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Abstract1

The advent of next generation sequencing technologies has made whole-genome and whole-2

population sampling possible, even for eukaryotes with large genomes. With this development,3

experimental evolution studies can be designed to observe molecular evolution “in-action” via4

Evolve-and-Resequence (E&R) experiments. Among other applications, E&R studies can be5

used to locate the genes and variants responsible for genetic adaptation. Existing literature on6

time-series data analysis often assumes large population size, accurate allele frequency estimates,7

and wide time spans. These assumptions do not hold in many E&R studies.8

In this article, we propose a method–Composition of Likelihoods for Evolve-And-Resequence9

experiments (Clear)–to identify signatures of selection in small population E&R experiments.10

Clear takes whole-genome sequence of pool of individuals (pool-seq) as input, and properly ad-11

dresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides12

unbiased estimates of model parameters, including population size, selection strength and dom-13

inance, while being computationally efficient. Extensive simulations show that Clear achieves14

higher power in detecting and localizing selection over a wide range of parameters, and is robust15

to variation of coverage. We applied Clear statistic to multiple E&R experiments, including,16

data from a study of D. melanogaster adaptation to alternating temperatures and a study of17

outcrossing yeast populations, and identified multiple regions under selection with genome-wide18

significance.19

1 Introduction20

Natural selection is a key force in evolution, and a mechanism by which populations can adapt to21

external ‘selection’ pressure. Examples of adaptation abound in the natural world [22], including22

for example, classic examples like lactose tolerance in Northern Europeans [9], human adaptation23

to high altitudes [55, 69], but also drug resistance in pests [15], HIV [24], cancer [27, 70], malarial24

parasite [3, 44], and others [56]. In these examples, understanding the genetic basis of adaptation25

can provide valuable information, underscoring the importance of the problem.26

Experimental evolution refers to the study of the evolutionary processes of a model organism27

in a controlled [7, 10, 28, 37, 38, 46, 47] or natural [5, 8, 16, 17, 41, 50, 68] environment. Recent28

advances in whole genome sequencing have enabled us to sequence populations at a reasonable29

cost, even for large genomes. Perhaps more important for experimental evolution studies, we30

can now evolve and resequence (E&R) multiple replicates of a population to obtain longitudinal31

time-series data, in order to investigate the dynamics of evolution at molecular level. Although32

constraints such as small sizes, limited timescales, and oversimplified laboratory environments may33
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limit the interpretation of E&R results, these studies are increasingly being used to test a wide34

range of hypotheses [34] and have been shown to be more predictive than static data analysis35

[12, 18, 52]. In particular, longitudinal E&R data is being used to estimate model parameters36

including population size [33, 49, 60, 64, 65, 67], strength of selection [11, 29, 30, 40, 43, 57, 60],37

allele age [40] recombination rate [60], mutation rate [6, 60], quantitative trait loci [4] and for tests38

of neutrality hypotheses [8, 13, 23, 60].39

While many E&R study designs are being used [6, 53], we restrict our attention to the adaptive40

evolution due to standing variation in fixed size populations. This regime has been considered41

earlier, typically with D. melanogaster as the model organism of choice, to identify adaptive genes42

in longevity and aging [13, 51] (600 generations), courtship song [63] (100 generations), hypoxia43

tolerance [71] (200 generations), adaptation to new laboratory environments [26, 46] (59 genera-44

tions), egg size [32] (40 generations), C virus resistance [42] (20 generations), and dark-fly [31] (4945

generations).46

The task of identifying selection signatures can be addressed at different levels of specificity.47

At the coarsest level, identification could simply refer to deciding whether some genomic region (or48

a gene) is under selection or not. In the following, we refer to this task as detection. In contrast,49

the task of site-identification corresponds to the process of finding the favored mutation/allele50

at nucleotide level. Finally, estimation of model parameters, such as strength of selection and51

dominance at the site, can provide a comprehensive description of the selection process.52

In the effort to analyze E&R selection experiments, many authors chose to adapt existing53

tests that were originally used for static data, pairwise comparisons (two time-points) and single54

replicates to perform a null scan. For instance, Zhu et al. [71] used the ratio of the estimated55

population size of case and control populations to compute test statistic for each genomic region.56

Burke et al. [13] applied Fisher exact test to the last observation of data on case and control57

populations. Orozco-terWengel et al. [46] used the Cochran-Mantel-Haenszel (CMH) test [1] to58

detect SNPs whose read counts change consistently across all replicates of two time-point data.59

Turner et al. [63] proposed the diffStat statistic to test whether the change in allele frequencies60

of two populations deviate from the distribution of change in allele frequencies of two drifting61

populations. Bergland et al. [8] calculated Fst to populations throughout time to signify their62

differentiation from ancestral (two time-point data) as well as geographically different populations.63

Jha et al. [32] computed test statistic of generalized linear-mixed model directly from read counts.64

Alternatively, direct methods have been developed to analyze time-series data by taking a65

likelihood approach, and estimating population genetics parameters. Bollback et al. [11] proposed66

a Hidden Markov Model (HMM) to estimate the selection coefficient s and population size by67

using a diffusion approximation to the continuous Wright Fisher Markov process. Steinrücken and68

Song [57] proposed a general diploid selection model which takes into account of dominance of69

the favored allele and approximates likelihood analytically. Mathieson and McVean [43] adopted70

HMMs to structured populations and estimated parameters using an Expectation Maximization71

(EM) procedure on discretized allele frequency. Feder et al. [23] modeled increments in allele72

frequency with a Brownian motion process, proposed the Frequency Increment Test (FIT). More73

recently, Topa et al. [62] proposed a Gaussian Process (GP) for modeling single-locus time-series74

pool-seq data. Terhorst et al. [60] extended GP to compute joint likelihood of multiple loci under75

null and alternative hypotheses. Recently, Schraiber et al. [54] proposed a Bayesian framework to76

estimate parameters using Monte Carlo Markov chain sampling.77

While existing methods have been successfully applied to their corresponding application, they78

make some assumptions which may not hold in E&R studies. First, they assume that the underlying79

population size is large, so it is reasonable to model dynamics of allele frequencies using continuous80

state models. A number of existing methods were originally designed to process wide time spans81
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such as ancient DNA studies. Finally, they assume that input data is in the form of unbiased allele82

frequencies, which may not be valid for shotgun sequencing experiments.83

Here, we consider a Hidden Markov Model (HMM), similar to Williamson et al. [67] and Boll-84

back et al.’s [11] but under a “small-population-size” regime. Specifically, we use a discrete state85

(frequency) model. We show that for small population sizes, discrete models can compute likeli-86

hood exactly, which improves statistical performance, especially for short time-span experiments.87

Additionally, we add another level of sampling-noise to the traditional HMM model, allowing for88

heterogeneous ascertainment bias due to uneven coverage among variants. We show that for a wide89

range of parameters, Clear provides higher power for detecting selection, estimates model pa-90

rameters consistently, and localizes favored allele more accurately compared to the state-of-the-art91

methods, while being computationally efficient.92

2 Materials and Methods93

Consider a panmictic diploid population with fixed size of N individuals. Let ν = {νt}t∈T be94

frequencies of the derived allele at generations t ∈ T for a given variant, where at generations95

T = {τi : 0 ≤ τ0 < τ1, . . . < τT } samples of n individuals are chosen for pooled sequencing. The96

experiment is replicated R times. We denote allele frequencies of the R replicates by the set {ν}R.97

To identify the genes and variants that are responding to selection pressure, we use the following98

procedure:99

(i) Estimating population size. The procedure starts by estimating the effective population100

size, N̂ , under the assumption that much of the genome is evolving neutrally.101

(ii) Estimating selection parameters. For each polymorphic site, selection and dominance102

parameters s, h are estimated so as to maximize the likelihood of the time series data, given103

N̂ .104

(iii) Computing likelihood statistics. For each variant, a log-odds ratio of the likelihood105

of selection model (s > 0) to the likelihood of neutral evolution/drift model is computed.106

Likelihood ratios in a genomic region are combined to compute the Clear statistic for the107

region.108

(iv) Hypothesis testing. An empirical null distribution of the Clear statistic is calculated using109

genome-wide drift simulations, and used to compute p-values and thresholds for a specified110

FDR. We perform single locus hypothesis testing within selected regions to identify significant111

variants and report genes that intersect with the selected variants.112

These steps are described in detail below.113

2.1 Estimating Population Size114

Methods for estimating population sizes from temporal neutral evolution data have been devel-115

oped [2, 11, 33, 60, 67]. Here, we aim to extend these models to explicitly model the sampling noise116

that arise in pool-seq data. Specifically, we model the variation in sequence coverage over different117

locations, and the noise due to sequencing only a subset of the individuals in the population. In118

addition, many existing methods [11, 23, 60, 62] are designed for large populations, and model119

frequency as a continuous quantity. We show that smooth approximations may be inadequate for120

small populations, low starting frequencies and sparse sampling (in time) that are typical in ex-121

perimental evolution (see Results, Fig 3A-C, and Fig 2). To this end, we model the Wright-Fisher122
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Markov process for generating pool-seq data (Fig S1) via a discrete HMM ( Fig 1-B). We start by123

computing a likelihood function for the population size given neutral pool-seq data.124

Likelihood for Neutral Model. We model the allele frequency counts 2Nνt as being sampled125

from a Binomial distribution. Specifically,126

ν0 ∼ π,

2Nνt|νt−1 ∼ Binomial(2N, νt−1)

where π is the global distribution of allele frequencies in the base population. Here we simply127

assume is π is the site frequency spectrum of fixed sized neutral population Fig S2. Note that π128

may depend on the demographic history of the founder lines.129

To estimate frequency after τ transitions, it is enough to specify the 2N ×2N transition matrix130

P (τ), where P (τ)[i, j] denotes probability of change in allele frequency from i/2N to j/2N in τ131

generations:132

P (1)[i, j] = Pr

(
νt+1 =

j

2N

∣∣∣∣νt =
i

2N

)
=

(
2N

j

)
νjt (1− νt)2N−j , (1)

P (τ) = P (τ−1)P (1) (2)

Furthermore, in an E&R experiment, n ≤ N individuals are randomly selected for sequencing. The133

sampled allele frequencies, {yt}t∈T , are also Binomially distributed134

2nyt ∼ Binomial(2n, νt) (3)

We introduce the 2N × 2n sampling matrix Y , where Y [i, j] stores the probability that the sample135

allele frequency is j/2n given that the true allele frequency is i/2N .136

We denote the pool-seq data for that variant as {xt = 〈ct, dt〉}t∈T where dt, ct represent the137

coverage, and the read count of the derived allele, respectively. Let {λt}t∈T be the sequencing138

coverage at different generations. Then, the observed data are sampled according to139

dt ∼ Poisson(λt), ct ∼ Binomial(dt, yt) (4)

The emission probability for a observed tuple xt = 〈dt, ct〉 is140

ei(xt) =

(
dt
ct

)(
i

2n

)ct (
1− i

2n

)dt−ct
. (5)

For 1 ≤ t ≤ T, 1 ≤ j ≤ 2N , let αt,j denote the probability of emitting x1, x2, . . . , xt and reaching
state j at τt. Then, αt can be computed using the forward-procedure [19]:

αTt = αTt−1P
(δt)diag(Y e(xt)) (6)

where δt = τt − τt−1. The joint likelihood of the observed data from R independent observations is141

given by142

L(N |{x}R, n) =
R∏

r=1

L(N |x(r), n) = Pr({x}R|N,n) =
R∏

r=1

∑

i

α
(r)
T,i (7)

where x = {xt}t∈T . The graphical model and the generative process for which data is being143

generated is depicted in Fig 1-B and Fig S1, respectively.144

Finally, the last step is to compute an estimate N̂ that maximizes the likelihood of all M145

variants in whole genome. Let x
(r)
i denote the time-series data of the i-th variant in replicate r.146

Then,147

N̂ = arg max
N

M∏

i=1

R∏

r=1

L(N |x(r)
i ) (8)
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2.2 Estimating Selection Parameters148

Likelihood for Selection Model. Assume that the site is evolving under selection constraints149

s ∈ R, h ∈ R+, where s and h denote selection strength and dominance parameters , respectively.150

By definition, the relative fitness values of genotypes 0|0, 0|1 and 1|1 are given by w00 = 1,151

w01 = 1 + hs and w11 = 1 + s. Then, νt+ , the frequency at time τt + 1 (one generation ahead), can152

be estimated using:153

ν̂t+ = E[νt+ |s, h, νt] =
w11ν

2
t + w01νt(1− νt)

w11ν2t + 2w01νt(1− νt) + w00(1− νt)2

= νt +
s(h+ (1− 2h)νt)νt(1− νt)
1 + sνt(2h+ (1− 2h)νt))

.

(9)

The machinery for computing likelihood of the selection parameters is identical to that of population154

size, except for transition matrices. Hence, here we only describe the definition transition matrix155

Qs,h of the selection model. Let Q
(τ)
s,h[i, j] denote the probability of transition from i/2N to j/2N156

in τ generations, then (See [20], Pg. 24, Eqn. 1.58-1.59):157

Q
(1)
s,h[i, j] = Pr

(
νt+ =

j

2N

∣∣∣∣νt =
i

2N
; s, h,N

)
=

(
2N

j

)
ν̂j
t+

(1− ν̂t+)2N−j (10)

Q
(τ)
s,h = Q

(τ−1)
s,h Q

(1)
s,h (11)

The maximum likelihood estimates are given by158

ŝ, ĥ = arg max
s,h

R∏

r=1

L(s, h|x(r), N̂) (12)

Using grid search, we first estimate N (Eq. 8), and subsequently, we estimate parameters s, h159

(Eq. 12, Fig S3). By broadcasting and vectorizing the grid search operations across all variants, the160

genome scan on millions of polymorphisms can be done in significantly smaller time than iterating161

a numerical optimization routine for each variant(see Results and Fig 4).162

2.3 Empirical Likelihood Ratio Statistics163

The likelihood ratio statistic for testing directional selection, to be computed for each variant, is164

given by165

H = −2 log

(
L(s̄, 0.5|{x}R, N̂)

L(0, 0.5|{x}R, N̂)

)
,

(13)

where s̄ = arg max
s

∏R
r=1 L(s, 0.5|x(r), N̂). Similarly we can define a test statistic for testing if166

selection is dominant by167

D = −2 log

(
L(ŝ, ĥ|{x}R, N̂)

L(s̄, 0.5|{x}R, N̂)

)
. (14)

While extending the single-locus WF model to a multiple linked-loci can improve the power of168

the model [60], it is computationally and statistically expensive to compute exact likelihood. In169

addition, computing linked-loci joint likelihood requires haplotype resolved data, which pool-seq170
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does not provide. Here, similar to Nielsen et al [45], we calculate composite likelihood ratio score171

for a genomic region.172

H =
1

|L|
∑

`∈L
H`. (15)

where L is a collection of segregating sites and H` is the likelihood ratio score based for each173

variant ` in L. The optimal value of the hyper-parameter L depends upon a number of factors,174

including initial frequency of the favored allele, recombination rates, linkage of the favored allele175

to neighboring variants, population size, coverage, and time since the onset of selection (duration176

of the experiment). In S1 Text, we provide a heuristic to compute a reasonable value of L, based177

on experimental data.178

We work with a normalized value of H, given by179

H∗i =
Hi − µC
σC

, ∀i ∈ C, (16)

where µC and σC are the mean and standard deviation of H values in a large region C. We found180

different chromosomes to have different distribution of Hi values, and therefore decided to use single181

chromosomes as C.182

2.4 Hypothesis Testing183

Single-Locus tests. Under neutrality, Log-likelihood ratios can be approximated by X 2 distri-184

bution [66], and p-values can be computed directly. However, Feder et al. [23] showed that when185

the number of independent samples (replicates) is small, X 2 is a crude approximation to the true186

null distribution and results in more false positive. Following their suggestion, we first compute the187

empirical null distribution using simulations with the estimated population size (See Fig S1). The188

empirical null distribution of statistic H is used to compute p-values as the fraction of null values189

that exceed the test score. Finally, we use Storey and Tibshirani’s method [59] to control for False190

Discovery Rate in multiple testing.191

Composite likelihood tests. Similar to single-locus tests, we compute the null distribution of the192

H∗ statistic using whole-genome simulations with the estimated population size, and subsequently193

compute FDR. The simulations for generating the null distribution of H∗ are described next.194

2.5 Simulations195

We use the same simulation procedure for two purposes. First, we use them to test the power196

of Clear against other methods in small genomic windows. Second, we use the simulations to197

generate the distribution of null values for the statistic to compute empirical p-values. We mainly198

chose parameters that are relevant to D. melanogaster experimental evolution [35]. See also Fig 1-A199

for illustration.200

I. Creating initial founder line haplotypes. Using msms [21], we created neutral popu-201

lations for F founding haplotypes with command $./msms <F> 1 -t <2µWNe> -r <2rNeW>202

<W>, where F = 200 is number of founder lines, No = 106 is effective founder population size,203

r = 2 × 10−8 is recombination rate, µ = 2 × 10−9 is mutation rate. The window size W is204

used to compute θ = 2µNoW and ρ = 2NorW . We chose W = 50Kbp for simulating indi-205

vidual windows for performance evaluations, and W = 20Mbp for simulating D. melanogaster206

chromosomes for p-value computations.207
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II. Creating initial diploid population. An initial set of F = 200 haplotypes was created208

from step I, and duplicated to create F homozygous diploid individuals to simulate generation209

of inbred lines. N diploid individuals were generated by sampling with replacement from the210

F individuals.211

III. Forward Simulation. We used forward simulations for evolving populations under selection.212

We also consider selection regimes which the favored allele is chosen from standing variation213

(not de novo mutations). Given initial diploid population, position of the site under selection,214

selection strength s, number of replicates R = 3, recombination rate r = 2 × 10−8 and215

sampling times T = {0, 10, 20, 30, 40, 50}, simuPop [48] was used to perform forward simulation216

and compute allele frequencies for all of the R replicates. For hard sweep (respectively, soft217

sweep) simulations we randomly chose a site with initial frequency of ν0 = 0.005 (respectively,218

ν0 = 0.1) to be the favored allele. For generating the null distribution with drift for p-value219

computations, we used this procedure with s = 0.220

IV. Sequencing Simulation. Given allele frequency trajectories we sampled depth of each site221

in each replicate identically and independently from Poisson(λ), where λ ∈ {30, 100, 300} is222

the coverage for the experiment. Once depth d is drawn for the site with frequency ν, the223

number of reads c carrying the derived allele are sampled according to Binomial(d, ν). For224

experiments with finite depth the tuple 〈c, d〉 is the input data for each site.225

3 Results226

Modeling Allele Frequency Trajectories in Small Populations. We first tested the goodness227

of fit of the discrete versus continuous models in modeling allele frequency trajectories, under228

general E&R parameters. For this purpose, we conducted 100K simulations with two time samples229

T = {0, τ} where τ ∈ {1, 10, 100} is the parameter controlling the density of sampling in time. In230

addition, we repeated simulations for different values of starting frequency ν0 ∈ {0.005, 0.1} (i.e.,231

hard and soft sweep) and selection strength s ∈ {0, 0.1} (i.e., neutral and selection). Then, given232

initial frequency ν0, we computed the expected distribution of the frequency of the next sample233

ντ under two models to make a comparison. Fig 2A-F shows that Brownian motion (continuous234

model) is inadequate when ν0 is far from 0.5, or when sampling times are sparse (τ > 1). If the235

favored allele arises from standing variation in a neutral population, it is unlikely to have frequency236

close to 0.5, and the starting frequencies are usually much smaller (see Fig S2). Moreover, in typical237

D. melanogaster experiments for example, sampling is sparse. Often, the experiment is designed238

so that 10 ≤ τ ≤ 100 [26, 35, 46, 71].239

In contrast to the Brownian motion approximation, discrete Markov chain predictions (Eq. 11)240

are highly consistent with empirical data for a wide range of simulation parameters (Fig 2A-M).241

Moreover, the discrete markov chain can be modified to model the case when the the allele is under242

selection.243

Detection Power. We compared the performance of Clear against other methods for detect-244

ing selection. For each method we calculated detection power as the percentage of true-positives245

identified with false-positive rate ≤ 0.05. For each configuration (specified with values for selection246

coefficient s, starting allele frequency ν0 and coverage λ), power of each method is evaluated over247

2000 distinct simulations, half of which modeled neutral evolution and the rest modeled positive248

selection.249

We compared the power of Clear with Gaussian process (GP) [60], FIT [23], and CMH [1]250

statistics. FIT and GP convert read counts to allele frequencies prior to computing the test statistic.251
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Clear shows the highest power in all cases and the power stays relatively high even for low coverage252

(Fig 3 and Table S1). In particular, the difference in performance of Clear with other methods253

is pronounced when starting frequency is low. The advantage of Clear stems from the fact that254

favored allele with low starting frequency might be missed by low coverage sequencing. In this255

case, incorporating the signal from linked sites becomes increasingly important. We note that256

methods using only two time points, such as CMH, do relatively well for high selection values and257

high coverage. However, the use of time-series data can increase detection power in low coverage258

experiments or when starting frequency is low. Moreover, time-series data provide means for259

estimating selection parameters s, h (see below). Finally, as Clear is robust to change of coverage,260

our results (Fig 3B,C) suggest that taking many samples with lower coverage is preferable to sparse261

sampling with higher coverage.262

Site-identification. In general, localizing the favored variant, using pool-seq data is a nontrivial263

task due to extensive linkage disequilibrium [61]. To measure performance, we sorted variants by264

their H scores and computed rank of the favored allele for each method. For each setting of ν0265

and s, we conducted 1000 simulations and computed the rank of the favored mutation in each266

simulation. The cumulative distribution of the rank of the favored allele in 1000 simulation for267

each setting (Fig 5) shows that Clear outperforms other statistics.268

An interesting observation is revisiting the contrast between site-identification and detection [39,269

61]. When selection strength is high, detection is easier (Fig 3A-F), but site-identification is harder,270

due to the high LD between flanking variants and the favored allele (Fig 5A-F). Moreover, site-271

identification becomes more difficult whenever the initial frequency of the favored allele is low, i.e.,272

at the onset of selection, LD between favored allele and its nearby variants is high. For example,273

when coverage λ = 100 and selection coefficient s = 0.1, the detection power is 75% for hard sweep,274

but 100% for soft sweep (Fig 3B-E). In contrast, the favored site was ranked as the top in 14% of275

hard sweep cases, compared to and 95% of soft sweep simulations.276

Estimating Parameters. Clear estimates effective population size N̂ and selection parameters,277

ŝ and ĥ, as a byproduct of the hypothesis testing. We computed bias of selection fitness (s − ŝ)278

and dominance (h− ĥ) for of Clear and GP for 1000 simulations in each setting. The distribution279

of the error (bias) for 100× coverage is presented in Fig 6 for different configurations. Fig S4 and280

Fig S5 provide the distribution of estimation errors for 30×, and 300× coverage, respectively. For281

hard sweep, Clear provides estimates of s with lower variance of bias (Fig 6A). In soft sweep, GP282

and Clear both provide unbiased estimates of s with low variance (Fig 6B). Fig 6 C-D shows that283

Clear provides unbiased estimates of h as well when h ∈ {0, 0.5, 1, 2} and s = 0.1. We also tested284

if Clear provide unbiased estimates of N , by estimating population size on 1000 simulations when285

N ∈ {200, 600, 1000}. As shown in Fig 7A-C, maximum likelihood is attained at true value of the286

parameter.287

Running Time. As Clear does not compute exact likelihood of a region (i.e., does not explicitly288

model linkage between sites), the complexity of scanning a genome is linear in number of polymor-289

phisms. Calculating score of each variant requires and O(TRN3) computation for H. However,290

most of the operations are can be vectorized for all replicates to make the effective running time291

for each variant. We conducted 1000 simulations and measured running times for computing site292

statistics H, FIT, CMH and GP with different number of linked-loci. Our analysis reveals (Fig 4)293

that Clear is orders of magnitude faster than GP, and comparable to FIT. While slower than294

CMH on the time per variant, the actual running times are comparable after vectorization and295

broadcasting over variants (see below).296
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These times can have a practical consequence. For instance, to run GP in the single locus297

mode on the entire pool-seq data of the D. melanogaster genome from a small sample (≈1.6M298

variant sites), it would take 1444 CPU-hours (≈ 1 CPU-month). In contrast, after vectorizing and299

broadcasting operations for all variants operations using numba package, Clear took 75 minutes300

to perform an scan, including precomputation, while the fastest method, CMH, took 17 minutes.301

3.1 Analysis of a D. melanogaster Adaptation to Alternating Temperatures302

We applied Clear to the data from a study of D. melanogaster adaptation to alternating temper-303

atures [26, 46], where 3 replicate samples were chosen from a population of D. melanogaster for304

59 generations under alternating 12-hour cycles of hot stressful (28◦C) and non-stressful (18◦C)305

temperatures and sequenced. In this dataset, sequencing coverage is different across replicates and306

generations (see S2 Fig of [60]) which makes variant depths highly heterogeneous (Fig S8).307

We first filtered out heterochromatic, centromeric and telomeric regions [25], and those variants308

that have collective coverage of more that 1500 in all 13 populations: three replicates at the309

base population, two replicates at generation 15, one replicate at generation 23, one replicate at310

generation 27, three replicates at generation 37 and three replicates at generation 59. After filtering,311

we ended up with 1,605,714 variants.312

Next, we estimated genome-wide population size N̂ = 250 (Fig 7-E) which is consistent with313

previous studies [33, 46]. The likelihood curves of Clear are sharper around the optimum compared314

to that of Bollback et. al [11]’s method (see Supplementary Fig. 1 in [46]). Also, chromosomes 3L315

and 3R appear to have smaller population size Fig 7-D, N̂ = 200, 150, respectively. Others have316

made similar observations on this data. In particular, Jónás et al. [33] shown that the chromosome-317

wise population size varies even more when it is computed for each replicate separately (see Table318

1 in [33]). For instance, N̂ is 131 for chromosome 3R replicate 1, while it is 328 for chromosome X319

replicate 2.320

While it would be ideal to compute Clear statistic for each replicate and chromosome sepa-321

rately, computing empirical p-values and significant regions become computationally intensive as322

empirical null distribution of each replicate and each chromosome needs to be computed. Hence, we323

use a single genome-wide estimate N̂ = 250 in all analyses, but we normalize statistic H∗ separately324

for each chromosome.325

We use a heuristic calculation (See S1 Text) to choose the sliding window size L as the dis-326

tance where the LD between the favored mutation and a site L/2bp away remains strong. For D.327

melanogaster parameters, we obtained L = 30kbp. We computed the normalized test statistic H∗328

on sliding windows of size of 30Kbp and step size of 5Kbp over the genome (See Fig 8-A).329

Empirical null distribution of H∗ was estimated by creating 100 whole genome simulations330

(400K statistic values) as described in Section 2.5. Then, p-value of the test statistic in each331

region in the experimental data was calculated as the fraction of the null statistic values that are332

greater than or equal to the test statistic(see Fig S9). After correcting for multiple testing, we333

identified 5 contiguous intervals (Fig 8) satisfying FDR≤ 0.05, and covering 2, 829 polymorphic334

sites. We further performed single-locus hypothesis testing on the 2, 829 sites to identify 174335

individual variants with FDR ≤ 0.01 (Fig 8-B).336

The final set of 174 variants fall within 32 genes(Table S3) including many Serine inhibitory337

proteases (serpins), and other genes involved in endocytosis. Recycling of synaptic vesicles is seen338

to be blocked at high temperature in temperature sensitive Drosophila mutants [36]. This is also339

supported by GO enrichment analysis, where a single GO term ‘inhibition of proteolysis’ is found340

to enriched (corrected p-value:0.0041). To test for dominant selection, we computed D statistic on341

simulated neutral and experimental data, and computed p-values accordingly. After correcting for342
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multiple testing, 96 variants were discovered with FDR≤ 0.01 (Fig S10).343

3.2 Analysis of Outcrossing Yeast Populations344

We also applied Clear to 12 replicate samples of outcrossing yeast populations [14], where sam-345

ples are taken at generations T = {0, 180, 360, 540}. We observed a significant variation in the346

genome-wide site frequency spectrum of certain populations over different time points for some347

replicates (Fig S11). The variation does not have an easily identifiable cause. Therefore, we focused348

analysis on seven replicates r ∈ {3, 7, 8, 9, 10, 11, 12} with genome-wide site-frequency spectrum over349

the time range (Fig S12).350

We estimated population size to be N̂ = 2000 haplotypes, and computed ŝ, ĥ and H statistic351

accordingly. To compute p-values, we created 1M single-locus neutral simulations according to352

experimental data’s initial frequency and coverage. By setting FDR cutoff to 0.05, only 18 and353

16 variants show significant signal for directional and dominant selection, respectively (Fig S10).354

Selected variants for directional selection are clustered in two regions, which match 2 of the 5 regions355

(regions C and E in Fig. 2-a in [14]) identified by Burke et al. in their preliminary analysis.356

4 Discussion357

We developed a computational tool, Clear, that can detect regions and variants under selection358

E&R experiments. Using extensive simulations, we show that Clear outperforms existing methods359

in detecting selection, locating the favored allele, and estimating model parameters. Also, while be-360

ing computationally efficient, Clear provide means for estimating populations size and hypothesis361

testing.362

Many factors such as small population size, finite coverage, linkage disequilibrium, finite sam-363

pling for sequencing, duration of the experiment and the small number of replicates can limit the364

power of tools for analyzing E&R. Here, by an discrete modeling, Clear estimates population size,365

and provides unbiased estimates of s, h. It adjusts for heterogeneous coverage of pool-seq data, and366

exploits presence of linkage within a region to compute composite likelihood ratio statistic.367

It should be noted that, even though we described Clear for small fixed-size populations,368

the statistic can be adjusted for other scenarios, including changing population sizes when the369

demography is known. For large populations, transitions can be computed on sparse data structures,370

as for large N the transition matrices become increasingly sparse. Alternatively, frequencies can371

be binned to reduce dimensionality.372

The comparison of hard and soft sweep scenarios showed that initial frequency of the favored373

allele can have an nontrivial effect on the statistical power for identifying selection. Interestingly,374

while it is easier to detect a region undergoing strong selection, it is harder to locate the favored375

allele in that region.376

There are many directions to improve the analyses presented here. In particular, we plan to377

focus our attention on other organisms with more complex life cycles, experiments with variable378

population size and longer sampling-time-spans. As evolve and resequencing experiments continue379

to grow, deeper insights into adaptation will go hand in hand with improved computational analysis.380

Software and Data Availability. The source code and running scripts for Clear are publicly381

available at https://github.com/airanmehr/clear.382

D. melanogaster data originally published [26, 46]. The dataset of the D. melanogaster study,383

until generation 37, is obtained from Dryad digital repository (http://datadryad.org)under384

accession DOI: 10.5061/dryad.60k68. Generation 59 of the D. melanogaster study is accessed385
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from European Sequence Read Archive (http://www.ebi.ac.uk/ena/) under the project accession386

number: PRJEB6340. The dataset containing experimental evolution of Yeast populations [14]387

is downloaded from http://wfitch.bio.uci.edu/~tdlong/PapersRawData/BurkeYeast.gz (last388

accessed 01/24/2017). UCSC browser tracks for D. melanogaster and Yeast data analysis are found389

in Suppl. Data 1 and 2, respectively.390
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Fig 1: Evolve and Resequence Selection Experiments on D. melanogaster . (A) Typical
configuration in which time-series data is collected for D. melanogaster . A small set of founder
lines (F = 200) is selected from a large population (No = 106), and used to create a sub-population
of isofemale lines. Multiple replicates of the population are evolved and resequenced to collect
time-series genomic data. For sequencing, n individuals are randomly sampled and sequenced
with coverage λ. (B) Graphical model showing dependence of the random variables in the single-
locus model used to compute Clear statistics. Observed variables, c (derived allele read count)
and d (total read count) are shaded. The variables ν, y, λ denote allele frequency, sampled allele
frequency, and mean sequencing coverage, respectively. (C) Mean and 95% confidence interval of
the theoretical (i,iii) and empirical (ii,iv) trajectories of the favored allele for hard (i,ii) and soft
(iii,iv) sweep scenarios and N = 1000. The first 50 generations are shaded in gray to represent
the sampling span of sampling in short-term experiments, illustrating the difficulty in predicting
selection at early stages of selective sweep.
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Fig 2: Comparison of empirical distributions of allele frequencies (red) versus predic-
tions from Brownian Motion (green), and Markov chain (blue).
Comparison of empirical and theoretical distributions under neutral evolution (panels A-F) and
selection (panels G-M) with different starting frequencies ν0 ∈ {0.005, 0.1} and sampling times of
T = {0, τ}, where τ ∈ {1, 10, 100}. For each panel, the empirical distribution was computed over
100,000 simulations. Brownian motion (Gaussian approximation) provides poor approximations
when initial frequency is far from 0.5 (A) or sampling is sparse (B,C,E,F). In addition, Brown-
ian motion can only provide approximations under neutral evolution. In contrast, Markov chain
consistently provides a good approximation in all cases.
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Fig 3: Power calculations for detection of selection.
Detection power for Clear(H), Frequency Increment Test (FIT), Gaussian Process (GP), and
CMH under hard (A-C) and soft sweep (D-F) scenarios. λ, s denote the mean coverage and
selection coefficient, respectively. The y-axis measures power – sensitivity with false positive rate
FPR ≤ 0.05 – for 2, 000 simulations with N = 1, 000, L = 50Kbp. The horizontal line reflects the
power of a random classifier. In all simulations, 3 replicates are evolved and sampled at generations
T = {0, 10, 20, 30, 40, 50}.
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Fig 4: Running time.
Box plots of running time per variant (CPU-secs.) of Clear(H), CMH, FIT, and GP with single,
3, 5, 7, and 10 loci over 1000 simulations conducted on a workstation with Intel Core i7 processor.
The average running time for each method is shown on the x-axis. In all simulations, 3 replicates
are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig 5: Ranking performance for 100× coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000
simulations for Clear (H), Gaussian Process (GP), CMH, and Frequency Increment Test (FIT),
for different values of selection coefficient s and initial carrier frequency. Note that the individual
variant Clear score (H) is used to rank variants. The Area Under Curve (AUC) is computed as
an overall quantitative measure to compare the performance of methods for each configuration. In
all simulations, 3 replicates are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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ŝ)

(A)

ν0 =0.005 (Hard Sweep)

0.025 0.05 0.075 0.1

s

−0.2

−0.1

0.0

0.1

0.2

0.3

(B)

ν0 =0.1 (Soft Sweep)

GP

Clear

0.0 0.5 1.0 2.0

h

−0.50

−0.25

0.00

0.25

0.50

B
ia

s
(h
−
ĥ
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Fig 6: Distribution of bias for 100× coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using
Gaussian Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient
s and starting carrier frequency ν0, when coverage λ = 100 (Panels A,B). GP and Clear have
similar variance in estimates of s for soft sweep, while Clear provides lower variance in hard
sweep. Also see Table S2. Panels C,D show the variance in the estimation of h. In all simulations,
3 replicates are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig 7: Maximum likelihood Estimates of N . Mean and 95% confidence interval of likelihoods
of N on simulated data with N = 200 (A), N = 600(B), and N = 1000 individuals, over 1000
simulations. Chromosome-wise (D) and genome-wide (E) likelihood of population size for data from
a study of D. melanogaster adaptation to alternating temperatures. Likelihood of the Chromosome
3R is attained at 150, while genome-wide maximum likelihood estimate for population size is 250.
(F) Likelihood of the population size with respect to all the variants in the yeast dataset. Despite
large census population size (106−107 [14]), this dataset exhibits much smaller effective population
size (N̂ = 2000).
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Fig 8: Scan of Clear statistic on data from a study of D. melanogaster adaptation to
alternating temperatures. (A) Manhattan plot of scan for H∗ statistic over the genome. The
dashed line represents cutoff for genome-wide FDR≤ 0.05, and identifies 5 contiguous intervals,
I1-I5, which are shaded in blue. (B) Trajectories of the selected variants within intervals I1-I5.
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Fig 9: Single locus analysis of the yeast outcrossing populations.
Manhattan plot of scan for testing directional selection (A) and dominant selection (C). The dashed
line represents cutoff for genome-wide FDR≤ 0.05. Trajectories of the selected variants are depicted
in panels (B) and (D).
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S1 Text Choosing Window Size400

In genome-wide scans for detecting selection, we apply the Clear statistic on sliding windows of401

length Lbp. The single locus statistic values within the window are averaged to get the composite402

statistic. While the statistic is robust to variation in window-size, choosing a very large window403

where LD has decayed will weaken the composite signal, and choosing a small window will decrease404

the power of composite likelihoods. Here, we use a systematic calculation to choose L as the405

distance where the LD between the favored mutation and a site L/2bp away remains strong.406

Consider a segregating site l bp away from the favored allele in a selective sweep. Let ρτ be407

the LD between the favored allele and the site, τ generations after the onset of selection. Then, we408

have (see Eqs. 30-31 in [58]):409

ρτ = ατβτρ0 = e−rτl
(
K(τ)

K(0)

)
ρ0, (S1)

where K(τ) = 2ντ (1 − ντ ) is the heterozygosity at the selected site, r is the recombination rate410

(crossovers/bp/gen). The ‘decay factor’, ατ = e−rτl, and ‘growth factor’, βτ , are due to recombi-411

nation and selection, respectively. Under regular parameter settings, linkage to the favored allele is412

expected to increase after onset of selection and then decreases due to crossover events (See Fig S13-413

A). While ρ0 is unknown in pool-seq E&R experiments, we compute the value of l so that414

ατβτ = 1. (S2)

In E&R scenarios, we let τ be the time of the last sampling. For given s, we aim to compute the415

smallest window size L over all possible starting frequencies. Specifically,416

L = 2 min
ν0

{
1

rτ
log

(
ν̂τ (1− ν̂τ )

ν0(1− ν0)

)}
, (S3)

where the term ν̂τ depends on initial frequency ν0 and selection strength s (Eq. 9).417

We used D. melanogaster dataset parameters, N = 250, r = 2 × 10−8 and τ = 59 to compute418

the optimal window size for different values of Ns, ranging from weak selection to strong selection:419

Ns ∈ {20, 100, 200, 500}, or s ∈ {0.08, 0.4, 0.8, 2}. We set L = 30Kbp (See Fig S13-B) to provide420

good resolution for detecting weak selection.421
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Generative Process 1: The Generative Process for Neutral Wright-Fisher Time-series Pool-
seq Data.

Input: N,n,R, {λt}t∈T , T = {τ0, . . . τT }
Output: Time-series pool-seq data for R replicates of a single locus {c}R and {d}R.
for r ← 1 to R do

for t← τ0 to τT do
2Nνt ∼ Binomial(2N, νt−1);
if t ∈ T then

d
(r)
t ∼ Poisson(λτi) ;

2nyt ∼ Binomial(2n, νt);

c
(r)
t ∼ Binomial(d

(r)
t , yt);

end

end

end

Fig S1: The Generative Process for Neutral Wright-Fisher Time-series Pool-seq Data.
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Fig S2: Site Frequency Spectrum.
Theoretical and Empirical SFS in a 50Kbp region for a neutral population of 200 individuals when
Ne = 106 and µ = 10−9. The x-axis corresponds to site frequency, and the y-axis to the number of
variants with a specific frequency. In a neural population, majority of the variations stand in low
frequency.
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Fig S3: Likelihoods of the parameter s.
Likelihood of the parameter s in D. melanogaster data for a variant with ŝ = 0.2 (A) and ŝ = 0
(B).
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Fig S4: Distribution of bias for 30× coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using
Gaussian Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient
s and starting carrier frequency ν0, when coverage λ = 30 (Panels A,B). GP and Clear have
similar variance in estimates of s for soft sweep, while Clear provides lower variance in hard
sweep. Also see Table S2. Panels C,D show the variance in the estimation of h.
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Fig S5: Distribution of bias for 300× coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using
Gaussian Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient
s and starting carrier frequency ν0, when coverage λ = ∞ (Panels A,B). GP and Clear have
similar variance in estimates of s for soft sweep, while Clear provides lower variance in hard
sweep. Also see Table S2. Panels C,D show the variance in the estimation of h.
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Fig S6: Ranking performance for 30× coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000
simulations for Clear (H score), Gaussian Process (GP), and Cochran Mantel Haenszel (CMH),
for different values of selection coefficient s and initial carrier frequency.
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Fig S7: Ranking performance for 300× coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000
simulations for Clear (H score), Gaussian Process (GP), and Cochran Mantel Haenszel (CMH),
for different values of selection coefficient s and initial carrier frequency.
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Fig S8: Coverage heterogeneity in time series data.
Each panel shows the read depth for 3 replicates of the data from a study of D. melanogaster
adaptation to alternating temperatures data (see section 3.1). Heterogeneity in depth of coverage
is seen between replicates, and also at different time points, in all 4 variants. None of these sites
pass the the hard filtering with minimum depth of 30.
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and over-estimation (N̂ = 500) of population size in computing p-values, and panel (B) shows the
distribution of p−values when unbiased estimate is used to create simulations. .
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Fig S10: Single locus analysis of the data from a study of D. melanogaster adaptation
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Manhattan plot of scan for testing dominant selection (A). Significant variants with FDR ≤ 0.01
are denoted in red, and their trajectories are depicted in panel (B).
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Fig S11: Site frequency spectrum of the Yeast dataset. Whole-genome site frequency
spectrum of the Yeast dataset at generations 0 (A), 180 (B), 360 (C) and 540 (D). Some replicates,
e.g. replicate 2, undergoing severe demographic events.
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Fig S12: Population similarity. Principle component analysis of the 12 replicates throughout
the experiment, showing that some populations exhibiting distinct frequency spectra.
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Fig S13: Choosing window size for Clear statistic. (A) Expected dynamics of LD between
favored allele (s = 0.025) and a variant 50Kbp away, with initial frequency ν0 = 0.01. (A-i) depicts
the dynamic of the favored allele during the selective sweep. (A-ii) illustrates interaction of the
growth and decay factors introduced in Eq. S1, with the red line describing overall effect of selection
and recombination on LD. The vertical dashed line points to the time when the LD value starts to
decrease below original LD. (B) Alternatively, we can fix time, and find the window-size at which
LD decays below the original LD (Eq. S3). The plot shows the window size as a function of Ns
(20,100,200,500), after fixing other model parameters to match D. melanogaster E&R experiments
(N = 250, r = 2× 108, τ = 59).
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Table S1: Average of power for detecting selection.

Hard Sweep Soft Sweep

λ Method Avg Power

300 Clear 34
300 CMH 12
300 FIT 2
300 GP 0
100 Clear 31
100 CMH 4
100 FIT 2
100 GP 0
30 Clear 20
30 FIT 2
30 CMH 0
30 GP 0

λ Method Avg Power

300 Clear 69
300 CMH 69
300 GP 61
300 FIT 8
100 Clear 67
100 CMH 60
100 GP 59
100 FIT 1
30 Clear 57
30 GP 53
30 CMH 39
30 FIT 3

Average power is computed for 8000 simulations with s ∈ {0.025, 0.05, 0.075, 0.1}. Frequency
Increment Test (FIT), Gaussian Process (GP), Clear (H statistic) and Cochran Mantel Haenszel
(CMH) are compared for different initial carrier frequency ν0. For all sequencing coverages, Clear
outperform other methods. When coverage is not high (λ ∈ {30, 100}) and initial frequency is low
(hard sweep), Clear significantly perform better than others.

Table S2: Mean and standard deviation of the distribution of bias (s − ŝ) of 8000
simulations with coverage λ = 100× and s ∈ {0.025, 0.05, 0.075, 0.1}.

Method ν0 Mean STD

GP 0.005 0.073 0.061
Clear 0.005 0.016 0.035

GP 0.1 0.002 0.016
Clear 0.1 0.002 0.013
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Table S3: Overlapping genes with the 174 candidate variants.

Interval Position FBgn Gene Name GO Function

I1 X:1.567-1.824M

FBgn0023531 CG32809 NA
FBgn0023130 a6 embryonic development via the syncytial blas-

toderm
FBgn0025378 CG3795 serine-type endopeptidase activity
FBgn0025391 Scgdelta heart contraction, mesoderm development
FBgn0261548 CG42666 NA
FBgn0026086 Adar RNA editing
FBgn0026090 CG14812 negative regulation of cysteine-type endopep-

tidase activity involved in apoptotic process
FBgn0023522 CG11596 NA

I2 X:7.175-7.241M
FBgn0029941 CG1677 NA
FBgn0029944 Dok stress activated protein kinase signaling
FBgn0029946 CG15034 NA

I3 2L:16.878-16.993M

FBgn0052832 CG32832 mitochondrial pyruvate transport
FBgn0032618 CG31743 sulfotransferase activity
FBgn0085342 CG34313 NA
FBgn0040985 CG6115 NA
FBgn0261671 tweek synaptic vesicle endocytosis
FBgn0026150 ApepP metalloaminopeptidase activity
FBgn0262355 CR43053 NA
FBgn0053179 beat-IIIb NA

I4 2R:2.725-2.810M

FBgn0040674 CG9445 NA
FBgn0265935 coro adult somatic muscle development
FBgn0033110 CG9447 NA
FBgn0033113 Spn42Dc Inhibitory Serpins
FBgn0028988 Spn42Dd Inhibitory Serpins
FBgn0033115 Spn42De Inhibitory Serpins
FBgn0050158 CG30158 small GTPase mediated signal transduction

I5 3L:14.362-14.514M

FBgn0036421 CG13481 ubiquitin-protein transferase activity
FBgn0262580 CG43120 NA
FBgn0036422 CG3868 NA
FBgn0087007 bbg PDZ domain
FBgn0036426 CG9592 NA
FBgn0036427 CG4613 serine-type endopeptidase activity
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Platzer, Qingrun Zhang, Bjarni J Vilhjálmsson, Arthur Korte, Viktoria Nizhynska, and Others.
Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden.
Nature genetics, 45(8):884–890, 2013.

[40] Anna-Sapfo Malaspinas, Orestis Malaspinas, Steven N Evans, and Montgomery Slatkin. Es-
timating allele age and selection coefficient from time-serial data. Genetics, 192(2):599–607,
2012.

[41] Frank Maldarelli, Mary Kearney, Sarah Palmer, Robert Stephens, JoAnn Mican, Michael A
Polis, Richard T Davey, Joseph Kovacs, Wei Shao, Diane Rock-Kress, and Others. HIV
populations are large and accumulate high genetic diversity in a nonlinear fashion. Journal of
virology, 87(18):10313–10323, 2013.

[42] Nelson E Martins, Vı́tor G Faria, Viola Nolte, Christian Schlötterer, Luis Teixeira, Élio Sucena,
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