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Abstract 
 

We present a web-based tool, Genetic Information Relationship Network (GIRN), for mapping 
genes to a global protein interaction network for humans, and for further annotating this map 
with gene ontology, pathway, disease, and user-generated terms. These annotations can be 
adjusted according to enrichment within a subset of genes. Additionally, drugs that interact with 
genes in the subset can be added to the graph. The maps are force-directed graphs in which 
highly connected nodes tend toward the center, and highly interconnected nodes tend toward 
each other. Icons of different shapes and colors are employed to indicate whether the node 
represents a protein, a gene, or one of the various types of annotation. Coordinated interaction of 
genes and functional inference can be identified by visual inspection. Each node in the graph is 
associated with a menu of links to external data sources. Collectively, these tools provide an 
efficient portal to gene-associated public data for any group of genes specified by the user. The 
site can be found at www.voxvill.org/relnet. 
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Introduction 
 

Microarrays and RNA-seq are straightforward technologies to identify genes having expression 
behavior that correlates with other variables. However, it remains challenging to create 
meaningful narratives describing the roles played by different genes in complex biological 
systems. Such meaningful narratives might assume the form of review-like descriptions of the 
behavior of a gene, and in computer science might be formulated as object models. An important 
objective of constructing accurate narratives describing gene function from large data collections 
is to lead us to a deeper understanding of the basis of biological phenomena, and in practical 
terms, to derive actionable knowledge, such as the identities of genes that might be targeted to 
treat diseases. The challenge stems largely from the combinatorial complexity of biology, 
wherein most genes are involved in more than one process, most processes involve multiple 
genes, and ultimately no process is fully isolated from other processes. The vast combinatorial 
complexity of biology suggests that computational methods will be helpful. Substantial effort has 
been directed toward building structured, machine-readable biological information and 
algorithms to manipulate that information to automatically or semi-automatically derive useful 
inferences. These databases often take different kinds of information into account. For example, 
The Gene Ontology (GO) Consortium (1, 2) have grouped genes according to biological process, 
cellular location, and molecular function, whereas Reactome (3) provides a powerful interface to 
explore gene expression data in the larger context of GO, but with an emphasis on pathways. 
STRING uses detailed information about protein interactions over many species (4), whereas 
HTRIdb contains experimentally verified human transcriptional regulation interactions (5), 
DGIdb is a database that keeps track of drug-gene interactions (6), and DisGeNET(7-10) relates 
genes to diseases. Consensus Path DataBase (11) leverages the composite data of >30 databases 
concerned with various aspects of gene function. The NDEx (Network Data Exchange) Project 
(12) provides an open-source framework for community-wide involvement in the advancement 
of biological network information. 

Most strategies for analysis of differential gene expression rank genes according to one or more 
criteria and place them in tabular form, which usually serves as starting point for both manual 
and computer-assisted functional analysis. For example, the top 100 genes that respond to an 
experimental drug can be examined for enrichment of GO, pathway, disease, or other 
functionally relevant annotations using a variety of web-based tools, presented in tabular form. 
Several of these tools also employ graphical network-based concepts, e.g. BioGRID (13), 
Consensus Path DataBase (11), Pathway Commons (14), Reactome (3, 15), STRING (4), 
PathwayNet(16), and others, or enable network display on third party software (e.g. Cytoscape, 
VisANT), such as NetPath (17). Pathway enrichment is typically achieved using a binomial 
proportions test (18). Another approach, weighted gene co-expression network analysis 
(WGCNA), organizes genes in a network according to adjacency functions based on co-
expression (19).  
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Network graphs are generally useful as data summaries when they allow one to quickly identify 
interacting entities, clusters of interacting entities, intermediates between clusters, and hubs. 
Here, we present a website that takes a list of genes as input, identifies and displays the local 
interaction sub-network as a force-directed graph, with genes, interaction type, and annotation 
terms as nodes. Physical interactions between proteins, between transcription factors and the 
genes they regulate, and between proteins and small molecules, such as drugs, are all displayed 
in a single composite network graph. In addition, diverse kinds of annotation information can be 
displayed using the same format without modification.  

Results 
 

Graph conventions 
In this website, genes, gene ontology terms, pathway descriptors, drugs and diseases are all 
represented as nodes in a force-directed graph, and their interactions are represented as edges. 
Analysis is initiated by entering a set of genes or choosing from a variety of pre-loaded gene 
lists, and several analysis options are discussed in the sections that follow. In these graphs, 
different icons are used to signify the database to which each node belongs. Each edge is 
interrupted with a centrally located icon signifying type of interaction between nodes. All nodes 
are clickable links: left double-clicking opens a link to one or more relevant references in a new 
tab, and right clicking opens a drop-down box to other links to relevant information, or to 
websites likely to contain relevant information, depending on the type of node. The network 
image can be zoomed and repositioned via simple key board and/or mouse actions. Combined, 
these features allow for convenient and rapid review of structured knowledge surrounding the 
sub-network of interacting genes subtended by a gene list. 

Access to lists of genes associated with gene ontology terms, pathways, diseases, and drugs  
The site is primarily designed for the purpose of inferring the relationships of a group of genes 
supplied by the user to known biology.  However, one is often interested in exploring the genes 
associated with established gene ontology, pathways, diseases, and drugs that comprise the 
knowledge base upon which such analysis depends. As a convenience, the site provides a 
convenient text-based boolean search tool to identify genes associated with GO terms, pathways, 
diseases, and drugs, although sites dedicated to these individual areas, such as those maintained 
by The Gene Ontology Consortium (1, 2)  ( www.geneontology.org ), Reactome  (3, 15)  
(http://www.reactome.org) , DGIdb (6) (http://dgidb.genome.wustl.edu), DisGeNET 
(http://www.disgenet.org) (7, 9) , and others, often provide more sophisticated search 
capabilities. Those sites may be useful to identify terms of interest or gene lists. Either route 
allows one to choose genes associated with various classifications, and these can be studied in 
isolation or in combination with other sets of genes. 
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Identification of genes that participate in protein-protein and transcription factor-gene 
interactions with genes in a list 
Methods such as microarrays or RNA-seq are used to identify lists of genes associated in some 
way with a phenotype or other observable, and there is interest in drawing inferences from such a 
list of genes and other sources of structured information. An assumption is that genes in the list 
are unified by some underlying rule, and a common goal is to identify the rule. One generic 
approach is to display the list of genes together with genes that can be inferred as “neighbors” in 
the global network of protein-protein and protein-gene interactions. Analysis is initiated by 
pasting a list of gene names, specifically official gene symbols (HUGO Gene Nomenclature 
Committee, HGNC; http://www.genenames.org (20)), into a text box and selecting a z-score. At 
this level of analysis, low z-scores display most or all genes that are connected to the genes in the 
list, and this is often of interest because the connection of even a single gene in the list to some 
gene that is important in the global network may be of interest. It is possible to exceed available 
server resources when large lists of genes are returned, in which case output is limited to genes 
with the highest z-scores. Higher z-scores restrict the network output to genes that are more 
highly interconnected than one would expect based on random chance. Inclusion of such genes 
occurs when two or more of the genes in the input list are connected, and this behavior is 
expected for genes that exist as part of a complex, or that share a pathway. In these instances, the 
z-score may be used as a means of ranking competing hypotheses regarding which pathways or 
functions are implicated by a list of genes. It will be generally useful to examine the network at 
various z-score levels. Figures 1a-c illustrate the effects of using different z-scores to define the 
network. 

Force directed graphs are appealing because they self-organize. These graphs tend to self-
organize in such a manner that the more highly connected nodes are located toward the middle. 
As an added visual enhancement, the font size of the text label scales according to the number of 
connections, which has the effect of drawing the eye to the more highly interconnected nodes. 
Figure 2 shows a self-organized force directed graph as it self-organizes. All node positions can 
be fixed or released, by clicking or shift-clicking, respectively. A node can be selected as a focus 
(Figure 3a-b). All nodes are clickable links, with right clicking opening a drop-down menu to 
other sites containing gene-centric, ontology, pathway, gene set, drug, or disease information, 
depending on the class of the node (Figure 4). Left double-clicking opens a new tab with type-
dependant additional information. 

The protein-protein interaction network used by this website is a composite from Kamburov et 
al. (11, 21-23) in Consensus Path Database (http://consensuspathdb.org), from Cerami et al.(14) 
in Pathway Commons (http://www.pathwaycommons.org ) and the transcription factor-gene 
interaction network is from experimentally verified human transcriptional regulation interactions 
compiled by Bovolenta et al. (5) in HTRIdb (http://www.lbbc.ibb.unesp.br/htri ). These, in turn, 
comprise composite databases from many other sources, which are referenced accordingly in the 
above literature citations. Some of these databases are subject to ongoing curation, whereas 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079590doi: bioRxiv preprint 

https://doi.org/10.1101/079590
http://creativecommons.org/licenses/by-nc/4.0/


others are static and some no longer available at their original web addresses. We provide a link 
to “Biomedical Interaction Databases” on the main analysis page. The z-scores and the p-values 
discussed herein are based on data that may not satisfy distribution assumptions, and therefore 
may not accurately reflect statistical confidence. In addition, the completeness of the global 
protein-protein interaction network is difficult to assess, a priori. As these z-scores and p-values 
are intended to rank genes or attributes according to the chances that they are part of an inferred 
sub-network, there are bound to be errors in ranking. Overall, however, we expect rankings to be 
approximately correct. Also, it should be kept in mind that a change in the expression of a single 
gene can radically alter cellular behavior; therefore, the rationale justifying the use of 
“enrichment” as a strategy to rank genes or attributes according to importance should be applied 
with care. 

In these networks, proteins are indicated by green marble icons, whereas genes, where explicitly 
invoked, are indicated by alpha-helix icons. An objective is to develop a set of icons for various 
categories of annotations, such that association between icon and annotation category becomes 
second nature, perhaps with a little practice.  

A protein product does not generally interact with the gene that encodes it. Nevertheless, such 
interactions are scored as interactions to allow the network to display the role played by a 
transcription factor in the ultimate translation of a protein product (Figures 5a,b). 

Identification of gene ontology terms associated with genes in a list 
There are several predefined lists of genes corresponding to genes associated with gene ontology 
terms, pathway descriptors, diseases, and genes known to interact with drugs and other small 
molecules. Two such lists can be selected sequentially and compared. Gene ontology pertains to 
functional categorization of genes. A common practice is to associate genes in a list with terms 
in a database in which each gene is mapped to one or more ontology terms. Analysis of 
enrichment of gene ontology terms informs as to possible changes in phenotype associated with a 
list of differentially regulated genes. In Figure 6, Gene Ontology Terms are placed in the 
network as blue, red, or yellow marbles, depending on their class, biological process, molecular 
function, or cellular component, respectively. Enrichment analysis is performed using Fisher’s 
exact test, which determines the probability of having drawn a sample distribution with an equal 
or more extreme statistic. In this case, it determines the probability that the several genes 
presented to the software would contain some number of genes from one or more GO categories. 
This is a multiple testing environment and the p-values are adjusted using the Bonferoni 
correction method. A low p-value cutoff allows one to identify ontology terms that are associated 
with a greater fraction of the genes in the list than would be expected by chance. Ontology terms 
are represented in the network as nodes, similarly to the node representation of genes and, 
indeed, all other annotations. An objective of this sort of analysis is to allow the self-organizing 
properties of the network to organize functional terms close in space to clusters of functionally 
cooperating genes. Information that cannot be obtained by mere association is the importance of 
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a gene to implementation of the phenotype pointed to by the ontology term; consequently, that a 
single connection might be important cannot be excluded. 

Identification of pathways associated with a gene list 
Pathway data were compiled by Kamburov et al. (11, 21-23) and include data from multiple 
sources. Genetic Information Relationship Network (GIRN) was used to generate Figure 7, 
which shows several annotation networks associated with genes from GO terms that contain the 
string “DNA fragmentation”. A network connecting these genes is presented in unannotated 
form (Figure 7a), annotated with GO terms (Figure 7b), and annotated with pathway terms 
(Figure 7c). 

Identification of diseases associated with genes in a list. 
One is often interested in identifying enrichment of genes that are known to be associated with a 
disease. For example, treatment of cells with a new drug may unexpectedly alter the expression 
of genes that are associated with one or more diseases, in which case the drug may be a 
candidate to treat or possibly exacerbate the disease.  Disease-gene associations are from 
DisGeNET (7, 9). Implicated diseases are identified in the same manner as Gene Ontology 
terms, using Fisher’s exact test. Figure 7d shows a network of genes associated with GO terms 
related to “DNA fragmentation”, and annotated with diseases enriched for genes in this group. 

Identification of drugs that interact with genes in a list. 
Drug targets. Replace the icon with Rx icon. The drug database is from DGIdb 
(http://dgidb.genome.wustl.edu). Figure 7e shows the network of genes associated with GO 
terms related to “DNA fragmentation”, and annotated with drugs that target genes in this group. 

Formats allowed 
Files using the format from ConsensusPathDB and the Sif format from Pathway Commons, as 
well as files saved in the comma-delimited format used by GIRN, can be opened using “Choose 
Files” and are automatically formatted to work in GIRN. 

Discussion 
 

For the most part, biological systems, and malfunctions thereof, are too complex to derive 
meaningful hypotheses or potential solutions without the aid of substantial, robust, and human-
accessible models. However the underlying data are growing very rapidly and methods to extract 
probable explanations despite humanly intractable complexity will be needed. Machine learning 
is already used to analyze data in biology, but in these early days of truly vast data, graphical 
methods may be useful in designing methods to capture information of practical value.  

Graphic methods are important in discovery-oriented data analysis and in the communication of 
results. This is especially true for large data collections, for which graphic representation of 
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summary statistics is standard practice. More elaborate representations of data can be useful 
when trends can be spotted by eye. For example, heat map representations of gene expression 
data across dozens or even hundreds of samples are standard practice, and allow scientists to 
intuitively grasp and convey aspects of similarity and differences between, for example, tumor 
samples. For a graphic representation to be useful, the data must map to the representation in a 
meaningful and preferably intuitive way. In evolutionary biology, phylogenetic trees have long 
been the practice to illustrate the relationships between organisms, and when evolution is, itself, 
bifurcating, even very large bifurcating, phylogenetic trees are easy to interpret. In molecular 
biology, extremely complex interacting networks of molecules are typical, and despite the 
formidable complexity, a network graph can provide an intuitively accessible representation. In 
such a model, biological behavior is explained by information that flows through the interaction 
network, and part of the problem of explaining a phenotype is to identify that part of the global 
network that is implied by experimental data, such as differential gene expression.  

Gene expression analysis and other molecular measurements performed to identify molecular 
correlates with changes in phenotype can identify parts of the global interaction network that 
control the phenotype. This is achieved by enrichment analysis against a global protein-protein 
and transcription factor-transcribed gene network which identifies the part of the network 
associated with the phenotype. In so doing, one identifies other players underlying the phenotype 
that may not themselves change, or may not comprise part of the data, but may nevertheless be 
important. For example, measurements of transcript abundance are silent with respect to possible 
kinase targets, but such silent nodes might be drugable. 

GIRN decorates the relevant sub-network with annotation terms comprising gene ontology 
terms, pathway descriptors, and diseases, and does so, if one wishes, according to the same 
enrichment strategy used to identify the sub-network.  Further, GIRN can decorate a network 
with drugs known to inhibit or otherwise interact with the genes in the network. This can serve as 
a summary skeleton for a narrative description of the phenotype suggested by the input set of 
genes, and also as a generator of hypotheses, by tracing network connections between drugs, 
genes, and pathway or ontology nodes, and trying to predict the effect of the drug on 
manifestation of the latter two phenotype annotations.       

Methods 
 

Programming: The graphs are force directed graphs implemented using the d3.js JavaScript 
library ( www.d3js.org ), jquery, html, php, and mysql. Data are stored in a mySQL database. 

Graphic conventions: An objective was to make these networks easily visually interpretable. 
Therefore, where possible, icons were chosen to provide a visual clue as to the class of object. 
For example, gene targets of a transcription factor are represented by a short double helix, drugs 
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are represented by the standard Rx symbol, and diseases are represented by a stumbling person. 
Arrows reflect the order of objects, left to right, in the formatted list of relationships, and can be 
added or removed at will. For protein-protein interactions, this has no intrinsic meaning, but a 
meaning can be built in if so desired. An attempt was made to use sufficient area to display all 
nodes without too much overlap to read their names.  

Z-score: The sub-network of genes implied by the input list is selected by setting a minimum z-
score, calculated using a binomial proportions test (24). 

Annotation term enrichment: Annotation term enrichment is taken as inversely proportional to a 
p-value derived from Fisher’s exact test, which accounts for the number of edges connected to 
each gene within a GO category, pathway, or disease and the probability that the presented gene 
would manifest an interaction with the gene at random. If a set of genes interacts with a GO 
category, pathway, or disease more frequently than expected at random, this would be evidence 
for enrichment. Enrichment is an important concept when trying to understand biological 
responses to stimuli. However, differential response to stimuli does not always involve 
substantial differential expression of genes that influence a biological phenotype. For example, if 
a key regulatory gene signals via changes in the phosphorylation state of its protein, it may be 
important to the phenotype, but not change in expression. Therefore, p-values related to 
enrichment may not be relevant to certain network-interpretive goals. In particular, if the goal is 
to identify a drug target to disrupt a phenotype, the desired target may be statistically 
unremarkable. 

Technical limitations: This website has limitations to the total amount of information that can be 
passed from server to client and to the amount of data that can be manipulated by the server in a 
single request. Such strategies as attempting to visualize the entire network by listing all genes in 
the “Genes to Map” box are not allowed. It is not generally useful to visually peruse a network 
having more than a few hundred nodes.  

Global network: The global network is from CPDB (Consensus Path DataBase) (11) (version 31; 
downloaded 3/21/16; 200,000 interactions) and Pathway Commons (14) 
(http://www.pathwaycommons.org ; Pathway 
Commons.7.All.EXTENDED_BINARY_SIF.hgnc.sif; downloaded 3/21/16; 914,165 
interactions), for the Protein-Protein Interaction component, and HTRIdb (Human 
Transcriptional Regulation Interactions database; downloaded 3/21/16; 52,467 interactions) (5) 
for the Transcription Factor-Transcribed Gene component. Only “interacts-with” entries in 
Pathway Commons were used. All of these databases draw from smaller collections. Non-
redundant union of the three lists yielded 1,145,437 interactions. 

Gene ontology: The gene ontology database used herein is from the Gene Ontology Annotation 
(UniProt-GOA) Database and the Gene Ontology Consortium ( www.geneontology.org )(1, 2). 
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Specifically, we used the gene_association.goa_ref_human subset (5.11.2016 release) of the 
UniProt-GOA database. 

Pathways: Pathway data were compiled by Kamburov et al. (11, 21-23) and include BioCarta 
(http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways ), EHMN, HumanCyc 
(http://humancyc.org ), INOH, KEGG (http://www.genome.jp/kegg ), NetPath 
(http://www.netpath.org ), PharmGKB (http://www.pharmgkb.org ), PID (http://pid.nci.nih.gov 
), Reactome (http://reactome.org ), Signalink (http://signalink.org ), SMPDB 
(http://www.smpdb.ca ), and Wikipathways (http://www.wikipathways.org ). 
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Figure Legends 
 

Figure 1a-c. The size of the network can be adjusted by changing the z-score. Gene ontology 
terms for “GO:0097194 execution phase of apoptosis” are used in this example. (a) z-score = 
400, (b) z-score = 200, (c) z-score = 100. 

Figure 2. Networks self-organize. Genes associated with all GO terms matching “DNA damage || 
DNA repair” (the double pipe indicates “OR”). Max genes set to 800 and z-score to 300. UBC 
was omitted for clarity (by placing “UBC” in the “Omit” box). 

Figure 3. Gene ontology terms containing the word “apoptosis”. (a) includes the subnet at z-
score = 400, (b) same as (a) except focus has been placed on genes within one step of CASP3. 

Figure 4. Right-click menu, which displays links to additional information. 

Figure 5. Gene ontology terms containing “DNA-directed RNA polymerase II” (specifically 
GO:0005665 DNA-directed RNA polymerase II, core complex, GO:0016591 DNA-directed 
RNA polymerase II, holoenzyme, and GO:000566, DNA-directed RNA polymerase III 
complex), z-score = 400 (a) without and (b) with edges connecting protein products with their 
gene names. 

Figure 6. Gene Ontology terms, containing all of the terms “membrane && activity && 
regulation” (the double ampersand indicates “AND”), z-score = 400, p-value for GO annotations: 
1E-6. This shows several cellular component (yellow), molecular function (red), and biological 
process (blue) terms.  

Figure 7a. Gene Ontology terms containing “DNA fragmentation”, specifically, GO:0006309 
apoptotic DNA fragmentation, GO:1902511 negative regulation of apoptotic DNA 
fragmentation, GO:1902512 positive regulation of apoptotic DNA fragmentation, and 
GO:1902510 regulation of apoptotic DNA fragmentation mapped to network using a z-score of 
400. 

Figure 7b.Gene Ontology Same as (a) but annotated with Gene Ontology terms at a p-value = 
1E-4. 

Figure 7c.Pathways Same as (a) but annotated with Pathway terms at a p-value = 1E-8. 

Figure 7d. Same as (a) but annotated with Diseases terms at a p-value = 1E-2. 

Figure 7e. Same as (a) but annotated with drugs. 
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Figures 

Fig. 1a 
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Fig. 1b 
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Fig. 1c 
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Fig. 2 
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Fig. 3a 
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Fig. 3b 
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Fig. 4 
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Fig. 5a 
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Fig. 5b 
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Fig. 6 
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Fig. 7a  DNA fragmentation 
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Fig. 7b Gene Ontology 
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Fig. 7c Pathways 
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Fig. 7d Diseases 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079590doi: bioRxiv preprint 

https://doi.org/10.1101/079590
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 7e Drugs 
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