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Abstract 

 Large-scale cross-sectional and cohort studies have transformed our 

understanding of the genetic and environmental determinants of health outcomes. 

However, the representativeness of these samples may be limited – either through 

selection into studies, or by attrition from studies over time. Here we explore the 

potential impact of this selection bias on results obtained from these studies, from the 

perspective that this amounts to conditioning on a collider (i.e., a form of collider 

bias). While it is acknowledged that selection bias will have a strong effect on 

representativeness and prevalence estimates, it is often assumed that it should not 

have a strong impact on estimates of associations. We argue that because selection 

can induce collider bias (which occurs when two variables independently influence a 

third variable, and that third variable is conditioned upon), selection can lead to 

substantially biased estimates of associations. In particular, selection related to 

phenotypes can bias associations with genetic variants associated with those 

phenotypes. In simulations, we show that even modest influences on selection into, 

or attrition from, a study can generate biased and potentially misleading estimates of 

both phenotypic and genotypic associations. Our results highlight the value of 

knowing which population your study sample is representative of. If the factors 

influencing selection and attrition are known, they can be adjusted for. For example, 

having DNA available on most participants in a birth cohort study offers the possibility 

of investigating the extent to which polygenic scores predict subsequent participation, 

which in turn would enable sensitivity analyses of the extent to which bias might 

distort estimates. 
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Key Messages 

 

Selection bias (including selective attrition) may limit the representativeness of large-

scale cross-sectional and cohort studies. 

 

This selection bias may induce collider bias (which occurs when two variables 

independently influence a third variable, and that variable is conditioned upon). 

 

This may lead to substantially biased estimates of associations, including of genetic 

associations, even when selection / attrition is relatively modest. 
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Collider Scope: 

When selection bias can substantially influence observed associations 

 

Introduction 

 Understanding the impact of genetic and environmental factors on physical 

and mental health outcomes is critical if we are to develop effective preventive and 

treatment interventions. Large-scale cross-sectional and cohort studies provide an 

invaluable resource to support these efforts, in particular with respect to genetic 

influences, where the small effects associated with common genetic variants require 

very large samples to achieve adequate statistical power. A study can be used to 

draw conclusions about the population it represents, but generalizability to other 

populations depends upon us knowing exactly what the study population is. However, 

participants who volunteer to participate in studies may not be representative of the 

intended study population, in which case the actual study population is unknown (1). 

Some studies may be relatively representative of the intended study 

population at inception through rigorous efforts to ensure representative recruitment 

(e.g., birth cohort studies). However, as they mature the likelihood is that attrition 

from the study will be non-random, so that the cohort becomes less representative of 

the intended population as time goes on. Alternatively, the reverse may be true –the 

study may be unrepresentative at inception, but with low attrition. Selection bias can 

also occur if a sub-set of participants within a study is selected for more detailed 

investigation (e.g., genotyping) on the basis of having most data available, or 

volunteering for further follow-up (2). There is already clear evidence from existing 

large-scale population studies that they are subject to a degree of selection bias. For 

example, higher genetic risk scores for schizophrenia are consistently associated 

with non-completion of questionnaires by study mothers and children, as well as non-

attendance at data collection clinics, in the Avon Longitudinal Study of Parents and 

Children (ALSPAC) (3) (see Box 1). 
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Attrition from cohort studies may result in biased estimates of socioeconomic 

inequalities, and the degree of bias may worsen as participation rates decrease (4). 

However, it is often argued that representativeness is not necessary in studies of this 

kind (5-9), although this is not universally accepted (10). In particular, for genetic 

variants, where conventional confounding is low (11), it has been argued, even by 

those concerned about selection bias, that any problems associated with a lack of 

representativeness may be modest (10, 12). Here we ask: What is the impact of 

selection bias on the results obtained from these studies? We take the perspective 

that selection bias can amount to conditioning on a collider (i.e., conditioning on a 

variable that is independently influenced by two other variables). 

 

Insert Box 1 about here. 

 

Collider Bias 

It is widely acknowledged that selection bias will distort prevalence estimates. 

This can be clearly seen in differences between participants at baseline and at 

subsequent assessments in cohort studies, such as when we compare the original 

ALSPAC sample with those who attended later clinics (see Box 1). It can also be 

seen in differences between a study sample and the source population from which it 

is drawn; for example, the UK Biobank study differs relative to the general population 

in the UK (see Box 2). However, it is often assumed that whilst selection bias will 

have a strong effect on prevalence estimates, it should not have a strong impact on 

observed associations between variables (8). This overlooks the fact that selection 

can induce collider bias (see Figure 1), which can lead to biased observational and 

genetic associations. This bias can be towards or away from any true association, 

and can distort a true association or a true lack of association. 

 

Insert Figure 1 and Box 2 about here. 
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Collider bias occurs when two variables (X and Y) independently cause a 

third variable (Z). In this situation, Z is a collider, and statistical adjustment for Z will 

bias the estimated causal association of X (exposure) on Y (outcome) (see Figure 2). 

Statistical adjustment of the XY association for a variable Z is equivalent to observing 

this association in a sub-population where all individuals share the same value of Z 

(1, 13). Hence if both X and Y cause participation in a study (Z), then investigating 

associations in the selected sample (i.e., with Z = 1, indicating participation in the 

study) is equivalent to conditioning on Z, which in turn may induce collider bias. 

 

Insert Figure 2 about here. 

 

In other words, sample selection can bias associations between variables that 

influence participation or retention in a study. This can include inducing spurious 

associations when no such association exists in the population from which the 

sample is drawn or, if two variables are correlated in the intended study population 

and both cause selection, biasing the estimated correlation in the selected sample. 

Moreover, this selection bias will apply to the genetic correlates (or other ancestors) 

of these variables, unless the phenotypes are also controlled for. Therefore if genes 

Gx and Gy cause X (exposure) and Y (outcome) respectively, and both X and Y 

influence participation, then in the selected sample Gx will appear to be associated 

with Y (unless X is also controlled for). More complex situations can also give rise to 

collider bias, such as when the outcome (Y) doesn’t directly cause selection into the 

study (i.e., it is a downstream consequence of something else that is causing 

selection into the study). 

 If two traits influence participation (and therefore contribute to selection), 

selection bias amounts to implicitly conditioning on their common effect (i.e., 

participation) (1, 14). This can in principle lead to biased associations between these 
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two traits. There are exceptions to this depending on the distribution of the outcome 

and the parametric analysis model used. For example, if the outcome (Y) is a binary 

phenotype, and logistic regression is used, then the odds ratio for the association 

between the SNP and outcome may be unbiased even when the outcome causes 

selection (as is true of case-control studies) (15). We have previously argued that 

these effects may be greater in case-control studies than prospective studies, and 

that since genetic associations have been similar across study designs, the impact of 

selection bias may in fact be modest (12). We have also previously argued that 

because conventional confounding is typically low for single genetic variants, 

problems of selection bias will be less in this context (10). However, given the rapid 

growth in studies using data from highly selected samples such as UK Biobank, and 

the use of genetic risk scores rather than single genetic variants, we revisited this 

question, and used simulation to explore the potential impact of even relatively weak 

effects on participation. Given empirical evidence of selection in cross-sectional and 

cohort studies, what is the potential impact of this on observed phenotypic and 

genotypic associations? 

 

Simulations 

 We simulated data on an allele score, a phenotype and an outcome, where 

both the phenotype and outcome influence selection into the study, but there was no 

association between the allele score and the outcome in the underlying population 

(see Figure 2). The simulation scenario was based loosely on the UK Biobank, and 

we simulated selection into the study, so all the data on non-selected individuals are 

missing and therefore imputation is not a potential solution (see below), because this 

requires some data on which to base the imputation (16). All variables were Normally 

distributed, with standard deviation of 1, and the sample size of the underlying 

complete population was 9,000,000. We assumed that phenotype and outcome had 

independent effects (i.e., no interaction on the additive scale) on the odds of 
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selection into the sample, and for convenience we set these effects to be equal, and 

examined a weak association (OR of 1.2 for missingness for a 1 SD increase in 

phenotype/outcome) and two stronger associations (ORs of 1.5 and 1.8). These 

odds ratios are similar to estimates of the likelihood of participation in UK Biobank for 

individuals with any educational or vocational qualifications and for non–smokers, 

respectively (see Box 2), and indicate a difference in mean phenotype/outcome of 

0.2 SD, 0.4 SD and 0.6 SD between those participating and those not participating. 

We varied the correlation between the allele score and the phenotype (between r = 

0.05 and r = 0.30) to simulate genetic instruments explaining between 0.25% and 9% 

of the variance in phenotypes. These values are in the typical range for the 

association between common genetic variants, or polygenic risk scores comprising 

multiple common variants, and complex phenotypes. For example, the rs16969968 

variant accounts for approximately 1% of the phenotypic variance in cigarette 

consumption (17), while the polygenic risk score for height captures approximately 

9% of phenotypic variance (18). We controlled the baseline risk of selection into the 

sample, resulting in a selected sample of approximately 500,000 people. The 

analysis was an unadjusted regression of outcome on allele score (i.e. not adjusting 

for the phenotype). We simulated a true null association (i.e. in the whole population, 

the regression coefficient for outcome on allele score is zero). We simulated each 

scenario 100 times. We then repeated the simulations with the addition of a causal 

effect of the phenotype on the outcome, with a regression coefficient of 0.1. 

The results of this simulation study are shown in Table 1 (no causal effect of 

P on O) and Table 2 (causal effect of P on O). Where there is no causal effect of P 

on O, the effects of selection bias are strongest for stronger independent selection 

effects, and also where the allele score is more strongly associated with the 

phenotype (Table 1). However, even for moderate associations between 

missingness and both phenotype and outcome (OR = 1.5 for both phenotype and 

outcome) and between allele score and phenotype (r = 0.1, 1% variance explained 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/079707doi: bioRxiv preprint 

https://doi.org/10.1101/079707
http://creativecommons.org/licenses/by/4.0/


	

	 9 

by allele score) the confidence intervals contains zero only 89% of the time, and this 

continues to decrease with both greater strength of association between phenotype, 

outcome and missingness, and stronger association between allele score and 

phenotype. 

 

Insert Table 1 about here. 

 

Where there is a causal effect of P on O, the results are broadly similar, except that 

on the whole the confidence intervals had lower coverage than for the equivalent 

situation with no causal association. 

 

 Insert Table 2 about here 

 

 We also explored associations between known risk factors and outcomes in a 

representative birth cohort and a selected sub-study. We used ALSPAC as the birth 

cohort. Initially 14,541 pregnant women who were expected to give birth between 1 

April 1991 and 31 December 1992 were recruited into the study in the South West 

region of England (19). The study website contains details of all data available 

through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethics 

approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees. We also used the Accessible Resource 

for Integrated Epigenomics Studies (ARIES), a sub-study of ALSPAC where a sub-

set of 1,018 mother-offspring pairs were selected based on availability of DNA 

samples at two time points for the mother (at an antenatal clinic and at a follow-up 

clinic when their offspring were mean age 15.5 years) and three time points for the 

offspring (at birth, childhood, and adolescence (2). We investigated the association 

between a genetic risk score for smoking (ever vs never) and maternal education in 
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ALSPAC, and in the ARIES sub-sample. The results are shown in Table 3, and 

indicated that the genetic risk score for smoking and maternal education are 

associated in ARIES, but not in the full sample. 

 

 Insert Table 3 about here. 

 

Conclusions 

Our results indicate the potential for selection/attrition to generate biased and 

potentially misleading estimates of both phenotypic and genotypic associations. In 

particular, when polygenic scores (associated with a phenotype) that combine many 

genetic variants are used, association between the phenotype and participation will 

cause the score to be more strongly related to participation than each individual 

variant is. This, in turn, can potentially lead to serious bias. For this reason, studies 

using polygenic scores, genome-wide allelic scores (20), and/or whole-genome 

genetic correlations (21, 22) are most at risk of producing biased and potentially 

misleading results where there is reason to believe the study sample is not 

representative of the study population but the mechanism of selection is unknown. 

The magnitude of effects we observed in our simulations, based on credible 

estimates of associations between both a phenotype or outcome and missingness, 

and between a polygenic score and a phenotype, are comparable with many 

reported associations derived from large but selected samples, such as between 

personality and cognitive function, and a range of physical and mental health 

outcomes (23, 24), and between chronotype (i.e., “morningness”) and years of 

education (25). Such associations could therefore plausibly be generated by 

selection bias. An appreciation of the potential impact of selection bias may also 

resolve inconsistencies in the literature, and help to explain apparently paradoxical 

findings. For example, genetic correlations between cognitive ability and a range of 

psychiatric disorders have been reported to differ in childhood and older age (26). 
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One possible interpretation is that this is due to age-dependent pleiotropy, but 

another is that this is an artefact of different selection bias pressures at different ages. 

An example serves to illustrate this. Polygenic risk scores that maximally capture 

schizophrenia liability are associated with increased psychotic experiences in 

ALSPAC participants, but scores that use more stringent thresholds for including 

genetic variants are associated with reduced psychotic experiences (27). Since 

missing data are likely to be greater for participants who report psychotic 

experiences, as well as for those at higher genetic risk of a psychotic disorder, 

psychotic experiences may be relatively under-represented in participants with higher 

genetic risk, compared to those with lower genetic risk (27).   

Such collider bias could occur through initial selection, or selective dropout, or 

both – for example, a study could be representative of its target population initially, 

but become less representative as those of poorer health drop out due to death. The 

main difference between these two scenarios – initial selection and selection through 

attrition – is in the amount of information available on the missing individuals.  Where 

some data are available for all participants (e.g., in the case of drop-out), then 

multiple imputation or inverse probability weighting can be used (28), under some 

assumptions which are untestable given the observed data, to recover unbiased 

estimates of associations. However, where there is no information on missing 

individuals (e.g., we have no data on individuals who did not volunteer for 

participation into a study), then such methods cannot be used. External information 

(such as the expected proportion of males and females in the general population) 

could be used to investigate likely factors related to participation, and to derive bias-

adjusted estimates. 

A related issue is the use of case-control studies to examine associations 

with “secondary” outcomes – that is, phenotypes other than the case/control outcome 

(29, 30). In such studies, the association between genotype and secondary 

phenotype will be biased if both genotype and secondary phenotype are associated 
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with case-control status. Case-control studies condition on case-control status, and 

thus again collider bias can bias the association between genotype and secondary 

phenotype. Various methods have been proposed to overcome this bias, including 

maximum likelihood and inverse probability weighting. This latter method requires 

some knowledge about the prevalence of case/control status in the underlying 

population, or the assumption that the disease is rare (29, 30). 

We have discussed one important way in which selection into or out of a 

study can induce collider bias and spurious associations. There are other ways in 

which ascertainment can generate biases (31). For example, Figure 3 (panel B) 

shows a situation in which entry into a study is conditional upon the value of the 

phenotype (but not the outcome of interest) and where the phenotype does not 

cause the outcome, but the phenotype and outcome are correlated in unselected 

samples (i.e., due to genetic and/or environmental factors U). In this situation, 

collider bias occurs because conditioning on selection induces an association 

between SNPs related to the phenotype and the polygenic and/or environmental 

factors that influence the outcome. Therefore SNPs that cause the phenotype only 

(i.e. do not in truth cause the outcome), may now show spurious relationships with 

the outcome variable. An example of the situation in Figure 3 (panel B) is when the 

phenotype increases mortality (32-35) – for example, in studies of smoking as a 

phenotype, where smoking is associated with premature mortality. In a cohort study 

which examines smoking, and then follows participants up for Alzheimer’s disease, 

those who die early (perhaps because of smoking-related illness) will never have the 

chance to be diagnosed with Alzheimer’s disease, and therefore smoking will appear 

to be a protective factor. Figure 3 (panels C to E) also shows examples where 

selection will bias the estimation of the causal effects of SNPs on the outcome. In 

these examples, SNPs that do cause the outcome directly via the phenotype will 

either show increased or decreased association in the selected sample, depending 

on the underlying genetic and environmental aetiology of both traits. In the situations 
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depicted in Figures 3A, 3C and 3E, the association between phenotype and outcome 

(e.g. in an observational study) would also be biased. In contrast, Figure 3F shows a 

situation where selection will bias the association of the phenotype with the outcome, 

but the association of the SNP with the outcome will be unbiased. Other, more 

complex, situations can also lead to selection bias – we have not attempted to outline 

every possible case here. Algorithms for deciding whether a given causal analysis is 

biased by selection have been described (16), and could be used to decide whether 

bias is likely in a given case. 

 

Insert Figure 3 about here. 

 

Our results highlight the value of representative cohorts (including birth 

cohorts), where there is little or no selection into the cohort. In addition, having some 

baseline data and DNA available on all participants at recruitment into the study at 

least offers the possibility of investigating the extent to which polygenic scores (and 

other measured factors at baseline) predict subsequent participation. Without this 

knowledge, studies in samples with unknown selection/attrition mechanisms run the 

risk of providing biased and misleading results. In our opinion these important 

caveats should be borne in mind when interpreting the results of such studies. 
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Box 1. The Avon Longitudinal Study of Parents and Children. 

Birth cohort studies are also not immune to problems of selection bias, where 

retention in the study may be related to a variety of participant characteristics. The 

Avon Longitudinal Study of Parents and Children (ALSPAC) recruited pregnant 

women living in the administrative county of Avon with expected delivery dates 

between 1st April 1991 and 31st December 1992. These women, their partners and 

their offspring have been followed up ever since via questionnaires and clinics. 

ALSPAC originally captured data on 14,541 pregnancies (75% of eligible women) (19, 

36), but inevitably retention in subsequent data collection sweeps (postal 

questionnaires and clinic assessments) was less than 100%. We see that higher 

body mass index (BMI) is associated with lower odds of subsequent retention in both 

mothers (N = 11,319, OR per SD increase in BMI 0.85, 95% CI 0.81 to 0.88), for 

retention between 2008 and 2011 using pre-pregnancy BMI as a predictor, and 

offspring (N = 7,954, OR 0.91, 95% CI 0.87 to 0.96), for retention at age 18 using 

BMI at age 7 as a predictor. Similarly, among smoking mothers in ALSPAC, 

heaviness of smoking is associated with lower odds of retention (N = 3,534, OR per 

additional cigarette smoked per day just prior to pregnancy 0.97, 95% CI 0.96 to 

0.98). If low BMI and maternal non-smoking are both related to continuing 

participation in ALSPAC, this would tend to lead to the association between BMI and 

maternal smoking being negatively biased (i.e., we would expect to see a more 

negative association between smoking and BMI in ALSPAC than in the true 

underlying population).
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Box 2. UK Biobank. 

The UK Biobank is a cross sectional study, which recruited over 500,000 

individuals aged between 40 and 69 years between 2006 and 2010 (see 

http://www.ukbiobank.ac.uk/). Individuals in this age group living within a 25 mile 

radius of any of the 22 assessment centres across the UK were identified from NHS 

patient registers (37). In total, around 9 million individuals were invited to participate. 

However, UK Biobank was only able to achieve a 5% response rate (~500,000 

participants recruited from ~9,000,000 invited, personal communication, UK Biobank, 

8th July 2016), and the resulting sample is not representative of the UK population as 

a whole. For example, the proportion of current smokers is relatively low in UK 

Biobank (19% in the general population vs 11% in UK Biobank, equivalent to an OR 

of 1.90) (38), as is the proportion with no qualifications (25% vs 17%, equivalent to 

an OR of 1.63) (39). Unsurprisingly, therefore, participants in UK Biobank have far 

lower rates of 5-year mortality than the UK population as a whole (40). Clearly, 

agreeing to take part in the UK Biobank study is associated with a number of 

characteristics that will reflect, for example, health status and social position. If non-

smoking and having qualifications are both causally related to participation in UK 

Biobank, we would expect the association between smoking and having 

qualifications to be positively biased (i.e., we would expect to see a more positive 

association between genetic variants positively associated with smoking and whether 

participants had educational qualifications in UK Biobank than in the true population). 

The problem is possibly compounded in genetic studies using the first release of 

genomewide association data in UK Biobank, which used two genotyping arrays, one 

of which was applied to a nested case-control study of smoking and lung function 

(UK BiLEVE) (41). The first release genetic data are therefore further subject to 

selection bias relative to UK Biobank as a whole (although this will no longer be the 

case when the full release of genomewide association data becomes available). 
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Table 1. Results of simulation study showing the selection bias in estimating an 
association that is null in the underlying population.  
 
Simulation settings Results – association between allele 

score and outcome 
Association between 
missingness and both 
phenotype and 
outcome (OR) 

Association 
between allele 
score and 
phenotype (r) 

Mean 
regression 
coefficient 
(SD) 

Mean 
z-score 
(SD) 

Number of 
95% CIs 
containing 
zero 

OR = 1.8 0.05  
(0.25% variance) 

-0.001 
(0.001) 

-1.04 
(1.00) 

83 

0.10 
(1.00% variance) 

-0.003 
(0.001) 

-2.06 
(0.98) 

45 

0.15 
(2.25% variance) 

-0.004 
(0.001) 

-3.07 
(0.98) 

9 

0.20 
(4.00% variance) 

-0.006 
(0.001) 

-4.10 
(0.98) 

0 

0.30 
(9.00% variance) 

-0.008 
(0.001) 

-6.18 
(1.06) 

0 

OR = 1.5 0.05  
(0.25% variance) 

-0.001 
(0.001) 

-0.42 
(0.95) 

94 

0.10 
(1.00% variance) 

-0.001 
(0.001) 

-0.80 
(0.96) 

89 

0.15 
(2.25% variance) 

-0.001 
(0.001) 

-1.22 
(0.96) 

77 

0.20 
(4.00% variance) 

-0.002 
(0.001) 

-1.64 
(0.97) 

61 

0.30 
(9.00% variance) 

-0.003 
(0.001) 

-2.44 
(0.94) 

35 

OR=1.2 0.05  
(0.25% variance) 

-0.0002 
(0.001) 

-0.16 
(0.92) 

97 

0.10 
(1.00% variance) 

-0.0003 
(0.001) 

-0.25 
(0.94) 

97 

0.15 
(2.25% variance) 

-0.0005 
(0.001) 

-0.38 
(0.95) 

93 

0.20 
(4.00% variance) 

-0.0006 
(0.001) 

-0.47 
(0.95) 

91 

0.30 
(9.00% variance) 

-0.0009 
(0.001) 

-0.66 
(0.96) 

89 

 
OR: odds ratio; r: correlation coefficient; SD: standard deviation; CI: confidence 
interval. Each scenario was simulated 100 times. 
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Table 2. Results of simulation study showing the selection bias in estimating an 
association that is not null in the underlying population (regression coefficient for 
outcome on phenotype is 0.1) 
 
Simulation settings Results – association between allele score 

and outcome 
Association 
between 
missingness and 
both phenotype 
and outcome (OR) 

Association 
between allele 
score and 
phenotype (r) 

Mean 
regression 
coefficient 
(SD) 

True 
regression 
coefficient 

Number of 
95% CIs 
containing 
true value 

OR = 1.8 0.05  
(0.25% 
variance) 

0.003 
(0.001) 0.005 78 

0.10 
(1.00% 
variance) 

0.006 
(0.001) 0.01 23 

0.15 
(2.25% 
variance) 

0.010 
(0.001) 0.015 2 

0.20 
(4.00% 
variance) 

0.013 
(0.001) 0.02 0 

0.30 
(9.00% 
variance) 

0.020 
(0.001) 

0.03 0 

OR = 1.5 0.05  
(0.25% 
variance) 

0.004 
(0.001) 0.005 

94 

0.10 
(1.00% 
variance) 

0.009 
(0.001) 0.01 

86 

0.15 
(2.25% 
variance) 

0.013 
(0.001) 0.015 

69 

0.20 
(4.00% 
variance) 

0.017 
(0.001) 0.02 

53 

0.30 
(9.00% 
variance) 

0.026 
(0.001) 

0.03 19 

OR = 1.2 0.05  
(0.25% 
variance) 

0.005 
(0.001) 0.005 

98 

0.10 
(1.00% 
variance) 

0.01 (0.001) 
0.01 

96 

0.15 
(2.25% 
variance) 

0.014 
(0.001) 0.015 

94 

0.20 
(4.00% 
variance) 

0.019 
(0.001) 0.02 

92 

0.30 0.029 0.03 95 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/079707doi: bioRxiv preprint 

https://doi.org/10.1101/079707
http://creativecommons.org/licenses/by/4.0/


	

	 25 

(9.00% 
variance) 

(0.001) 

 
 
OR: odds ratio; r: correlation coefficient; SD: standard deviation; CI: confidence 
interval. Each scenario was simulated 100 times. 
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Table 3. Associations between a genetic risk score for smoking and maternal 
education, in ALSPAC and ARIES. 
 
Association between genetic risk score and ever smoking in ALSPAC 
 N OR (95% CI) P 
Smoking genetic risk score 1 7,291 1.07 (1.02 to 1.12) 0.003 
 
Association with being in the ARIES sub-study 
 N OR (95% CI) P 
Smoking (ever vs never)  13,249 0.59 (0.52 to 0.68) <0.001 
Smoking genetic risk score 1 7,837 1.00 (0.93 to 1.07) 0.92 
Maternal education 2 12,493 1.86 (1.58 to 2.19) <0.001 
 
Association between smoking/smoking genetic risk score and maternal 
education in ALSPAC and ARIES 
 
ALSPAC N OR (95% CI) P 
Smoking (ever vs never) 12,118 0.45 (0.40 to 0.50) <0.001 
Smoking genetic risk score 1 7,046 1.01 (0.95 to 1.08) 0.74 
 
ARIES N OR (95% CI) P 
Smoking (ever vs never) 986 0.61 (0.44 to 0.84) 0.003 
Smoking genetic risk score 1 791 1.20 (1.02 to 1.41) 0.03 
 
1. Genetic risk score including variants reaching P < 0.05 for association with ever vs 
never smoking in the Tobacco and Genetics Consortium GWAS (see Supplementary 
Material). Associations are per SD increase in genetic risk score. 2. Degree vs no 
degree. 
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Figure 1. Illustration of collider bias. 
 

 
 
The basic premise of collider bias is shown. In this example, a bell is sounded 
whenever either coin come up ‘heads’. The result of one coin toss is independent of 
the other. However, if we hear the bell ring (i.e., we condition on the bell ringing), 
then if you see a tail on one coin you know there must be a head on the other – the 
two coin results are no longer independent and a spurious inverse correlation has 
been induced. Reproduced from Gage SH, Davey Smith G, Ware JJ, Flint J, Munafò 
MR (2016) G = E: What GWAS Can Tell Us about the Environment. PLoS Genet 
12(2): e1005765. doi:10.1371/journal.pgen.1005765 
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Figure 2. Illustration of selection bias simulation.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
In the entire population there is no association between allele score and outcome. 
Selection into the study (either through voluntary participation at baseline, or attrition 
over time) induces an association between allele score and outcome (collider bias). 
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Figure 3. Scenarios where selection bias would occur. 
 
A. In truth the SNP is not causally associated with the outcome; selection will induce 
an association (which could be positive or negative). 
 

 
 
B. In truth the SNP is not causally associated with the outcome; selection will induce 
an association (which could be positive or negative). 
 

 
 
 
C. In truth the SNP is causally associated with the outcome; selection could make 
this larger or attenuate it. 
 

 
 
D In truth the SNP is causally associated with the outcome; selection could make this 
larger or attenuate it. 
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E. In truth the SNP is causally associated with the outcome; selection will bias this 
association (which could be positive or negative). 
 

 
 
F: Note that the association between P and O is biased in the selected sample; 
however, the association between SNP and O is unbiased in the selected sample. 
 

 
	
	
SNP: single nucleotide polymorphism; P: Phenotype; O: Outcome; S: Selection. 
	
	
	
	 	
	

SNP P O 

S 

U 

SNP P O 

S 

SNP P O 

S 	U1 U2 


