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Sequencing costs have dropped much
faster than Moore’s law in the past decade,
and sensitive sequence searching has become
the main bottleneck in the analysis of large
metagenomic datasets. We therefore5

developed the open-source software MMseqs2
(mmseqs.org), which improves on current
search tools over the full range of
speed-sensitivity trade-off, achieving
sensitivities better than PSI-BLAST at more10

than 400 times its speed.
Owed to the drop in sequencing costs by

four orders of magnitude since 2007, many
large-scale metagenomic projects each
producing terabytes of sequences are being15

performed, with applications in medical,
biotechnological, microbiological, and
agricultural research1;2;3;4. A central step in
the computational analysis is the annotation
of open reading frames by searching for20

similar sequences in the databases from
which to infer their functions. In
metagenomics, computational costs now
dominate sequencing costs5;6;7 and protein
searches typically consume > 90% of25

computational resources7, even though the
sensitive but slow BLAST8 has mostly been
replaced by much faster search tools9;10;11;12.
But the gains in speed are paid by lowered
sensitivity. Because many species found in30

metagenomics and metatranscriptomics
studies are not closely related to any
organism with a well-annotated genome, the
fraction of unannotatable sequences is often
as high as 65% to 90%13;2, and the widening35

gap between sequencing and computational
costs quickly aggravates this problem.

To address this challenge, we developed
the parallelized, open-source software suite
MMseqs2. Compared to its predecessor40

MMseqs14, it is much more sensitive,
supports iterative profile-to-sequence and
sequence-to-profile searches and offers much
enhanced functionality (Supplementary
Table S I).45

MMseqs2 searching is composed of three
stages (Fig. 1a): a short word (”k-mer”)
match stage, vectorized ungapped alignment,
and gapped (Smith-Waterman) alignment.
The first stage is crucial for the improved50

performance. For a given query sequence, it
finds all target sequences that have two
consecutive inexact k-mer matches on the
same diagonal (Fig. 1b). Consecutive k-mer
matches often lie on the same diagonal for55

homologous sequences (if no alignment gap
occurs between them) but are unlikely to do
so by chance. Whereas most fast tools detect
only exact k-mer matches9;10;11;12, MMseqs2,
like MMseqs and BLAST, finds inexact60

k-mer matches between similar k-mers. This
inexact matching allows MMseqs2 to use a
large word size k=7 without loosing
sensitivity, by generating a large number of
similar k-mers, ∼ 600 to 60 000 per query65

k-mer depending on the similarity setting
(Fig. 1b, orange frame). Importantly, its
innermost loop 4 needs only a few CPU clock
cycles per k-mer match using a trick to
eliminate random memory access (last line in70

magenta frame, Supplementary Fig. S1).
MMseqs2 is parallelized on three levels:

time-critical parts are manually vectorized,
queries can be distributed to multiple cores,
and the target database can be split into75

chunks distributed to multiple servers.
Because MMseqs2 needs no random memory
access in its innermost loop, its runtime
scales almost inversely with the number of
cores used (Supplementary Fig. S2).80

MMseqs2 requires 13.4 GB plus 7 B per
amino acid to store the database in memory,
or 80 GB for 30.3 M sequences of length 342.
Large databases can be searched with limited
main memory by splitting the database85

among servers, at very moderate loss of
speed (Supplementary Fig. S3).

We developed a benchmark with
full-length sequences containing disordered,
low-complexity and repeat regions, because90

these regions are known to cause
false-positive matches, particularly in
iterative profile searches. We annotated
UniProt sequences with structural domain
annotations from SCOP15, 6370 of which95

were designated as query sequences and
3.4 M as database sequences. We also added
27 M reversed UniProt sequences, thereby
preserving low complexity and repeat
structure16. The unmatched parts of query100

sequences were scrambled in a way that
conserved the local amino acid composition.
A benchmark using only unscrambled
sequences gives similar results
(Supplementary Figs. S4, S5, S6, S7).105

We defined true positive matches to have
annotated SCOP domains from the same
SCOP family, false positives match a
reversed sequence or a sequence with a
SCOP domain from a different fold. Other110

cases are ignored.
Figure 2a shows the cumulative

distribution of search sensitivities.
Sensitivity for a single search is measured by
the area under the curve (AUC) before the115

first false positive match, i.e., the fraction of
true positive matches found with better
E-value than the first false positive match.
MMseqs2-sensitive reaches BLAST’s
sensitivity while being 36 times faster.120

Interestingly, MMseqs2 is as sensitive as the
exact Smith-Waterman aligner SWIPE17,
compensating some unavoidable loss of
sensitivity due to its heuristic prefilters by
effectively suppressing false positive matches125

between locally biased segments (Fig. 2d,
Supplementary Fig. S4). This is achieved
by correcting the scores of regions with
biased amino acid composition or repeats,
masking such regions in the k-mer index130

using TANTAN18, and reducing homologous
overextension of alignments with a small
negative score offset (Fig. 2d,
Supplementary Fig. S7). All tools except
MMseqs2 and LAST report quite inaccurate135

(i.e. too optimistic) E-values
(Supplementary Fig. S8).

In a comparison of AUC sensitivity and
speed (Fig. 2b), MMseqs2 with four
sensitivity settings (red) shows the best140

combination of speed and sensitivity over the
entire range of sensitivities. Similar results
were obtained with a benchmark using
unscrambled or single-domain query
sequences (Supplementary Figs. S4, S5,145

S6, S7, S9, S10).
Searches with sequence profiles are

generally much more sensitive than simple
sequence searches, because profiles contain
detailed, family-specific preferences for each150

amino acid at each position. We compared
MMseqs2 to PSI-BLAST (Fig. 2b) using
two to four iterations of profile searches
through the target database. As expected,
MMseqs2 profile searches are much faster155

and more sensitive than BLAST sequence
searches. But MMseqs2 is also considerably
more sensitive than PSI-BLAST, despite
being 433 times faster at 3 iterations. This is
partly owed to its effective suppression of160

high-scoring false positives and more
accurate E-values (Fig. 2d,
Supplementary Fig. S7).

The MMseqs2 suite offers workflows for
various standard use cases of sequence and165
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Figure 1: MMseqs2 searching in a
nutshell. (a) Three increasingly sensi-
tive search stages find similar sequences
in the target database. (b) The short
word (”k-mer”) match stage detects con-
secutive inexact k-mer matches occurring
on the same diagonal. The diagonal of
a k-mer match is the difference between
the positions of the two similar k-mers
in the query and in the target sequence.
The pre-computed index table for the tar-
get database (blue frame) contains for
each possible k-mer the list of the tar-
get sequences and positions where the
k-mer occurs (green frame). Query se-
quences/profiles are processed one by one
(loop 1). For each overlapping, spaced
query k-mer (loop 2), a list of all sim-
ilar k-mers is generated (orange frame).
The similarity threshold determines the
list length and sets the trade-off between
speed and sensitivity. For each similar
k-mer (loop 3) we look up the list of
sequences and positions where it occurs
(green frame). In loop 4 we detect con-
secutive double matches on the same di-
agonals (magenta and black frames).

profile searching and clustering of huge
sequence datasets and includes many utility
scripts. We illustrate its power with three
example applications.

In the first example, we tested MMseqs2170

for annotating proteins in the Ocean
Microbiome Reference Gene Catalog
(OM-RGC)1. The speed and quality
bottleneck is the search through the
eggNOGv3 database19. The BLAST search175

with E-value cutoff 0.01 produced matches
for 67% of the 40.2 M OM-RGC genes1. We
replaced BLAST with three MMseqs2
searches of increasing sensitivity
(Supplementary Fig. S11). The first180

MMseqs2 search in fast mode detected
matches for 59.3% of genes at E ≤ 0.1.
(E ≤ 0.1 corresponds to the same false
discovery rate as E ≤ 0.01 in BLAST, Fig.
2d). The sequences without matches were185

searched with default sensitivity, and 17.5%
had a significant match. The last search in
sensitive search mode found matches for
8.3% of the remaining sequences. In total we
obtained at least one match for 69%190

sequences in OM-RGC, 3% more than
BLAST, in 1% of the time (1 520 vs. 162 952
CPU hours; Shini Sunagawa, personal
communication).

In the second example, we sought to195

annotate the remaining 12.3 M unannotated
sequences using profile searches. We merged

the UniProt database with the OM-RGC
sequences and clustered this set with
MMseqs2 at 50% sequence identity cut-off.200

We built a sequence profile for each
remaining OM-RGC sequence by searching
through this clustered database and
accepting all matches with E ≤ 0.001. With
the resulting sequence profiles we searched205

through eggNOG, and 3.5 M (28.3%) profiles
obtained at least one match with E < 0.1.
This increased the fraction of OM-RGC
sequences with significant eggNOG matches
to 78% with an additional CPU time of 900210

hours. In summary, MMseqs2 matched 78%
sequences to eggNOG in only 1.5% of the
CPU time that BLAST needed to find
matches for 67% of the OM-RGC sequences1.

In the third example, we annotated a215

non-redundant set of 1.1 billion hypothetical
proteins sequences with Pfam20 domains.
We predicted these sequences of average
length 134 in ∼ 2200
metagenome/metatranscriptome datasets21.220

Each sequence was searched through 16 479
Pfam31.0 sequence profiles held in 16 GB of
memory of a single 2×14-core server using
sensitivity setting -s 5. Supplementary
Fig. S12 explains the adaptations to the225

k-mer prefilter and search workflow. The
entire search took 8.3 hours, or 0.76 ms per
query sequence per core and resulted in
370 M domain annotations with E-values

below 0.001. A search of 1100 randomly230

sampled sequences from the same set with
HMMER322 through Pfam took 10.6 s per
seqeunce per core, almost 14 000 times
longer, and resulted in 514 annotations with
E < 0.001, in comparison to 415 annotations235

found by MMseq2. A sensitivity setting of
-s 7 brings the number of MMseqs2
annotations to 474 at 4000 times the speed of
HMMER3.

In summary, MMseqs2 closes the cost and240

performance gap between sequencing and
computational analysis of protein sequences.
Its sizeable gains in speed and sensitivity
should open up new possibilities for
analysing large data sets or even the entire245

genomic and metagenomic protein sequence
space at once.
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Figure 2: MMseqs2 pushes the
boundaries of sensitivity-speed
trade-off. a Cumulative distribu-
tion of Area under the curve (AUC)
sensitivity for all 6370 searches
with UniProt sequences through
the database of 30.4 M full-length
sequences. Higher curves signify
higher sensitivity. Legend: speed-
up factors relative to BLAST, mea-
sured on a 2×8 core 128 GB RAM
server using a 100 times dupli-
cated query set (637 000 sequences).
Times to index the database have
not been included. MMseqs2 index-
ing takes 11 minutes for 30.3M se-
quences of avg. length 342. b Av-
erage AUC sensitivity versus speed-
up factor relative to BLAST. White
numbers in plot symbols: number
of search iterations. c Same anal-
ysis as in a, for iterative profile
searches. d False discovery rates for
sequence and profile searches. Col-
ors: as in a (top) and c (bottom).
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104034 (2017).

[22] Eddy, S. R. PLoS Comput. Biol. 7,
e1002195 (2011).

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/079681doi: bioRxiv preprint 

https://doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

