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Accurately evaluating the distribution of genetic ancestry
across geographic space is one of the main questions addressed
by evolutionary biologists. This question has been commonly
addressed through the application of Bayesian estimation pro-
grams allowing their users to estimate individual admixture pro-
portions and allele frequencies among putative ancestral pop-
ulations. Following the explosion of high-throughput sequenc-
ing technologies, several algorithms have been proposed to cope
with computational burden generated by the massive data in
those studies. In this context, incorporating geographic prox-
imity in ancestry estimation algorithms is an open statistical
and computational challenge. In this study, we introduce new
algorithms that use geographic information to estimate ances-
try proportions and ancestral genotype frequencies from popula-
tion genetic data. Our algorithms combine matrix factorization
methods and spatial statistics to provide estimates of ancestry
matrices based on least-squares approximation. We demonstrate
the benefit of using spatial algorithms through extensive com-
puter simulations, and we provide an example of application
of our new algorithms to a set of spatially referenced samples
for the plant species Arabidopsis thaliana. Without loss of sta-
tistical accuracy, the new algorithms exhibit runtimes that are
much shorter than those observed for previously developed spa-
tial methods. Our algorithms are implemented in the R package,
tess3r.

1. Introduction. High-throughput sequencing technologies have
enabled studies of genetic ancestry for model and non-model species
at an unprecedented pace. In this context, ancestry estimation algo-
rithms are important for demographic analysis, medical genetics in-
cluding genome-wide association studies, conservation and landscape
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2 K. CAYE ET AL.

genetics (Pritchard et al., 2000; Tang et al., 2005; Schraiber et al., 2015;
Segelbacher et al., 2010; François et al., 2016). With increasingly large
data sets, Bayesian approaches to the inference of population struc-
ture, exemplified by the computer program structure (Pritchard et al.,
2000), have been replaced by approximate algorithms that run several
orders faster than the original version (Tang et al., 2005; Alexander
et al., 2011; Frichot et al., 2014; Raj et al., 2014). Considering K ances-
tral populations or genetic clusters, those algorithms estimate ancestry
coefficients following two main directions: model-based and model-free
approaches. In model-based approaches, a likelihood function is defined
for the matrix of ancestry coefficients, and estimation is performed
by maximizing the log-likelihood function. For structure and related
models, model assumptions include linkage equilibrium and Hardy-
Weinberg equilibrium in ancestral populations. The first approximation
to the original algorithm was based on an expectation-minimization al-
gorithm (Tang et al., 2005), and more recent likelihood algorithms are
implemented in the programs admixture and faststructure (Alexan-
der et al., 2011; Raj et al., 2014). In model-free approaches, ancestry
coefficients are estimated by using least-squares methods or factor anal-
ysis. Model-free methods make no assumptions about the biological
processes that have generated the data. To estimate ancestry matrices,
Engelhardt et al. (2010) proposed to use sparse factor analysis, Frichot
et al. (2014) used sparse non-negative matrix factorization algorithms,
and Popescu et al. (2014) used kernel-principal component analysis.
Least-squares methods accurately reproduce the results of likelihood
approaches under the model assumptions of those methods. In addi-
tion, model-free methods provide approaches that are valid when the
assumptions of likelihood approaches are not met (Frichot et al., 2014).
Model-free methods are generally faster than model-based methods.

Among model-based approaches to ancestry estimation, an impor-
tant class of methods have improved the Bayesian model of structure
by incorporating geographic data through spatially informative prior
distributions (Chen et al., 2007; Corander et al., 2008). Under isolation-
by-distance patterns (Wright, 1943; Malécot, 1948), spatial algorithms
provide more robust estimates of population structure than non-spatial
algorithms which can lead to biased estimates of the number of clus-
ters (Durand et al., 2009). Some Bayesian methods are based on Markov
chain Monte Carlo algorithms which are computer-intensive (François
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 3

et al., 2010). Recent efforts to improve the inference of ancestral rela-
tionships in a geographical context have mainly focused on the local-
ization of recent ancestors (Baran et al., 2013; Lao et al., 2014; Yang
et al., 2014; Bhaskar et al., 2017; Rañola et al., 2014). In these ap-
plications, spatial information is used in a predictive framework that
assigns ancestors to putative geographic origins. While fast geographic
estimation of individual ancestry proportions has been proposed pre-
viously (Caye et al., 2016; Bradburd et al., 2016), there is a growing
need to develop individual ancestry estimation algorithms that reduce
computational cost in a geographically explicit framework.

In this study, we present two new algorithms for the estimation of
ancestry matrices based on geographic and genetic data. The new al-
gorithms solve a least squares optimization problem as defined by Caye
et al. (2016), based on Alternating Quadratic Programming (AQP) and
Alternating Projected Least Squares (APLS). While AQP algorithms
have a well-established theoretical background (Bertsekas, 1995), this
is not the case of APLS algorithms. Using coalescent simulations, we
provide evidence that the estimates computed by APLS algorithms are
good approximations to the solutions of AQP algorithms. In addition,
we show that the performances of APLS algorithms scale to the dimen-
sions of modern data sets. We discuss the application of our algorithms
to data from European ecotypes of Arabidopsis thaliana, for which in-
dividual genomic a geographic data are available (Horton et al., 2012).
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4 K. CAYE ET AL.

2. New methods. In this section we present two new algorithms
for estimating individual admixture coefficients and ancestral genotype
frequencies assuming K ancestral populations. In addition to geno-
types, the new algorithms require individual geographic coordinates of
sampled individuals.

Q and G-matrices. Consider a genotypic matrix, Y, recording data
for n individuals at L polymorphic loci for a p-ploid species (common
values for p are p = 1, 2). For autosomal SNPs in a diploid organism, the
genotype at locus ` is an integer number, 0, 1 or 2, corresponding to the
number of reference alleles at this locus. In our algorithms, disjunctive
forms are used to encode each genotypic value as the indicator of a
heterozygote or a homozygote locus /citepFrichot2014. For a diploid
organism each genotypic value 0, 1, 2 is encoded as 100, 010 and 001.
For p-ploid organisms, there are (p + 1) possible genotypic values at
each locus, and each value corresponds to a unique disjunctive form.
While our focus is on SNPs, the algorithms presented in this section
extend to multi-allelic loci without loss of generality. Moreover, the
method can be easily extended to genotype likelihoods by using the
likelihood to encode each genotypic value (Korneliussen et al., 2014).

Our algorithms provide statistical estimates for the matrix Q ∈
RK×n which contains the admixture coefficients, Qi,k, for each sam-
pled individual, i, and each ancestral population, k. The algorithms
also provide estimates for the matrix G ∈ R(p+1)L×K , for which the
entries, G(p+1)`+j,k, correspond to the frequency of genotype j at locus
` in population k. Obviously, the Q and G-matrices must satisfy the
following set of probabilistic constraints

Q,G ≥ 0 ,
K∑
k=1

Qi,k = 1 ,

p∑
j=0

G(p+1)`+j,k = 1 ,

for all i, k and `. Using disjunctive forms and the law of total probabil-
ity, estimates of Q and G can be obtained by factorizing the genotypic
matrix as follows Y=Q GT (Frichot et al., 2014). Thus the inference
problem can be solved by using constrained nonnegative matrix factor-
ization methods (Lee et al., 1999; Cichocki et al., 2009). In the sequel,
we shall use the notations ∆Q and ∆G to represent the sets of proba-
bilistic constraints put on the Q and G matrices respectively.

imsart-aoas ver. 2014/10/16 file: draft.tex date: September 27, 2017

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/080291doi: bioRxiv preprint 

https://doi.org/10.1101/080291
http://creativecommons.org/licenses/by-nc-nd/4.0/


FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 5

Geographic weighting. Geography is introduced in the matrix factor-
ization problem by using weights for each pair of sampled individuals.
The weights impose regularity constraints on ancestry estimates over
geographic space. The definition of geographic weights is based on the
spatial coordinates of the sampling sites, (xi). Samples close to each
other are given more weight than samples that are far apart. The com-
putation of the weights starts with building a complete graph from the
sampling sites. Then the weight matrix is defined as follows

wij = exp(−dist(xi, xj)
2/σ2),

where dist(xi, xj) denotes the geodesic distance between sites xi and
xj, and σ is a range parameter.

Next, we introduce the Laplacian matrix associated with the geo-
graphic weight matrix, W. The Laplacian matrix is defined as Λ = D
−W where D is a diagonal matrix with entries Di,i =

∑n
j=1 Wi,j, for

i = 1, . . . , n (Belkin et al.). Elementary matrix algebra shows that (Cai
et al., 2011)

Tr(QTΛQ) =
1

2

n∑
i,j=1

wij‖Qi,. −Qj,.‖2 .

In our approach, assuming that geographically close individuals are
more likely to share ancestry than individuals at distant sites is thus
equivalent to minimizing the quadratic form C(Q) = Tr(QTΛQ) while
estimating the matrix Q.

Least-squares optimization problems. Estimating the matrices Q and
G from the observed genotypic matrix Y is performed through solving
an optimization problem defined as follows (Caye et al., 2016)

(2.1)

min
Q,G

LS(Q,G) = ‖Y −QGT‖2
F + αC(Q),

s.t. Q ∈ ∆Q,

G ∈ ∆G.

The notation ‖M‖F denotes the Frobenius norm of a matrix, M. The
regularization parameter α controls the regularity of ancestry estimates
over geographic space. Large values of α imply that ancestry coefficients
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6 K. CAYE ET AL.

have similar values for nearby individuals, whereas small values ignore
spatial autocorrelation in observed allele frequencies.

The Alternating Quadratic Programming (AQP) method. Because the
polyedrons ∆Q and ∆G are convex sets and the LS function is convex
with respect to each variable Q or G when the other one is fixed,
the problem (2.1) is amenable to the application of block coordinate
descent (Bertsekas, 1995). The APQ algorithm starts from initial values
for the G and Q-matrices, and alternates two steps. The first step
computes the matrix G while Q is kept fixed, and the second step
permutates the roles of G and Q. Let us assume that Q is fixed and
write G in a vectorial form, g = vec(G) ∈ RK(p+1)L. The first step of
the algorithm actually solves the quadratic programming subproblem,

(2.2) g? = arg min
g∈∆G

(−2vTQ g + gTDQg) ,

where DQ = I(p+1)L ⊗QTQ and vQ = vec(QTY). Here, ⊗ denotes the
Kronecker product and Id is the identity matrix with d dimensions.
The block structure of the matrix DQ allows us to decompose the
subproblem (2.2) into L independent quadratic programming problems
with K(p + 1) variables. Now, consider that G is the value obtained
after the first step of the algorithm, and write Q in a vectorial form,
q = vec(Q) ∈ RnK . The second step solves the following quadratic
programming subproblem. Find

(2.3) q? = arg min
q∈∆Q

(−2vTG q + qTDGq) ,

where DG = In ⊗GTG + αΛ⊗ IK and vG = vec(GTYT ). Unlike sub-
problem (2.2), subproblem (2.3) can not be decomposed into smaller
problems. Thus, the computation of the second step of the AQP al-
gorithm implies to solve a quadratic programming problem with nK
variables which can be problematic for large samples (n is the sample
size). The AQP algorithm is described in details in Appendix A.1. For
AQP, we have the following convergence result.

Theorem 2.1. The AQP algorithm converges to a critical point of
problem (2.1).
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Proof. The quadratic convex functions defined in subproblems (2.2)
and (2.3) have finite lower bounds. The convex sets ∆Q and ∆G are
compact non-empty sets. Thus the sequence generated by the AQP al-
gorithm is well-defined, and has limit points. According to Corollary 2
of Grippo et al. (2000), we conclude that the AQP algorithm converges
to a critical point of problem (2.1).

Alternating Projected Least-Squares (APLS). In this paragraph, we
introduce an APLS estimation algorithm which approximates the so-
lution of problem (2.1), and reduces the complexity of the AQP al-
gorithm. The APLS algorithm starts from initial values of the G and
Q-matrices, and alternates two steps. The matrix G is computed while
Q is kept fixed, and vice versa. Assume that the matrix Q is known.
The first step of the APLS algorithm solves the following optimization
problem. Find

(2.4) G? = arg min ‖Y −QGT‖2
F .

This operation can be done by considering (p + 1)L (the number of
columns of Y) independent optimization problems running in parallel.
The operation is followed by a projection of G? on the polyedron of
constraints, ∆G. For the second step, assume that G is set to the value
obtained after the first step is completed. We compute the eigenvec-
tors, U, of the Laplacian matrix, and we define the diagonal matrix ∆
formed by the eigenvalues of Λ (The eigenvalues of Λ are non-negative
real numbers). According to the spectral theorem, we have

Λ = UT∆U .

After this operation, we project the data matrix Y on the basis of
eigenvectors as follows

proj(Y) = UY ,

and, for each individual, we solve the following optimization problem

(2.5) q?i = arg min ‖proj(Y)i −Gq‖2 + αλi‖q‖2 ,
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8 K. CAYE ET AL.

where proj(Y)i is the ith row of the projected data matrix, proj(Y),
and λi is the ith eigenvalue of Λ. The solutions, q?i , are then concate-
nated into a matrix, conc(q), and Q is defined as the projection of the
matrix UT conc(q) on the polyedron ∆Q. The complexity of step (2.5)
grows linearly with n, the number of individuals. While the theoreti-
cal convergence properties of AQP algorithms are lost for APLS algo-
rithms, the APLS algorithms are expected to be good approximations
of AQP algorithms. The APLS algorithm is described in details in Ap-
pendix A.2.

Choice of hyper-parameters. In ancestry estimation programs, a num-
ber of practices have evolved in order to set the model hyper-parameters.
Those practices rely on heuristics or empirical rules for determining the
prior parameters. For example, the program structure implements
weakly informative prior distributions for ancestry proportions (Wang,
2017), the program admixture has a set of regularization parameters
that encourages shrinkage and aggressive parsimony on ancestry es-
timates (Alexander et al., 2011), and so does the Bayesian version
TESS 2.3 (Durand et al., 2009). Choosing the number of ancestral
populations is based on cross-validation methods or information theo-
retic measures. Our model has three hyper-parameters: the number of
factors, K, the penalty constant, α, and the range parameter, σ. De-
termining those constants is notoriously difficult and can be costly in
applications. In order to reduce the computational burden, the hyper-
parameters α and σ are set as user-defined options. This option allows
an advanced user to explore different values with cross-validation or
with her own heuristics. Less advanced users could use the default val-
ues of the hyper-parameters evaluated in our simulation study.

Range parameter. Testing correlations between genetic and geographic
data has a long tradition in population genetics. Popular approaches
are based on Mantel tests (Mantel, 1967) and spatial autocorrelation
measures (Hardy et al., 1999; Epperson et al., 1996). Prior to the ap-
plication of our spatial ancestry estimation program, we investigated
biologically relevant values for the range parameter by using spatial
variograms (Cressie, 1993). The variogram was extended to genotypic
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 9

data as follows

(2.6) γ(h) =
1

2|N(h)|
∑

i,j∈N(h)

1

L

(p+1)L∑
l=1

|Yi,l − Yj,l|,

where N(h) is defined as the set of individuals separated by geographic
distance h. Visualizing the variogram provides useful information on
the level of spatial autocorrelation in the data, and yields empirical
estimates of the range parameter. More naive estimates such as an
average geodesic distance computed over a fraction of neighboring sites
in the sample also performed well in simulations, and they are also
proposed to the program users.

Regularization parameter. A default value for the regularization pa-
rameter α was set so that the weights for the loss function and for
the penalty term C(Q) are of similar order. We proposed to divide
each term by its maximum value. This amounts to consider α equal to
L/λmax, where λmax is the largest eigenvalue of the Laplacian matrix
(The Laplacian matrix has nonnegative eigenvalues).

Number of factors. The number of ancestral populations, K, can be
evaluated by using a cross-validation technique based on imputation of
masked genotypes (Wold, 1978; Eastment et al., 1982; Alexander et al.,
2011; Frichot et al., 2014). The cross-validation procedure partitions the
genotypic matrix entries into a learning set and a test set in which 5% of
all genotypes are tagged as masked entries. The genotype probabilities
for the masked entries are predicted from the factor estimates obtained
from unmasked entries. Then, the error between the predicted and truly
observed genotype frequencies is computed, and smaller values of that
criterion indicate better choices.

Comparison with tess3. The algorithm implemented in a previous
version of tess3 also provides another approximation of the solution
of problem (2.1). The tess3 algorithm first computes a Cholesky de-
composition of the Laplacian matrix. Then, by a change of variables,
the least-squares problem is transformed into a sparse nonnegative ma-
trix factorization problem (Caye et al., 2016). Solving the sparse non-
negative matrix factorization problem relies on the application of ex-
isting methods (Kim et al., 2011; Frichot et al., 2014). The methods

imsart-aoas ver. 2014/10/16 file: draft.tex date: September 27, 2017

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/080291doi: bioRxiv preprint 

https://doi.org/10.1101/080291
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 K. CAYE ET AL.

implemented in tess3 have an algorithmic complexity that increases
linearly with the number of loci and the number of clusters. They lead
to estimates that accurately reproduce those of the Monte Carlo al-
gorithms implemented in the Bayesian method tess 2.3 (Caye et al.,
2016). Like for the AQP method, the tess3 algorithms have an algo-
rithmic complexity that increases quadratically with the sample size.

Ancestral population differentiation statistics and local adaptation scans.
Assuming K ancestral populations, the Q and G-matrices obtained
from the AQP and from the APLS algorithms were used to compute
single-locus estimates of a population differentiation statistic similar to
FST, as follows

FQ
ST = 1−

K∑
k=1

qk
fk(1− fk)

f(1− f)
,

where qk is the average of ancestry coefficients over sampled individuals,
qk =

∑n
i=1 Qi,k/n, for the cluster k, fk is the ancestral allele frequency

in population k at the locus of interest,

fk =

p∑
j=1

jG(p+1)(`)+j,k/p,

and f =
∑K

k=1 qkfk (Martins et al., 2016). For a particular locus, the

formula for FQ
ST corresponds to the proportion of the genetic variation

(or variance) in ancestral allele frequency that can be explained by
latent population structure

FQ
ST =

σ2
T − σ2

S

σ2
T

,

where σ2
T is the total variance and σ2

S is the error variance (Weir, 1996).
Following ANOVA theory, the FQ

ST statistics were used to perform sta-
tistical tests of neutrality at each locus, by comparing the observed val-
ues to their expectations from the genome-wide background. The test
was based on the squared z-score statistic, z2 = (n−K)FQ

ST/(1−FQ
ST),

for which a chi-squared distribution with K−1 degrees of freedom was
assumed under the null-hypothesis. To avoid an increased number of
false positive tests, we adopted an empirical null-hypothesis testing ap-
proach that recalibrates the null-hypothesis for the background levels of
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 11

population differentiation expected at selectively neutral SNPs (Efron,
2004). The calibration of the null-hypothesis was achieved by using ge-
nomic control to adjust the test statistics (Devlin et al., 1999; François
et al., 2016). After recalibration of the null-hypothesis, the control of
the false discovery rate was achieved by using the Benjamini-Hochberg
algorithm (Benjamini et al.).

R package. We implemented the AQP and APLS algorithms and im-
proved graphical tools in the R package tess3r, available from Github
and submitted to the Comprehensive R Archive Network (R Core
Team, 2016).

3. Simulated and real data sets.

Coalescent simulations. We used the computer program ms to per-
form coalescent simulations of neutral and outlier SNPs under spatial
models of admixture (Hudson, 2002). Two ancestral populations were
created from the simulation of Wright’s two-island models. The simu-
lated data sets contained admixed genotypes for n individuals for which
the admixture proportions varied continuously along a longitudinal gra-
dient (Durand et al., 2009; François et al., 2010). In those scenarios,
individuals at each extreme of the geographic range were representa-
tive of their population of origin, while individuals at the center of the
range shared intermediate levels of ancestry in the two ancestral pop-
ulations (Caye et al., 2016). For those simulations, the Q matrix, Q0,
was entirely described by the location of the sampled individuals.

Neutrally evolving ancestral chromosomal segments were generated
by simulating DNA sequences with an effective population size N0 =
106 for each ancestral population. The mutation rate per bp and gener-
ation was set to µ = 0.25×10−7, the recombination rate per generation
was set to r = 0.25×10−8, and the parameter m was set to obtain neu-
tral levels of FST ranging between values of 0.005 and 0.10. The number
of base pairs for each DNA sequence was varied between 10k to 300k
to obtain numbers of polymorphic loci ranging between 1k and 200k
after filtering out SNPs with minor allele frequency lower than 5%.
To create SNPs with values in the tail of the empirical distribution
of FST, additional ancestral chromosomal segments were generated by
simulating DNA sequences with a migration rate ms lower than m.
The simulations reproduced the reduced levels of diversity and the in-
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12 K. CAYE ET AL.

creased levels of differentiation expected under hard selective sweeps
occurring at one particular chromosomal segment in ancestral popula-
tions (Martins et al., 2016). For each simulation, the sample size was
varied in the range n = 50-700.

We compared the AQP and APLS algorithm estimates with those
obtained with the tess3 algorithm. Each program was run 5 times on
the same simulated data. Using K = 2 ancestral populations, we com-
puted the root mean squared error (RMSE) between the estimated and
known values of the Q-matrix, and between the estimated and known
values of the G-matrix. To evaluate the benefit of spatial algorithms,
we compared the statistical errors of APLS algorithms to the errors
obtained with the snmf method that reproduces the outputs of the
structure program accurately (Frichot et al., 2014) (Frichot et al.,
2015). To quantify the performances of neutrality tests as a function
of ancestral and observed levels of FST, we used the area under the
precision-recall curve (AUC) for several values of the selection rate.
Subsamples from a real data set were used to perform a runtime anal-
ysis of the AQP and APLS algorithms (A. thaliana data, see below).
Runtimes were evaluated by using a single computer processor unit
Intel Xeon 2.0 GHz.

Application to human data. To evaluate the robustness of our ap-
proach to a situation where admixture was the consequence of large
displacement rather than contact between proximal populations, we
studied the case of African-American populations. This is an interest-
ing case for which the incorporation of geographic data could poten-
tially bias estimation of ancestry coefficients. Genotypes with minor
allele frequency greater than 5% were obtained from a public release
of the 1000 Genomes project phase 3 for African Americans (ASW, 61
individuals), Africans (YRI from Nigeria and LWK from Kenya, 207
individuals), and Europeans (GBR from the United Kingdom and TSI
from Italy, 198 individuals) (1000 Genomes Project Consortium, 2015).
A total of 6,994,677 SNPs were analyzed with geographic data corre-
sponding to the country of origin of individual samples. We compared
the estimates from the APLS algorithm applied with its default pa-
rameter settings to the results of the snmf program that do not make
use of geographic information.
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Application to European ecotypes of Arabidopsis thaliana. We used
the APLS algorithm to survey spatial population genetic structure and
to investigate the molecular basis of adaptation by considering 214k
SNPs from 1,095 European ecotypes of the plant species A. thaliana
(Horton et al., 2012). The cross-validation criterion was used to evalu-
ate the number of clusters in the sample, and a statistical analysis was
performed to evaluate the range of the variogram from the data. We
used R functions of the tess3r package to display interpolated admix-
ture coefficients on a geographic map of Europe (R Core team 2016). A
gene ontology enrichment analysis using the software AMIGO (Carbon
et al., 2009) was performed in order to evaluate which molecular func-
tions and biological processes might be involved in local adaptation of
A. thaliana in Europe.
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4. Results.

Statistical errors. We used coalescent simulations of neutral polymor-
phisms under spatial models of admixture to compare the statistical
errors of the AQP and APLS estimates with those of the tess3 al-
gorithm (Caye et al., 2016). The ground truth for the Q-matrix (Q0)
was computed from the mathematical model for admixture proportions
used to generate the data. For the G-matrix, the ground truth matrix
(G0) was computed from the empirical genotype frequencies in the two
population samples before an admixture event. The root mean squared
errors (RMSE) for the Q and G estimates decreased as the sample
size and the number of loci increased (Figure 1). For all algorithms,
the statistical errors were generally small when the number of loci was
greater than 10k SNPs. Those results provided evidence that the three
algorithms produced equivalent estimates of the matrices Q0 and G0.
The results also provided a check that the APLS and tess3 algorithms
converged to the same estimates as those obtained after the application
of the AQP algorithm, which is guaranteed to converge mathematically.

The benefit of including spatial information in algorithms. Using neu-
tral coalescent simulations of spatial admixture, we compared the sta-
tistical estimates obtained from the spatial algorithm APLS and the
non-spatial algorithm snmf (Frichot et al., 2014). For various levels
of ancestral population differentiation, estimates obtained from the
spatial algorithm were more accurate than for those obtained using
non-spatial approaches (Figure 2). For the larger samples, much finer
population structure was detected with the spatial method than with
the non-spatial algorithm (Figure 2).

In simulations of outlier loci, we used the area under the precision-
recall curve (AUC) for quantifying the performances of tests based on
the estimates of ancestry matrices, Q and G. In addition, we computed
AUCs for FST-based neutrality tests using truly ancestral genotypes. As
they represented the maximum reachable values, AUCs based on truly
ancestral genotypes were always higher than those obtained for tests
based on reconstructed matrices. For all values of the relative selection
intensity, AUCs were higher for spatial methods than for non-spatial
methods (Figure 4, the relative selection intensity is the ratio of migra-
tion rates at neutral and adaptive loci). For high selection intensities,
the performances of tests based on estimates of ancestry matrices were
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close to the optimal values reached by tests based on true ancestral
frequencies. These results provided evidence that including spatial in-
formation in ancestry estimation algorithms improves the detection of
signatures of hard selective sweeps having occurred in unknown ances-
tral populations.

Sensitivity of estimates to spatial measurements. Next, we used the
simulated data sets to evaluate the robustness of APLS estimates to
inaccurate measurements of spatial coordinates. To this aim, Gaussian
noise was added to truly observed geographic coordinates by consider-
ing values of the noise-to-signal ratio ranging from 0 to 3. We computed
variograms in all cases, and found that the spatial signal was removed
from simulations for noise-to-signal ratios greater than two, while the
signal was still observable with a noise-to-signal ratio lower than one.
For all simulations, we compared the relative error of APLS Q-matrix
estimates to those obtained from an non-spatial method (snmf). For
small levels of uncertainty in spatial coordinates the errors of APLS
estimates were lower than those of snmf (Figure 3). For simulations
with n = 500 individuals and L = 105 loci, a larger noise-to-signal
ratio increased statistical errors in the Q-matrix estimates from the
APLS algorithm. For smaller noise-to-signal ratios, RMSEs remained
generally lower for the APLS algorithm than for methods without spa-
tial coordinates. For simulations with n = 50 individuals and L = 104

loci, the APLS estimates were more accurate than the non-spatial esti-
mates. This unexpected result could be explained by subtle algorithmic
differences in tested programs. To a large extent, estimates from the
APLS algorithm were robust to uncertainty in spatial measurements.
Standard graphical tests such as a variogram analysis can help deciding
whether our spatially explicit algorithm is useful or not.

Runtime and convergence analyses. We subsampled a large SNP data
set for A. thaliana ecotypes to compare the convergence properties and
runtimes of the tess3, AQP, and APLS algorithms. In those experi-
ments, we used K = 6 ancestral populations, and replicated 5 runs for
each simulation. For n = 100 − 600 individuals (L = 50k SNPs), the
APLS algorithm required more iterations (25 iterations) than the AQP
algorithm (20 iterations) to converge to its solution (Figure 5). This was
less than for tess3 (30 iterations). For L = 10− 200k SNPs (n = 150
individuals), similar results were observed. For 50k SNPs, the runtimes
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were significantly lower for the APLS algorithm than for the tess3 and
AQP algorithms. For L = 50k SNPs and n = 600 individuals, it took
on average 1.0 min for the APLS and 100 min for the AQP algorithm
to compute ancestry estimates. For tess3, the runtime was on average
66 min. For L = 100k SNPs and n = 150 individuals, it took on average
0.6 min (9.0 min) for the APLS (AQP) algorithm to compute ancestry
estimates. For tess3, the runtime was on average 1.3 min. For those
values of n and L, the APLS algorithm implementation ran about 2 to
100 times faster than the other algorithm implementations.

Human data analysis. To evaluate a case of model misspecification,
we analyzed data from the 1000 Genomes project for African Ameri-
cans, Africans from Nigeria and from Kenya, and Europeans from the
United Kingdom and from Italy. Using the default values for the hyper-
parameters, the Laplacian matrix was a block diagonal matrix where
each block corresponded to one of the five populations. The spatial var-
iogram exhibited a flat shape. For K = 2, the APLS estimates for the
African American population were equal to 24.2% for European ances-
tors and 75.8% for African ancestors. The corresponding snmf estimates
were equal to 22.4% for European ancestors and 77.6% for African an-
cestors. For K = 3, the APLS estimates for the African American pop-
ulation were equal to 21.4% for European ancestors, 51.8% for West
African ancestors and 26.8% for East African ancestors. The corre-
sponding snmf estimates were equal to 22.2% for European ancestors,
68.4% for West African ancestors and 9.4% for East African ances-
tors. Overall, the results obtained with our spatial method for African
Americans were similar to those obtained with snmf. The main differ-
ence between APLS and snmf estimates were for African populations.
For Africans, snmf detected two distinct genetic clusters whereas APLS
detected a larger proportion of shared ancestry between Eastern and
Western populations.

Application to European ecotypes of Arabidopsis thaliana. We used
the APLS algorithm to survey spatial population genetic structure and
perform a genome scan for adaptive alleles in European ecotypes of
the plant species A. thaliana. The cross validation criterion decreased
rapidly from K = 1 to K = 3 clusters, indicating that there were three
main ancestral groups in Europe, corresponding to geographic regions
in Western Europe, Eastern and Central Europe and Northern Scan-
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dinavia. For K greater than four, the values of the cross validation
criterion decreased in a slower way, indicating that subtle substruc-
ture resulting from complex historical isolation-by-distance processes
could also be detected (Figure 6). The spatial analysis provided an ap-
proximate range of σ = 150km for the spatial variogram (Figure 6).
Figure 7 displays the Q-matrix estimate interpolated on a geographic
map of Europe for K = 6 ancestral groups. The estimated admixture
coefficients provided clear evidence for the clustering of the ecotypes in
spatially homogeneous genetic groups.

Targets of selection in A. thaliana genomes. Tests based on the FQ
ST

statistic were applied to the 241k SNP data set to reveal new targets
of natural selection in the A. thaliana genome. A. thaliana occurs in a
broad variety of habitats, and local adaptation to the environment is
acknowledged to be important in shaping its genetic diversity through
space (Hancock et al., 2011; Fournier-Level et al., 2011). The APLS
algorithm was run on the 1,095 European lines of A. thaliana with K =
6 ancestral populations and σ = 1.5 for the range parameter. Using
the Benjamini-Hochberg algorithm to control the FDR at the level
1%, the program produced a list of 12,701 candidate SNPs, including
linked loci and representing 3% of the total number of loci. The top
100 candidates included SNPs in the flowering-related genes SHORT
VEGETATIVE PHASE (SVP), COP1-interacting protein 4.1 (CIP4.1)
and FRIGIDA (FRI) (p-values < 10−300). These genes were detected
by previous scans for selection on this dataset (Horton et al., 2012).
We performed a gene ontology enrichment analysis using AmiGO in
order to evaluate which biological functions might be involved in local
adaptation in Europe. We found a significant over-representation of
genes involved in cellular processes (fold enrichment of 1.06, p-value
equal to 0.0215 after Bonferonni correction).
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5. Discussion. Including geographic information on sample loca-
tions in the inference of ancestral relationships among organisms is
a major objective of population genetic studies (Malécot, 1948; Cav-
alli et al., 1994; Epperson, 2003). Assuming that geographically close
individuals are more likely to share ancestry than individuals at dis-
tant sites, we introduced two new algorithms for estimating ancestry
proportions using geographic information. Based on least-squares prob-
lems, the new algorithms combine matrix factorization approaches and
spatial statistics to provide accurate estimates of individual ancestry
coefficients and ancestral genotype frequencies. The two methods share
many similarities, but they differ in the approximations they make in
order to decrease algorithmic complexity. More specifically, the AQP
algorithm was based on quadratic programming, whereas the APLS
algorithm was based on the spectral decomposition of the Laplacian
matrix. The algorithmic complexity of APLS algorithm grows linearly
with the number of individuals in the sample while the method has the
same statistical accuracy as more complex algorithms.

To measure the benefit of using spatial algorithms, we compared the
statistical errors observed for spatial algorithms with those observed
for non-spatial algorithms. The errors of spatial methods were lower
than those observed with non-spatial methods, and spatial algorithms
allowed the detection of more subtle population structure. In addition,
we implemented neutrality tests based on the spatial estimates of the Q
and G-matrices (Martins et al., 2016), and we observed that those tests
had higher power to reject neutrality than those based on non-spatial
approaches. Thus spatial information helped improving the detection
of signatures of selective sweeps having occurred in ancestral popu-
lations prior to admixture events. We applied the neutrality tests to
perform a genome scan for selection in European ecotypes of the plant
species A. thaliana. The genome scan confirmed the evidence for selec-
tion at flowering-related genes CIP4.1, FRI and DOG1 differentiating
Fennoscandia from North-West Europe (Horton et al., 2012).

Estimation of ancestry coefficients using fast algorithms that extend
non-spatial approaches – such as structure – has been intensively dis-
cussed during the last years (Wollstein et al., 2015). In these improve-
ments, spatial approaches have received less attention than non-spatial
approaches. In this study, we have proposed a conceptual framework
for developing fast spatial ancestry estimation methods, and a suite
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of computer programs implements this framework in the R program
tess3r. Our package provides an integrated pipeline for estimating and
visualizing population genetic structure, and for scanning genomes for
signature of local adaptation. The algorithmic complexity of our al-
gorithms allows their users to analyze samples including hundreds to
thousands of individuals. For example, analyzing more than one thou-
sand A. thaliana genotypes, each including more than 210k SNPs, took
only a few minutes using a single CPU. In addition, the algorithms have
multithreaded versions that run on parallel computers by using multi-
ple CPUs. The multithreaded algorithm, which is available from the R

program, allows using our programs in large-scale genomic sequencing
projects.
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APPENDIX A: ALGORITHMS

Algorithm A.1. AQP algorithm pseudo code. To solve optimiza-
tion problem (2.1).

Input: the data matrix Y ∈ {0, 1}n×(p+1)L, the Laplacian matrix
Λ ∈ Rn×n, the number of ancestral populations K, the
regularization coefficient α, the maximum number of
iteration itMax

Output: the admixture matrix Q ∈ Rn×K , the ancestral genotype
frequency matrix G ∈ RK×(p+1)L

Initialize Q at random;
for it = 1..itMax do

// G optimization step
for l = 1..L do

Y l ← Y.,(p+1)l..(p+1)l+d;
DQ ← Ip+1 ⊗QTQ;
vQ ← V ec(QTY l);
g? ∈ arg ming∈∆G

−2vTQg + gTDQg;

V ec(G(p+1)l..(p+1)l+d,.)← g?;

end

// Q optimization step
DG ← Idn ⊗GTG + αΛ⊗ IK ;
vG ← V ec(GTYT );
V ec(QT ) ∈ arg minq∈∆Q

−2vTGq + qTDGq;

end

Algorithm A.2. APLS algorithm pseudo code. To solve the op-
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timization problem (2.1).

Input: the data matrix Y ∈ {0, 1}n×(d+1)L, the eigenvalues
matrix ∆ and eigenvectors matrices U such that
Λ = UT∆U, the number of ancestral populations K, the
regularization coefficient α, the maximum number of
iteration itMax

Output: the admixture matrix Q ∈ Rn×K , the ancestral genotype
frequency matrix G ∈ RK×(d+1)L

Initialize Q at random;
proj(Y)← RY;
for it = 1..itMax do

// G optimization step
for j = 1..(p+ 1)L do

g? ∈ arg ming∈RK ||Y.,j −Qg||2;

Gj,. ← g?;

end
Project G such that G ∈ ∆G;

// Q optimization step
for i = 1..n do

g?i ∈ arg minq∈RK ||proj(Y)i,. −GT q||2 + α∆i,i||q||2;

proj(Q)i,. ← g?i ;

end
Q← UTproj(Q);
Project Q such that Q ∈ ∆Q;

end
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Fig 1. Root Mean Squared Errors (RMSEs) for the G and Q matrix
estimates. Simulations of spatially admixed populations. A-B) Statistical errors
for APLS, AQP and tess3 estimates as a function of the sample size, n (L ∼ 104).
C-D) Statistical errors for APLS, AQP and tess3 estimates as a function of the
number of loci, L (n = 200).
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Fig 2. Root Mean Squared Errors (RMSEs) for the Q estimates. Simu-
lations of spatially admixed populations for several values of fixation index (FST)
between ancestral populations. Ancestral populations are simulated with Wright’s
two-island models and the fixation index is defined as 1/(1 + 4N0m) where m is the
migration rate and N0 the effective population size. The statistical errors for sNMF
and APLS are represented as a function of FST.
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gorithms, non-spatial (structure-like) ancestry estimates computed with the snmf

algorithm. The relative intensity of selection in ancestral populations, defined as the
ratio m/ms, was varied in the range 1− 160.
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Fig 5. Number of iterations and runtimes for the AQP, APLS and tess3

algorithm implementations. A-B) Total number of iterations before an algo-
rithm reached a steady solution. C-D) Runtime for a single iteration (seconds). The
number of SNPs was kept fixed to L = 50k in A and C. The number of individuals
was kept fixed to n = 150 in B and D.
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Fig 7. A. thaliana ancestry coeficients. Ancestry coefficient estimates computed
by the APLS algorithm with K = 6 ancestral populations and σ = 1.5 for the
range parameter. A) Geographic map of ancestry coefficients. B) Barplot of ancestry
coefficients.
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Fig 8. Local adaptation in European lines of A. thaliana . Manhattan plot
of − log(p-value). p-value were computed from population structure estimated by
the APLS algorithm with K = 6 ancestral populations and σ = 1.5 for the range
parameter.
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