference in value, and choice 

difficulty at the time of effort choice. 
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We constructed a separate GLM incorporating a second, model-based measure of 

choice difficulty, -|DVsure|, as well as DVsure and log(response time) as parametric 

modulators at the time of choice. With this additional model, we aimed to confirm that 

we still observed significant activation in ACC related to a model-based choice difficulty 

-|DVsure| after removing the variance associated with response time.  

 

Statistical Inference 

We analyzed the vmPFC signals shown within an independent region of interest (ROI) 

defined from an extensive meta-analysis of studies examining valuation of appetitive 

and aversive stimuli (5 mm radius sphere centered at Montreal Neurological Institute 

coordinates [2,46,-8]) (Bartra et al. 2013).  

 

There is a degree of heterogeneity in the ACC activations reported in previous studies 

of effort-based decision making. With this in mind we analyzed the ACC signals shown 

within an independent ROI defined by averaging peak activations from a number of 

studies of effort-based decision making ([-6,-8,58] [4,-2,54] (Croxson et al. 2009); 

[6,24,28] (Prévost et al. 2010); [3,26,25] (Kurniawan et al. 2010); [6,23,28] (Kurniawan 

et al. 2013); [-6,4,42]  (Skvortsova et al. 2014); [-6,11,34] (Klein-Flügge et al. 2016); 

[10,22,42] (Chong et al. 2017); mean coordinate values [1,12,39]).  

 

For these ROIs, we regressed our design matrix on a representative time course, 

calculated as the first eigenvariate. This provides a very sensitive analysis because only 

a single regression is performed for this region and no multiple comparisons are 
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required. The results of these ROI analyses were used for all statistical inferences about 

brain activity and are reported in the main text.  

 

To clarify the signal pattern in each ROI we created plots of effect sizes for terciles (i.e., 

low, medium, high) at the peak of activity. It is important to note that these signals are 

not statistically independent (Kriegeskorte et al. 2009) and these plots were not used for 

statistical inference. They are shown solely for illustrative purposes. 

 

Bayesian Model Selection of Imaging Data 

To determine if a subjective valuation of effort better accounted for neural activity in 

vmPFC than an objective representation, we performed a Bayesian model selection 

analysis (Rosa et al., 2010). We began by creating an additional GLM that was identical 

to our original model  𝐷𝑉 (𝐺, 𝑆), except in this model the parametric modulator 

corresponded to the difference in expected objective value of the effort options 

presented 𝐷𝑉 = 0.5(−𝐺) − (−𝑆))  . This GLM captured the null choice model 

(objective valuation of effort; 𝜌 = 1).  

 

We used the first level Bayesian estimation procedure in SPM12 to compute voxel-wise 

whole-brain log-model evidence maps for every participant and each model. To model 

inference at the group level we applied a random effects approach at every voxel of the 

log evidence data across the whole brain. We used this data to create exceedance 

probability maps (EPM) that allowed us to test which representation of effort cost, 

subjective or objective, was more likely to describe activity in vmPFC. The EPMs shown 
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illustrate clusters of voxels at which subjective effort valuation has a greater Bayesian 

probability (P > 0.95) of describing the observed BOLD signal in vmPFC.  

 

Additionally, in a similar manner to the analysis described above, we performed a 

second Bayesian model comparison, this time investigating if difference in value 

between the effort options or choice difficulty was more likely to describe activity in 

ACC. From the whole-brain log-evidence maps of each subject, comparing these two 

models, we were able to generate an EPM within the ACC ROI previously described. 

 

RESULTS 

Behavioral Representations of Subjective Effort Valuation 

Comparison between reported and exerted effort levels during the recall phase showed 

a high degree of agreement, indicating that participants accurately perceived the 

objective effort levels (Fig. 2A shows the group recall results). 

 

We characterized the subjectivity of participant i’s effort choices using a subjective cost 

function 𝑉 (𝑒) = −(−𝑒) ,     where 𝑒 ≤ 0 and 𝑉 is the subjective cost of an objective effort 

level 𝑒. 𝜌  is a participant-specific parameter that characterizes how an individual 

subjectively represents the effort level 𝑒 . In this formulation, 𝜌 is flexible enough to 

capture increasing, decreasing, or constant marginal changes in subjective effort 

valuation as absolute effort levels increase (Fig. 2B). The case where 𝜌 = 1 indicates 

that a participant’s subjective effort cost coincides with absolute effort levels; 𝜌 < 1 

indicates decreasing sensitivity to changes in subjective effort cost as effort level 
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increases;  𝜌 > 1 indicates increasing sensitivity to changes in subjective effort cost as 

effort level increases. 

 

Using the behavioral data, we performed a maximum likelihood estimation procedure to 

characterize each participant’s subjectivity of effort cost 𝜌 and underlying consistency of 

choice 𝜏. We found that participants exhibited mean parameter estimates of 𝜌 = 1.20 

(S.D. 0.30), 𝜏 = 0.23 (S.D. 0.26). A parameter recovery procedure found a significant 

correlation between parameters initially estimated and those recovered, suggesting that 

the participants’ decisions over the effort choice options yielded a precise estimation of 

𝜌 (see Supplementary Material for details). A likelihood ratio test statistic indicated that 

the majority of participants (n = 19) made choices that were inconsistent with a linear 

subjective effort function (𝜌  = 1), and the group exhibited subjectivity parameters that 

were significantly greater than 1 (t29 = 3.61, p < 0.001). We also computed a group level 

AIC using log-likelihood measures obtained from the MLE procedure and found 

AICobjective = 4958 and AICsubjective = 4552, further indicating that subjective valuation of 

effort best describes participants’ choices. Together, these results reveal that 

participants do not make effort decisions purely based on an objective valuation of 

effort, and that the majority of participants instead exhibited subjectivity of effort such 

that larger effort levels yielded increased marginal effort costs (Fig. 2C). These 

behavioral findings are consistent with previous studies that modeled subjectivity of 

effort valuation when trading effort for reward (Klein-Flügge et al. 2015; Klein-Flügge et 

al. 2016; Chong et al. 2017). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/079467doi: bioRxiv preprint 

https://doi.org/10.1101/079467
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

We performed a series of analyses to determine if the subjective effort parameters were 

related to other potential factors that could influence effort valuation. We found that 

participants’ effort subjectivity parameters were not significantly correlated with MVC (r 

= -0.08, p = 0.69), suggesting that subjective preferences for effort were not simply the 

byproduct of maximum strength. Additionally, effort subjectivity parameters did not 

correlate with measures of monetary subjective value (risk aversion: r = -0.21, p = 0.38; 

loss aversion: r = -0.17, p = 0.50), suggesting that individuals’ subjective preferences for 

reward are not related to their effort preferences and not simply a reflection of similar 

risk attitudes across decisions for different types of goods. Another possibility is that 

effort subjectivity parameters could be a reflection of the probability of success during 

the association phase -- participants that were less successful at achieving the targeted 

exertions might find effort to be more costly and have higher 𝜌 parameters. To test this 

possibility we examined the relationship between 𝜌 and success rate during the 

association phase. Again, we did not find a significant relationship between the two (r = 

-3.54 x 10-4, p = 0.99), suggesting that 𝜌 is not driven by the probability of success 

during association.  

 

Next we investigated the relationship between subjective effort valuation and decision 

difficulty. We found that participants’ decisions revealed that the difference in subjective 

utility between the two effort options 𝐷𝑉 (𝐺, 𝑆) = 0.5(−𝐺) − (−𝑆)  sampled the range 

of option rejection/acceptance (Figure 2D). With this in mind, choice difficulty should be 

greatest when the effort options are most similar (when -|DVsure| is near 0), and least 

difficult when the options are most dissimilar. Accordingly, response time will be longest 
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when -|DVsure| is small and shortest when choices are easiest. Consistent with this idea, 

we found that model-free (log(response time)) and model-based (-|DVsure|) measures of 

choice difficulty were significantly positively correlated with one another (average 

Pearson’s correlation r = 0.05; one tailed: t29 = 1.80, p = 0.04). Critically, these 

measures of choice difficulty were not correlated with the difference in subjective utility 

between the two options (DVsure and log(reaction time): average Pearson’s correlation r 

= -0.41 x 10-2, t29 = -0.17, p = 0.87; DVsure and -|DVsure|: average Pearson’s correlation r 

= -0.03, t29 = -0.25, p = 0.80). This orthogonalization between the subjective utility of 

effort and choice difficulty allowed us to identify the neural signals associated with each 

computational variable. 

 

vmPFC Encodes Subjective Valuation of Effort  

To test our neural hypothesis that subjective effort valuation is encoded in vmPFC, we 

estimated a general linear model (GLM) in SPM12 of the blood-oxygenation level 

dependent (BOLD) activity of the whole-brain during the choice phase. This model 

included parametric modulators at the time of choice, corresponding to both the 

difference in value between the sure and gamble options DVsure and choice difficulty as 

indexed by log(reaction time). DVsure was defined by transforming the effort options 

under consideration using the effort subjectivity parameter 𝜌 estimated from each 

individual participant’s behavior (see Materials and Methods for details). This 

formulation allowed us to isolate brain regions that encoded subjective valuation of 

effort and choice difficulty at the time of decision. 
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We found that BOLD signal in vmPFC was significantly positively correlated with DVsure 

(ROI analysis of vmPFC: t29 = 2.27, p = 0.03; Fig. 3A, B). As DVsure increased, vmPFC 

activity significantly increased suggesting that this region encoded the difference in 

subjective effort value of the two options. The areas of vmPFC identified largely 

overlapped those found in studies of appetitive and aversive valuation (Bartra et al. 

2013; Clithero and Rangel 2014; O’Doherty 2014). Notably we did not find a significant 

effect of choice difficulty in vmPFC (ROI analysis of vmPFC: t29 = -1.47, p = 0.15).  

 

In a separate test, to confirm that activity in vmPFC during effort choices was best 

described by representing options subjectively as opposed to objectively (𝜌   =   1), we 

generated exceedance probability maps (EPMs) for the imaging model described above 

as well as a null model representing objective effort valuation (𝐷𝑉   =   0.5(−𝐺) −

(−𝑆)) (Rosa et al. 2010). Using these probabilistic brain maps we were able to evaluate 

the likelihood that areas of vmPFC better represented subjective effort costs as 

opposed to objective effort costs. We found a cluster of voxels in vmPFC, (16 voxels, P 

> 0.95), illustrating that activity in this region is best described by a subjective rather 

than objective model of effort costs (Fig. 3C).  

 

ACC Encodes Choice Difficulty 

To test our hypothesis that choice difficulty is encoded in ACC we used the previously 

described imaging model to identify brain activity that was correlated with increasing 

choice difficulty as indexed by log(response time). We found that choice difficulty was 

significantly positively correlated with activity in ACC (ROI analysis of ACC: t29 = 2.07, p 
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= 0.04; Figure 4A, B), consistent with previous studies that have shown that this region 

encodes choice difficulty during neuroeconomic choice (Shenhav et al. 2014; Shenhav 

et al. 2016). 

 

We also searched for effort value signals in ACC, as have been reported in previous 

studies, however even decreasing our contrast significance level to p < 0.01 did not 

reveal any significant activation in our ACC effort ROI. To further test if ACC encoded 

representations of subjective effort valuation, we performed a formal ROI analysis of 

ACC. This analysis did not find activation in ACC related to DVsure that reached 

significance (ROI analysis of ACC: t29 = 1.66 p = 0.11). To directly confirm that activity in 

ACC was best described by choice difficulty as opposed to DVsure we generated an 

additional EPM incorporating both choice difficulty and difference in effort value. This 

analysis revealed that activity in ACC was better described by choice difficulty rather 

than DVsure (ROI analysis of ACC: average probability across all voxels P = 0.93, SD = 

0.10). 

  

It should be noted that in the aforementioned analyses we used a noisy model-free 

representation of choice difficulty: log(response time). We also performed a second 

analysis, similar to the first, except we included a model-based measure of choice 

difficulty (-|DVsure|) along with log(response time) and DVsure. Again, we found significant 

activations in ACC positively correlated with -|DVsure| (ROI analysis of ACC: one-tailed: 

t29 = 2.04, p = 0.03). These results indicate that even when accounting for behavioral 

noise captured by response time, choice difficulty elicits significant activations in ACC.  
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DISCUSSION 

We used a novel effort choice paradigm in which participants were presented with 

prospective effort options under uncertainty, which were independent of reward and 

orthogonal to choice difficulty. This paradigm allowed us to isolate neural signals related 

to subjective valuation of effort that were not contingent on reward or concomitant with 

choice difficulty. Behaviorally, we found that the average individual’s subjective effort 

cost exhibited increasing marginal costs as effort increased. Neurally, we found that 

activity in vmPFC was related to the subjective valuation of prospective effort, while 

ACC activity was related to choice difficulty. These results suggest that vmPFC encodes 

the subjective costs that underlie choices involving physical effort, and ACC activity is 

related to the cognitive control required at the time of choice. 

 

Previous studies of effort cost have focused on the trade-offs between prospective effort 

and reward, similar to the natural choices we make in everyday life (Croxson et al. 

2009; Prévost et al. 2010; Kurniawan et al. 2010; Kurniawan et al. 2013; Skvortsova et 

al. 2014; Klein-Flügge et al. 2016; Chong et al. 2017), and have suggested that in these 

contexts ACC encodes effort cost. However these studies were not designed to 

separate effort costs from reward and instead focused on the integration of both of 

these utilities to compute a decision. In our paradigm, however, we took a reductionist 

scientific approach, isolating effort from reward in order to provide a computational 

description of how subjective valuation of effort is encoded in the brain. While our 

choice paradigm is not as naturalistic as the effort/reward trade-offs made in daily life, 
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such an approach is valuable because it affords us a deeper understanding of an 

individual component (in this case effort valuation) that shapes more complex decisions. 

Our paradigm revealed that activity in vmPFC was better represented by subjective, 

rather than objective, valuation of prospective effort. This is consistent with previous 

research in an intertemporal choice setting that finds this region better encodes 

subjective monetary values compared to objective monetary values (Kable and 

Glimcher 2007). Moreover our findings are consistent with the idea that vmPFC 

encodes a general subjective value signal that subserves effort decisions, similar to the 

subjective value signals that have been previously reported for a variety of appetitive 

and aversive stimuli (Bartra et al. 2013; Clithero and Rangel 2014; O’Doherty 2014).  

 

Notably, we did not find activity in ACC in our fMRI analysis of subjective effort 

valuation, but instead found that it was related to choice difficulty, consistent with 

previous studies of neuroeconomic choice that experimentally separated prospective 

value and choice difficulty. There is an ongoing debate regarding the role of ACC in 

decision-making and whether it encodes decision values or variables related to 

cognitive control (e.g., choice difficulty) (Shenhav et al. 2016; Kolling et al. 2016; Ebitz 

and Hayden 2016). With this debate in mind it has been proposed that when studying 

valuation it is important to design studies that are capable of separating the two. Aside 

from one previous study of effort-based decision-making, none have controlled for the 

relationship between these two variables. The one study that attempted to account for 

choice difficulty reported that it did not describe activity in ACC, however that design did 

not span the full space of prospective effort to elicit a full range of choice preferences 
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(Chong et al. 2017) making it challenging to truly dissociate signals related to valuation 

and choice difficulty. Our paradigm was designed to span the full space of effort 

valuation and choice preference, and in doing so we found that ACC activity was 

associated with choice difficulty, as opposed to effort valuation. Our result of effort 

based choice difficulty signals in ACC, taken together with previous studies of foraging 

(Shenhav et al. 2014; Shenhav et al. 2016) are consistent with ACC’s role in cognitive 

control during decision-making. In particular, our findings align with conflict monitoring 

theories that suggest ACC tracks the level of indifference in decision-making tasks 

because higher indifference requires increased cognitive control (Botvinick et al. 2001; 

Botvinick 2007). It is important to mention that it is also possible that such conflict 

signals could be a byproduct of ACC comparing the values of the options presented 

(Hare et al. 2011), a property that would be consistent with conflict monitoring theories. 

 

It has also been proposed that the ACC activity found in previous studies could be 

indicative of a multiplexing node that combines action/reward values (Hayden and Platt 

2010; Shenhav et al. 2013; Klein-Flügge et al. 2016) and serves as a gateway that 

informs the motor system to act for reward (Cai and Padoa-Schioppa 2012). Thus we 

cannot rule out the possibility that our lack of observed subjective effort value signals in 

ACC could also be due to the fact that our study was designed to isolate neural 

representations of subjective effort valuation that were independent of (and not 

multiplexed with) reward.  
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While it is important to interpret null results in fMRI imaging with caution, our results 

suggest that in the context of effort-based decision-making, in which rewards are not 

present and choice difficulty is controlled, the ACC better represents choice difficulty 

than effort valuation. While this finding is in contrast to previous studies of effort/reward 

tradeoffs that have implicated ACC in this process, it is important to stress that our 

study attempted to isolate effort valuation irrespective of reward and choice difficulty, 

and thus was quite different from those previous investigations. Future studies will be 

needed to determine, if when controlling for choice difficulty in more naturalistic 

paradigms involving effort reward trade-offs, ACC activity is still best described by 

difficulty and vmPFC by effort valuation. Notably, in the ongoing debate about ACC 

function during economic choice, it has been suggested that sub-regions within ACC 

might simultaneously encode signals about valuation and choice difficulty (Kolling et al., 

2016a; Kolling et al., 2016b), and in this vein it is possible that ACC could encode both 

effort costs and choice difficulty (although in this study we did not find evidence in 

support of this idea). 

 

In this study we focused on characterizing the subjective valuation of physical effort in 

the form of grip force. However, an individual’s subjective effort costs could vary across 

types of effort (i.e., walking, arm movements, or even cognitive effort) in a similar 

fashion to how individuals exhibit different subjective values for different types of goods 

(Chib et al. 2009; Levy and Glimcher 2011). Moreover, just as the subjective value of 

rewards can be modulated by the state of an individual, subjective costs of effort could 

also be influenced by state. For example, individuals having undergone physical or 
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cognitive fatigue or training might exhibit modified representations of subjective effort 

cost. Furthermore, it is possible that the subjectivity of different types of effort may 

exhibit similar trait-like consistency over time, as has been reported in studies of 

subjective valuation of money (Ohmura et al. 2006; Kable and Glimcher 2007; Ballard 

and Knutson 2009). 

 

Characterization of subjective effort costs will provide an understanding of why some 

people find certain tasks to be very effortful while others complete them with ease. Such 

knowledge could be used to design incentive mechanisms that account for perceptions 

of effortfulness to maximize employees’ performance. Insights into these preferences 

may aid in the development of more efficacious individual-specific behavioral 

mechanisms that enhance motivational output and effort exertion in a variety of 

everyday tasks. 
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FIGURE CAPTIONS 

Figure 1. Experimental paradigm.  
 
 
A, Association phase; participants were trained to associate numeric effort levels with 

force exerted on a hand-clench dynamometer.  Effort levels ranged from 0 (no force) to 

100 (80% of maximum grip force). A training block consisted of five trials each at a 

series of target effort levels. Each trial began with presentation of the target, followed by 

an effortful grip with real-time visual feedback of the exerted force represented as a bar 

that increased in height with increased exertion. A green visual cue was also displayed, 

within which participants were instructed to maintain their exerted effort. Feedback of 

success or failure was provided at the end of each trial.  

 

B, Recall phase; participants were instructed to fill a horizontal bar by gripping the 

transducer. On each trial, the full bar corresponded to a different target effort level that 

was unknown to participants. Successfully achieving the effort target resulted in the bar 

turning from red to green. Following exertion, participants used push-buttons to move a 

cursor along a 0-100 number line to select the effort level they believed they had 

squeezed. No feedback was provided as to the accuracy of participants’ reported effort 

levels.  

 

C, Choice phase; participants were presented a series of risky gambles which involved 

choosing between two options: exerting a low amount of effort with certainty (“Sure”), or 

taking a gamble that could result in either a higher level of exertion or no exertion with 

equal probability (“Flip”). Gambles were not realized following a choice. At the end of 
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the choice phase, to ensure participants revealed their true preferences for effort, 10 

choices were randomly selected and played out such that any effort required would 

need to be exerted before they completed the experiment. 
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Figure 2. Behavioral representations of subjective effort cost.  
 
 
A, Results from the Recall phase of the experiment, showing the mean and standard 

error across all participants for the effort levels reported plotted against the those tested. 

The dashed line is included to indicate perfect recall of exerted effort.  

 

B, The function used to model the subjective cost of effort in a choice.  This function has 

the form 𝑉(𝑒) = −(−𝑒) . Each curve represents an individual’s cost function for effort. 

The dashed line is included to indicate an objective valuation of effort (𝜌 = 1), with 

curves above this line representing that an incremental change in the effort level results 

in a greater subjective cost of that effort for higher effort levels.  

 

C, Estimated 𝜌 parameters at the participant level. Asterisks indicate a significant 

difference (p < 0.05) from the null hypothesis of objective valuation (𝜌 = 1) using a 

likelihood ratio test statistic.  

 

D, Propensity to accept the sure option as a function of DVsure. DVsure was partitioned 

into eight bins and the mean and standard error of the acceptance rate within each bin 

is displayed. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/079467doi: bioRxiv preprint 

https://doi.org/10.1101/079467
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

Figure 3. vmPFC encodes subjective effort valuation.  
 
 
A, A region of vmPFC in which BOLD activity was positively correlated with the decision 

value of the sure option at the time of choice, with peak activity at Montreal Neurological 

Institute (MNI) coordinates (x, y, z) = [-4, 46, -2]. The contrast shown in red was 

obtained at p < 0.005 (uncorrected) with a 10 voxel extent threshold. This contrast is 

significant at p < 0.05, small volume corrected in an independent vmPFC ROI. 

 

B, BOLD effect size within a 5 mm sphere centered at peak activity in vmPFC was 

positively correlated with the difference in utility between the two options (DVsure). This 

plot is not used for statistical inference (which was performed using an independent ROI 

analysis); it is show shown solely to illustrate the trend of the BOLD signal in vmPFC.  

 

C, Exceedance probability map (EPM) resulting from the Bayesian model comparison of 

objective and subjective effort valuation models. Voxels shown in green (n = 16) 

indicate locations in the brain where the probability that subjective effort describes the 

BOLD activity is greater than 0.95, supporting the finding that subjective effort cost best 

describes activity in vmPFC. 
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Figure 4. ACC encodes choice difficulty.  
 
 
A, Regions of the brain in which BOLD activity was positively correlated with choice 

difficulty at the time of choice with peak activity at Montreal Neurological Institute (MNI) 

coordinates (x, y, z) = [-2, 14, 42]. The contrast shown in blue was obtained at p < 0.005 

(uncorrected) with a 10 voxel extent threshold. This contrast is significant at p < 0.05, 

small volume corrected in an independent ACC ROI. 

 

B, BOLD effect size within a 5 mm sphere centered at peak activity in was positively 

correlated choice difficulty. This plot is not used for statistical inference (which was 

performed using an independent ROI analysis); it is show shown solely to illustrate the 

trend of the BOLD signal in ACC.  
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