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2 LIRMM, CNRS and Université de Montpellier, Montpellier, France

3 Institut Biologie Computationnelle, CNRS and Université de Montpellier
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Abstract

A viral quasispecies, the ensemble of viral strains populating an infected person, can be highly
diverse. For optimal assessment of virulence, pathogenesis and therapy selection, determining the hap-
lotypes of the individual strains can play a key role. As many viruses are subject to high mutation and
recombination rates, high-quality reference genomes are often not available at the time of a new disease
outbreak. We present SAVAGE, a computational tool for reconstructing individual haplotypes of intra-
host virus strains without the need for a high-quality reference genome. SAVAGE makes use of either
FM-index based data structures or ad-hoc consensus reference sequence for constructing overlap graphs
from patient sample data. In this overlap graph, nodes represent reads and/or contigs, while edges reflect
that two reads/contigs, based on sound statistical considerations, represent identical haplotypic sequence.
Following an iterative scheme, a new overlap assembly algorithm that is based on the enumeration of sta-
tistically well-calibrated groups of reads/contigs then efficiently reconstructs the individual haplotypes
from this overlap graph. In benchmark experiments on simulated and on real deep coverage data, SAV-
AGE drastically outperforms generic de novo assemblers as well as the only specialized de novo viral
quasispecies assembler available so far. When run on ad-hoc consensus reference sequence, SAVAGE
performs very favorably in comparison with state-of-the-art reference genome guided tools. We also
apply SAVAGE on two deep coverage samples of patients infected by the Zika and the hepatitis C virus,
respectively, which sheds light on the genetic structures of the respective viral quasispecies.
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Introduction

Viruses such as HIV, the Zika and the Ebola virus, populate their hosts as an ensemble of genetically related
but different mutant strains, commonly referred to as viral quasispecies. These strains, each characterized
by its own haplotypic sequence, are subject to high mutation and recombination rates (Domingo et al. 2012;
Duffy et al. 2008). Sequencing methods aim at capturing the genetic diversity of viral quasispecies present in
infected samples; the promise is that next-generation sequencing (NGS) based methods will assist clinicians
in selecting treatment options and other clinically relevant decisions.

Ideally, a viral quasispecies assembly characterizes the genetic diversity of an infection by presenting
all of the viral haplotypes, together with their abundance rates. There are two major challenges in this.

(1) The number of different strains is usually unknown. Furthermore, two different strains can differ by
only minor amounts of distinguishing mutations. Last but not least, abundance rates can be as low as the
sequencing error rates, which hampers the detection of true mutations present at low frequency.

(2) Due to the great diversity and the high mutation rates, reference genomes representing high-quality
consensus genome sequences can be obsolete at the time of the disease outbreak. The lack of a suitable
reference genome is a major hindrance for many viral quasispecies assembly approaches.

It is important to understand that all existing assembly methods fail to address either the first or the
second point. Recent reference-guided approaches specialized in viral quasispecies assembly suggested
statistical frameworks modeling the driving forces underlying the evolution of viral quasispecies. While
previous approaches focused mostly on local reconstruction of haplotypes (Huang et al. 2012; Quince et al.
2011; Zagordi et al. 2011; 2010), more advanced approaches aimed at global reconstruction of haplotypes,
for example, by making use of Dirichlet process mixture models (Prabhakaran et al. 2014), hidden Markov
models (Töpfer et al. 2013), or sampling schemes (Prosperi and Salemi 2012). There are also recent combi-
natorial approaches which compute paths in overlap graphs (Astrovskaya et al. 2011), enumerate maximal
cliques in overlap graphs (Töpfer et al. 2014), or compute maximal independent sets in conflict graphs
(Mangul et al. 2014). While these approaches soundly address point (1), the vast majority of them depends
on high-quality reference sequence as a backbone to their methods, which in turn is the reason why they fail
to address (2). Hence, when confronted with hitherto unknown, significantly deviating mutation patterns,
these approaches fail to perform sufficiently well.

On the other hand, de novo assembly approaches do not depend on reference genomes. Although there
exist numerous de novo approaches for mammalian genome assembly, – see e.g. (Bradnam et al. 2013;
Gurevich et al. 2013; Salzberg et al. 2011) for comparative evaluations – these generic methods are not well
suited for the viral quasispecies assembly problem. The key difference is that mutation rates in viruses are
orders of magnitude higher than in eukaryotes, resulting in multiple polymorphic sites within a single read
(Domingo et al. 2012; Duffy et al. 2008). This makes it possible to phase mutations into separate haplo-
types; however, generic assembly approaches do not exploit this property. Rather, generic assemblers aim
at reconstructing one single consensus sequence or are not designed to handle genomes of heavily polyploid
organisms. In this regard, note that there are de novo assemblers that specialize in viral genome assembly
already (Yang et al. 2012; Hunt et al. 2015). However, also these specialized approaches aim at assembling
consensus genomes rather than strain-specific sequence, where the goal is to construct new reference rather
than individual sequence. To our knowledge, the only existing de novo approach for haplotype-resolved
viral quasispecies assembly is MLEHaplo (Malhotra et al. 2016b). However, as our evaluations will demon-
strate, MLEHaplo does not even compare favorably with generic de novo assemblers. As a consequence,
while addressing (2), existing de novo assembly methods fail to address point (1) to a satisfactory degree.

A possible principled issue is that nearly all of the NGS based genome assemblers, including the above-
mentioned specialized de novo viral quasispecies approaches, rely on the de Bruijn graph as assembly
paradigm. Thereby, reads are decomposed into k-mers, where k is usually considerably smaller than the
read length. As a generalization of this concept the paired de Bruijn graph has been introduced (Medvedev
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et al. 2011), which incorporates mate pair information into the graph structure itself instead of analyzing
mate pairs in a post-processing step, which yields larger contigs in the assembly. As mentioned above, it is
imperative in viral quasispecies assembly to distinguish low-frequency mutations from sequencing errors.
While low-frequency mutations are genetically linked, hence co-occur within different reads, sequencing
errors do not exhibit patterns of co-occurrence. The detection of patterns of co-occurrence is decisively
supported by examining reads at their full length, but this information cannot be exploited with de Bruijn
graphs. Overlap graphs on the other hand make use of full-length reads and do not decompose them into
smaller parts; hence, we reason that the overlap graph paradigm suits the problem of viral quasispecies
assembly better.

The only existing method for viral quasispecies assembly based on overlap graphs is HaploClique
(Töpfer et al. 2014). Although this method is reference guided, it uses the reference solely for provid-
ing anchor points for constructing an overlap graph. Unlike in many other approaches (Di Giallonardo et al.
2014; Töpfer et al. 2013; Zagordi et al. 2010; 2011), the haplotype sequences are then assembled from
the reads, and not from the reference. While providing inspiration in general, the HaploClique algorithm
has proven too expensive—already data sets of about 1000x coverage require excessive computational re-
sources. The reason is that it is based on the enumeration of maximal cliques, which is exponential in the
read coverage, both in terms of runtime and space. We therefore present a novel, more efficient algorithm
for the clique enumeration part of the assembly algorithm.

There are two exit strategies to resolve the issue of the possible lack of a reference genome. The first
strategy is to construct consensus genome sequence from the patient samples themselves, using one of
the available de novo consensus genome assemblers (among which, the most popular tool is VICUNA
(Yang et al. 2012)), and to subsequently run one of the reference-guided approaches using this ad-hoc
consensus as a reference. This strategy has also been suggested by (Mangul et al. 2014) and we shall further
explore it here. The second strategy is to construct an overlap graph directly from the patient sample reads.
Subsequently, one employs a ploidy-aware assembly algorithm that can extract strain-specific sequences
from overlap graphs. The challenge is that constructing overlap graphs requires a pairwise comparison
of all reads, which, for deep coverage data sets, requires sophisticated indexing techniques to be feasible.
Here, we show how to make efficient use of FM-index based techniques (Välimäki et al. 2012) to construct
overlap graphs without any need for a reference genome. As such, we provide the first approach for de novo
assembly of viral quasispecies based on overlap graphs.

In summary, we make relevant contributions for
(i) the construction of overlap graphs from deep coverage read data and
(ii) viral quasispecies assembly using the overlap graph assembly paradigm.
In combination, we present SAVAGE (Strain Aware VirAl GEnome assembly), a method that allows

for reference-free assembly of viral quasispecies from sequencing data sets of deep coverage (20 000x and
more). In this, we do not only provide the first genuine de novo viral quasispecies assembly approach based
on overlap graphs, but we also provide the first method that can exploit ad-hoc consensus sequence generated
from patient samples, as computed for example by VICUNA (Yang et al. 2012), for high-performance viral
quasispecies assembly.

Results

We have designed and implemented SAVAGE (Strain Aware VirAl GEnome assembly), a method for de
novo viral quasispecies assembly based on overlap graphs. In this section, we provide a high-level descrip-
tion of the algorithmic approach and analyze its performance, also in comparison to state-of-the-art viral
quasispecies assembly tools and several established generic genome assemblers. Finally, we present assem-
bly results using SAVAGE on two real virus samples from patients infected by the Zika virus and hepatitis
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C virus, respectively. We refer to the Methods section for any methodological details.

Approach

Our algorithm proceeds in three stages (panel A of Figure 1), each of which iteratively clusters the input
sequences and extends them to unique haplotypes. While Stage a has the original reads as input and contigs
as output, Stage b has these contigs as input and maximally extended contigs as output. The extended contigs
are supposed to reflect individual haplotype sequences. Finally, the optional Stage c merges maximally
extended contigs into master contigs, each representing a group of very closely related strains. This reflects
the existence of master strains in many viruses, where each individual haplotype deviates from one of the
master strains by only a relatively minor amount of mutations (the ensemble of which is commonly referred
to as mutant class in the literature and reflects a viral subpopulation, see e.g. Domingo et al. (2012)). Each
stage is divided into overlap graph construction (upper part of panel C in Figure 1) and overlap graph
based assembly (lower part of panel C in Figure 1). Between the stages, this generic structure only differs
in the details.

The strength of overlap graphs for viral quasispecies assembly is in identifying co-occurring mutations,
thus enabling the phasing of mutations from the same strain. We distinguish sequencing errors from true
mutations by posing very strong constraints on the overlaps in terms of minimal overlap length and sequence
similarity. In addition, we make use of paired-end read information. This results in a very conservative over-
lap graph, where an edge indicates that two sequences are very likely to originate from the same virus strain.
Therefore, by enumerating cliques in the overlap graph we cluster the reads per strain, thus reconstructing
the individual haplotypes of the viral quasispecies.

We construct overlap graphs in two steps: first, pairs of reads are determined that share sufficiently
long and well-matching overlaps, followed by a statistical evaluation of the quality of each overlap. We
explore two options for finding all such overlap candidates. The first option is to apply a completely de novo
procedure using FM-index based techniques (Välimäki et al. 2012). The second option is to align all reads
against a reference genome, such that read-to-read alignments can be induced from the read-to-reference
alignments. However, in case of a viral outbreak there may not be a suitable reference genome available; we
target such cases by constructing an ad-hoc consensus sequence from the patient samples, as computed by
VICUNA (Yang et al. 2012).

SAVAGE offers three different modes, corresponding to the different approaches to overlap graph con-
struction described above: SAVAGE-de-novo uses the first option and is therefore completely reference-
free, while SAVAGE-b-ref uses the second option and thus relies on a bootstrap reference sequence. For
benchmarking purposes we also consider SAVAGE-h-ref, which takes as input an existing, high quality
reference sequence.

Benchmarking data

For benchmarking experiments and performance analysis, we considered several simulated data sets, one
gold standard benchmark from real sequencing reads, and two real patient samples. For the simulated data
sets, sequencing reads were created using the simulation software SimSeq (see Methods).

Simulated benchmarks. We created five simulated data sets for benchmarking, consisting of 2x250bp
Illumina MiSeq reads and representing quasispecies infections from different viruses: human immunodefi-
ciency virus (HIV), hepatitis C virus (HCV), and Zika virus (ZIKV). We varied the number of strains per
sample, as well as the relative abundances of those strains and the pairwise divergence between strains. To
get data sets as realistic as possible, we used true viral genomes from the NCBI database and Illumina MiSeq
error profiles during simulations. Characteristics of each benchmark are given in Table 1 and additional in-
formation can be found in Supplemental Methods.
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Figure 1: An overview of the workflow and algorithms of SAVAGE. A. The three stages of SAVAGE. Each
assembles sequences into longer sequences. For clarity, we assign different names to the sequences output
by each stage: contigs, maximally extended contigs, and master contigs, respectively. B. Principle of overlap
graph construction and distinction among the reads between errors and shared mutations. C. Each stage has
two steps: first, the overlap graph construction, second, assembly. This panel summarizes the differences
in each step between the three stages. During overlap graph-based assembly, steps 4 to 6 are repeated
iteratively until there are no edges left in the overlap graph.
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Virus Genome Average Strain Strain Pairwise
Data set type length (bp) coverage count abundance divergence
600x HIV mix HIV-1 9478 – 9719 600x 5 20 % 1 – 6 %
5-strain HIV mix HIV-1 9478 – 9719 20 000x 5 5 – 28 % 1 – 6 %
10-strain HCV mix HCV-1a 9273 – 9311 20 000x 10 5 – 19 % 6 – 9 %
3-strain ZIKV mix ZIKV 10251 – 10269 20 000x 3 16 – 60 % 3 – 10 %
15-strain ZIKV mix ZIKV 10251 – 10269 20 000x 15 2 – 13 % 1 – 10 %
Lab mix HIV-1 9478 – 9719 20 000x 5 10 – 30 % 1 – 6 %

Table 1: Characteristics of benchmarking data sets. For each benchmark we specify virus type, genome
length, average coverage, strain count, relative abundance, and pairwise divergence. For the 600x HIV mix,
the strains were homogeneously distributed with a relative abundance of 20% each.

Lab mix. In addition to the simulated benchmarks, we also considered a real Illumina MiSeq (2x250
bp) data set with an average coverage of∼20 000x, obtained from a lab mixture of five HIV strains (see also
Table 1). This data set was recently presented as a gold standard benchmark (Di Giallonardo et al. 2014);
we will refer to it as the lab mix.

Divergence-vs-ratio. To analyze the combined effect of the levels of divergence and of the relative
abundance of the strains, we constructed 36 additional data sets as follows. Starting from the HIV-1 89.6
haplotype, we created six alternative haplotypes by introducing, respectively, 0.5%, 0.75%, 1%, 2.5%, 5%,
and 10% random mutations. For each of those six alternative strains, we created six data sets by simulating
reads (2x250 bp Illumina MiSeq) from the mutated strain and the original at a ratio of 1:1, 1:2, 1:5, 1:10,
1:50, and 1:100, respectively, with a total coverage of 500x per data set.

Zika virus sample. We applied SAVAGE to a sample of Asian-lineage Zika virus (ZIKV) consisting
of Illumina MiSeq 2x300 bp sequencing reads (∼30,000x coverage) obtained from a rhesus macaque after
four days of infection (Dudley et al. 2016, animal 393422).

Hepatitis C virus sample. In addition to the Zika virus sample, we also used a hepatitis C virus (HCV)
sample of approximately 80 000x coverage, covering a region of ∼3000bp containing the HS5B gene.

Evaluation preliminaries

In the case of a viral outbreak, the agent and its genome may be unknown (or may have significantly diverged
from closely related strains such that available reference sequences are potentially inadequate for analysis),
and the samples taken from infected patients contain an unknown number of divergent strains. Here, we
target these cases where no reference genome is available. A sample sequenced with Next Generation
Sequencing technology delivers enough reads and sufficient coverage to allow a de novo assembly of a viral
genome (here, we mean a single genome assembly, not a quasispecies assembly), to be used as an ad-hoc
reference genome for further analyses. However, such genome sequences may not represent any of the true
viral haplotypes present in the sample sufficiently well.

In the remainder of this paper, all assembly algorithms were run using default settings. Evaluations of
assemblies were performed with MetaQUAST (Mikheenko et al. 2016), which computes the usual statistics
– number of contigs, largest contigs, N50, misassembled contig length, target genome(s) covered, and error
rates – and we accounted only for contigs larger than a threshold of 500 bp. A contig is called misassembled
if it contains at least one misassembly, i.e., a position where the left and right flanking sequences align to
the true genomes with a gap or overlap of more than 1 kbp, or align to different strands, or even align to
different strains.

We compare de novo methods and reference-guided approaches. While de novo algorithms proceed
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by iteratively extending contigs until some convergence criterion is met, reference-guided approaches alter
the reference sequence until a set of haplotypes is obtained that is supposed to represent the quasispecies.
By altering the reference genome, all output sequences have the same length, which means that the N50
score equals the length of the output sequences. For de novo approaches, on the other hand, the N50 score
provides an indication of the contig length distribution.

Failure of existing de novo assemblers on low-frequency strains

We explored the ability of generic genome assemblers to reconstruct a viral quasispecies. From the broad
collection of tools available, we selected four assemblers: SGA (Simpson and Durbin 2012), SOAPdenovo2
(Luo et al. 2012), SPAdes (Bankevich et al. 2012), and metaSPAdes (Nurk et al. 2016). The first two meth-
ods, SGA and SOAPdenovo2, are generic assemblers, mostly used on mammalian genomes. SPAdes was
originally designed for bacterial genomes, and metaSPAdes is a version of SPAdes adapted for metagenome
assembly.

First, we evaluate performance on all simulated benchmarks. Table 2 presents results for all methods
on the 5-strain HIV mix, the 10-strain HCV mix, and the 15-strain ZIKV mix. The only method capable
of assembling at least half a viral quasispecies on a 20 000x simulated data set is SPAdes, the only close
alternative being metaSPAdes with 45.9% on the 10-strain HCV mix. For the 5-strain HIV mix and the 10-
strain HCV mix, SPAdes assembles 91.3–91.7% (SAVAGE-de-novo: ≥ 99.6%) of the true viral genomes
at an error rate of 0.015− 0.084% (SAVAGE-de-novo: 0.004%), showing that SPAdes misses to assemble
a considerable fraction of the quasispecies. This becomes more evident on the 15-strain ZIKV mix, which
contains several low-frequency strains: SPAdes only recovers 65.6% of the target genomes (SAVAGE-de-
novo: 99.4%). The explanation for this is that SPAdes misses to assemble strains of low frequency, as
Figure 2 further reveals: here, a comparison of all approaches is shown when at most a bootstrap reference
is provided. The performance of each approach is evaluated on each of the strains of the 20 000x benchmarks
from Table 1 individually, and results are stratified by the relative abundances of the strains. We see that
SPAdes recovers only 46.8% of the strains of frequency of less than 5%.

Similar results for the 600x HIV mix and the 3-strain ZIKV mix can be found in Supplemental Ta-
bles S1 and S2; these are relatively easy data sets, since neither contains any low-frequency strains. Both
SOAPdenovo2 and SPAdes perform reasonably on the 600x data set, reconstructing 78.9% and 87.8% of the
viral quasispecies, respectively. SGA and metaSPAdes, on the other hand, do not recover more than 19%
of the quasispecies. For the 3-strain ZIKV mix, only SPAdes is able to reconstruct more than 40% of the
quasispecies; in fact, it finds 99.6% of the target genomes, performing almost perfectly on this low-ploidy
dataset, which is no surprise because assemblers like SPAdes generally target at genomes of limited ploidy.

Finally, we consider the lab mix, which is based on real data and hence the most challenging benchmark.
Table 3 presents results for all methods. SGA, SOAPdenovo2, SPAdes, and metaSPAdes all perform quite
similarly, reconstructing only 41.0–53.7% of the viral quasispecies at very high error rates (1.1–2.0%). This
shows that each of these assemblers has difficulty distinguishing sequencing errors from true variants, thus
pointing out the need for specialized viral quasispecies assemblers.

Recently, the first specialized de novo assembler has appeared (Malhotra et al. 2016b). We ran this
method, called MLEHaplo, on our benchmarking data sets. Unfortunately, it could only handle the 600x
HIV mix; for all 20 000x benchmarks, MLEHaplo did not finish within a week and used more than 140GB
of main memory per data set. On the 600x HIV mix, it performed very poorly, reconstructing only 10% of
the target genomes at a mismatch rate of more than 2%.
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Dependence of reference based approaches on reference genome quality

Reference based quasispecies assembly tools proved to perform adequately when a high quality reference
genome is available (Zagordi et al. 2011; Prabhakaran et al. 2014). We question whether reference based
approaches could yield appropriate quasispecies assemblies if provided with a de novo assembled genome
sequence obtained from the sample reads, rather than a high quality reference genome. To address this point,
we compared state-of-the-art methods PredictHaplo (Prabhakaran et al. 2014) and ShoRAH (Zagordi et al.
2011) on our benchmarks (Table 1) in two settings: either with a high quality reference genome, or with
a genome sequence obtained by running the VICUNA assembler (Yang et al. 2012) on the sample reads.
We refer to the former as a high quality reference genome, denoted h-ref, and the latter as a bootstrap
reference genome, denoted b-ref. The quality of the output assemblies, as evaluated with MetaQUAST, is
described in Tables 2 and 3, as well as Supplemental Tables S1 and S2.

For PredictHaplo and ShoRAH, the number of output sequences provides an estimate of the total number
of strains in the quasispecies, since each output sequence represents a putative strain in the quasispecies. In
Table 2, we see that on all benchmarks except the 15-strain ZIKV mix, the number of output sequences for
PredictHaplo is very close to the true number of strains. For the 3-strain ZIKV mix, both the high quality
reference genome and the bootstrap reference genome lead to a perfect assembly of 3 sequences without
any mismatches and less than 0.042% indels (Supplemental Table S2). But considering the remaining
(more challenging) data sets, we see that using a bootstrap reference genome causes a serious loss in the
fraction of target genomes recovered by PredictHaplo (compared to using a high quality reference). On
the 600x HIV mix and the lab mix, using the bootstrap reference even results in 100% of the sequences
being misassembled (Supplemental Table S1). Only for the 15-strain ZIKV mix the difference between the
h-ref and b-ref approaches is small: both recover only 53% of the target genomes (8 out of 15 strains – see
Table 2).

For ShoRAH, we observe that for all data sets the number of output sequences is one or two orders of
magnitude larger than the true number of strains. In addition, the mismatch rate is high compared to other
methods, varying between 2.4% and 4.4% on the simulated 20 000x benchmarks. Unfortunately, we can only
compare the bootstrap reference and high quality reference approaches on the HIV data, because ShoRAH-
h-ref crashed repeatedly on the HCV and ZIKV benchmarks. Remarkably, the bootstrap reference approach
increases target genome coverage from 39.4% to 93.8% on the 5-strain HIV mix (Table 2). However, in
both the 20 000x HIV mix and the 600x HIV mix we see that the bootstrap reference also results in a
small fraction of the total sequence length being misassembled (7.0% and 1.6%, respectively). This effect
becomes much more apparent on the lab mix, with 89.3% of the total sequence length being misassembled.
This shows that, similar to PredictHaplo, the quality of the ShoRAH assembly is highly dependent on that
of the reference genome sequence.

Both tools, especially PredictHaplo, seem valuable when the reference genome is closely related to
sample strains, but inadequate to handle cases where a good reference genome is unavailable. Moreover,
Figure 2 shows that both PredictHaplo and ShoRAH have trouble reconstructing low-frequency strains,
recovering less than 17% of the low-frequency (<5%) target strains. These results emphasize the need for
new assembly approaches that are independent of a reference genome.

SAVAGE evaluation

For the sake of comparison, we ran SAVAGE on the same benchmarks as above (Table 1) in both de novo
mode and reference mode, both with default parameters. The 20 000x coverage data sets were split into
patches of 750x each, on which we applied SAVAGE Stage a. Subsequently, all Stage a contigs were put
together into one big collection of contigs and used as input for Stage b (Supplemental Figure S1).

Table 2 presents the evaluation results on simulated benchmarks of the Stage b maximally extended
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MAC target
# contigs largest length genomes N-rate mismatches indels
≥ 500bp contig N50 (%) (%) (%) (%) (%)

5-strain HIV mix
PredictHaplo-h-ref 5 9720 9720 0 99.6 0.603 0.085 0.102
PredictHaplo-b-ref 5 9578 9578 0 93.8 0.284 0.110 0.104
ShoRAH-h-ref 289 9514 9514 0 39.4 0.268 2.403 0.016
ShoRAH-b-ref 242 9501 9501 7.0 93.8 0.127 3.197 0.124
SAVAGE-de-novo 36 9413 4913 0 99.8 0 0.004 0
SAVAGE-h-ref 28 9634 5027 0 99.6 0 0.004 0
SAVAGE-b-ref 59 9463 2424 0 99.5 0.002 0.071 0.002

SGA 36 1034 650 0 32.4 0 1.294 0.026
SOAPdenovo2 36 844 516 0 35.7 0 0.633 0
SPAdes 14 9789 5873 0 91.7 0 0.084 0.002
metaSPAdes 13 7044 5159 0 32.7 0 1.681 0.013
10-strain HCV mix
PredictHaplo-h-ref 9 9313 9313 0 90.0 0.004 0.402 0.010
PredictHaplo-b-ref 9 7636 7636 0 73.8 0.006 0.053 0
ShoRAH-h-ref - - - - - - - -
ShoRAH-b-ref 639 7570 7570 0 56.9 0 4.381 0.011
SAVAGE-de-novo 46 9297 8248 0 99.6 0.002 0.004 0
SAVAGE-h-ref 85 9247 3716 0 99.6 0 0.004 0
SAVAGE-b-ref 84 7802 2943 0 86.0 0 0.001 0

SGA 33 832 638 0 18.1 0 1.439 0
SOAPdenovo2 41 926 531 0 22.0 0 0.551 0
SPAdes 13 9311 8582 0 91.3 0 0.015 0
metaSPAdes 81 3041 1549 0 45.9 0 2.133 0
15-strain ZIKV mix
PredictHaplo-h-ref 8 10258 10258 0 53.3 0.032 0.147 0.046
PredictHaplo-b-ref 8 10270 10270 0 53.3 0.001 0.121 0.004
ShoRAH-h-ref - - - - - - - -
ShoRAH-b-ref 493 10117 10117 0 26.3 0.053 4.403 0.017
SAVAGE-de-novo 607 9282 2103 0 99.4 0.002 0.016 0
SAVAGE-h-ref 641 10243 1935 0 99.4 0.002 0.006 0
SAVAGE-b-ref 604 9079 2018 0 99.5 0.002 0.011 0

SGA 0 - - - 0 - - -
SOAPdenovo2 56 1025 562 0 21.0 0 0.545 0
SPAdes 60 10269 2577 0 65.6 0 0.131 0
metaSPAdes 37 6495 3926 0 17.5 0 1.200 0

Table 2: Assembly results per method on simulated HIV, HCV, and ZIKV benchmarks (20 000x coverage).
For reference guided methods we present results using an established, high quality reference genome (h-ref)
as well as an ad-hoc, bootstrap reference genome (b-ref). All assemblies were evaluated on the following
criteria: number of contigs ≥ 500 bp, length of the largest contig, N50 statistic, MissAssembled Contigs
(MAC) length relative to total contig length, percentage of the target genomes recovered, percentage of
undetermined bases (N), and percentage of mismatches and indels compared to the ground truth.
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MAC target
# contigs largest length genomes N-rate mismatches indels
≥ 500bp contig N50 (%) (%) (%) (%) (%)

PredictHaplo-h-ref 5 9642 9642 0 99.2 0.259 0.615 0.104
PredictHaplo-b-ref 5 11000 11000 100 94.5 0.425 0.011 0.136
ShoRAH-h-ref 160 9581 9581 0 98.9 0.378 3.203 0.113
ShoRAH-b-ref 169 10854 10854 89.3 99.0 0.770 0.911 0.165
SAVAGE-de-novo 846 1221 588 0.1 92.6 0.183 0.161 0.040
SAVAGE-h-ref 848 1167 588 0.3 91.5 0.220 0.251 0.036
SAVAGE-b-ref 828 1226 595 0.1 92.2 0.162 0.101 0.040

SGA 60 1117 635 1.5 41.0 0 1.811 0.046
SOAPdenovo2 56 984 591 1.5 41.9 0 1.655 0.114
SPAdes 60 2952 591 1.2 42.6 0 1.154 0.097
metaSPAdes 27 4543 3266 0 53.7 0 2.045 0.100

Table 3: Assembly results per method on the HIV lab mix, a gold standard benchmark containing real se-
quencing data (20 000x coverage). For reference guided methods we present results using an established,
high quality reference genome (h-ref) as well as an ad-hoc, bootstrap reference genome (b-ref). All assem-
blies were evaluated on the following criteria: number of contigs ≥ 500 bp, length of the largest contig,
N50 statistic, MissAssembled Contigs (MAC) length relative to total contig length, percentage of the tar-
get genomes recovered, percentage of undetermined bases (N), and percentage of mismatches and indels
compared to the ground truth.

Figure 2: Target genome fraction recovered per strain for all 20 000x benchmarks, stratified by strain fre-
quency.
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contigs for each of the three modes: SAVAGE-h-ref with a high quality reference genome, SAVAGE-b-
ref with the genome assembled by VICUNA, and SAVAGE-de-novo (without reference). Remember that
all de novo assemblers, including SAVAGE, proceed by progressively assembling longer and longer contigs
starting from the raw reads, until finally, each output contig may (partially) cover the target genomes. Hence,
unlike for PredictHaplo and ShoRAH, the number of contigs cannot be interpreted directly as a number of
strains.

With a reference, the results of SAVAGE-h-ref and SAVAGE-b-ref are very similar: the contigs cover
more than 99% of the target genomes, with the largest contig length close to the genome size of the virus
in question. The mismatch, indel, and N rates are globally better than those offered by PredictHaplo and
ShoRAH: the indel and N rates are respectively one or two orders of magnitude lower. Above all, the contigs
are free of misassemblies (MAC length is 0%). Strikingly, providing a high quality reference genome or a
bootstrap genome makes little difference, and on some datasets SAVAGE with a bootstrap genome achieves
better results for certain statistics (higher N50, larger target genome fraction, lower mismatch rate for the
15-strain ZIKV mix in Table 2). These observations also hold on the lab mix (Table 3), where SAVAGE-ref
recovers 91.5–92.2% of the target genomes at a mismatch rate of 0.101–0.251% and very low indel rates.

On all benchmarks, SAVAGE-de-novo delivers an assembly that is qualitatively at least as good as the
SAVAGE-h-ref and -b-ref assemblies. Figure 2 shows that, in terms of target genome recovered, SAVAGE-
de-novo slightly but consistently outperforms SAVAGE-ref. More importantly, this figure shows that both
SAVAGE-de-novo and SAVAGE-b-ref greatly outperform all other methods, especially on low-frequency
strains (i.e., frequency < 10%).

To analyze the effect of read length on SAVAGE assembly performance, we also built a 5-strain HIV
mix with the exact same properties as given in Table 1, but with shorter reads (2x150 bp). We evaluated the
resulting maximally extended contigs for SAVAGE-de-novo, SAVAGE-h-ref, and SAVAGE-b-ref (Supple-
mental Table S3). Compared to the original 5-strain HIV mix, which has 2x250bp reads, SAVAGE produces
a more fragmented assembly but still covers 90.6–98.4% of the target genomes with mismatch rates between
0 and 0.006%.

Overall, SAVAGE can process samples containing a mixture of multiple strains and recover most of the
target genomes with a high level of sequence quality. It performs slightly better in de novo mode than with
a reference sequence and also performs well on shorter sequencing reads. Moreover, compared to existing
methods, our approach does not suffer from misassemblies. For SAVAGE-de-novo, the misassembled contig
(MAC) length is 0% on all simulated datasets and 0.1% on the lab mix, which drastically outperforms all
approaches that reach ≥ 90% genome coverage and operate without a high quality reference. Moreover,
SAVAGE can take advantage of a bootstrap reference sequence built by a single genome assembler. Finally,
SAVAGE offers contigs with improved mismatch and indel rates, especially on low-frequency strains.

Runtime and memory usage

We evaluate algorithm efficiency on both the 600x and the 20 000x simulated HIV mix, as well as the lab
mix. We report CPU time and maximum memory usage for all methods evaluated previously on each of
these HIV data sets in Supplemental Table S4. In terms of CPU time, SAVAGE-b-ref was considerably
faster than SAVAGE-de-novo, with 6.4 versus 19 minutes on the 600x HIV mix, 449 versus 5296 minutes
on the 20 000x HIV mix, and 850 versus 7495 minutes on the lab mix. This was to be expected, since
de novo overlap graph construction requires enumeration of all approximate suffix-prefix overlaps among
the reads. In comparison, PredictHaplo was faster but of the same order of magnitude as SAVAGE-b-ref
with 7, 223, and 158 minutes, respectively. ShoRAH was comparable to SAVAGE and PredictHaplo on the
600x HIV mix (12 min) but very slow on the 20 000x data (22256–32375 min). The de Bruijn graph-based
assemblers (SOAPdenovo2, SPAdes, and metaSPAdes) were very fast on all data sets, with a CPU time of
0.15–2 minutes on the 600x HIV mix, 5–46 minutes on the 20 000x HIV mix, and 6–166 minutes on the
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lab mix. The generic assembler SGA was considerably slower, with 24, 164, and 300 minutes, respectively.
Finally, with 54 minutes on the 600x data MLEHaplo was the slowest, which also points out why it could
not finish the 20 000x benchmarks.

Peak memory usage varied between 0.04 GB (PredictHaplo) and 8.4 GB (SPAdes/metaSPAdes) for the
600x HIV mix, between 0.5 GB (SGA) and 10 GB (ShoRAH) for the 20 000x HIV mix, and between 0.7 GB
(SGA) and 12 GB (ShoRAH) for the lab mix. Both SAVAGE-de-novo and SAVAGE-b-ref are on the lower
end of this scale, with 0.6/1.3 GB for the 600x HIV mix, 0.9/1.7 GB for the 20 000x HIV mix, and 1.1/3.0
GB for the lab mix, respectively. A complete comparison of runtime and memory usage for all methods is
presented in Supplemental Table S4.

Effect of strain divergence and relative abundance

Assembling the sequences of several strains from a viral sample may turn out more difficult depending on
both the level of strain divergence and on their relative abundance. After comparing SAVAGE to state-of-
the-art methods, we investigated the ranges of divergence levels and of relative abundances that SAVAGE
can properly handle, and examined the combined effect of these two parameters on the assembly quality. We
used a series of 36 benchmark datasets simulated from two HIV-1 strains: a combination of six divergence
levels (from .5 % until 10% of nucleotidic divergence) with six ratios of abundance (from 1:1 until 1:100).
We ran SAVAGE-de-novo and SAVAGE-b-ref (i.e., with VICUNA assembled genome). All assemblies
were evaluated with MetaQUAST, and Figure 3 reports the heatmaps of (A) the coverage fraction of the two
genomes, (B) the mismatch rate, and (C) the relative error on the frequency estimates of each strain.

Comparing the two modes of SAVAGE, de novo or with a bootstrap reference, we observe similar results
and a slight advantage to SAVAGE-de-novo in terms of genomes coverage. Altogether, SAVAGE obtains
quasispecies assemblies of very low mismatch rates for all divergence levels and all relative abundance ra-
tios, proving its ability to distinguish sequencing errors from true mutations. In general, the target genome
coverage is very high for relative abundance ratios starting from 1:1 until 1:10, at all divergence levels. As
the relative abundance of the minor strain decreases, it becomes more difficult to reconstruct the correspond-
ing sequence. An extreme relative abundance of 1:100 hinders SAVAGE to reconstruct both strains: genome
coverage values around 50% indicate that only one of the two strains has been assembled. We conclude that
SAVAGE performs well in both modes (de novo and reference-guided) for relative abundances above 1:50
and a wide range of divergence levels.

Capacity to estimate the frequency of each strain The problem of estimating relative frequencies of
the contigs assembled for a viral quasispecies is very similar to quantifying the abundances of bacterial
genomes from HTS data. Previous work (Bray et al. 2016) has shown that Kallisto can accurately tackle
the latter problem, so we applied this method to our virus contigs as well (see Methods). For the 36 syn-
thetic ‘divergence-vs-ratio’ benchmarks, we compared the estimated frequency of the minor strain in the
sample with the real frequencies. The rightmost panel of Figure 3 shows the relative difference between
the estimated frequency and the true frequency of the minor strain. This comparison was performed only
when the strains were almost fully assembled (exactly two strains of length ≥ 4000 bp), hence abundance
ratios of 1:50 and 1:100 were excluded. Of the remaining 24 datasets, 9–10 samples did not satisfy these
criteria; the corresponding entries are marked ‘-’ in the heatmaps. Since there are only two strains in the
sample, the absolute error is identical for both strains; however, the relative error will be much larger on
the low-frequency strain. Hence, we evaluate performance on the most difficult task, namely estimating the
frequency of the minor strain. In general, the relative estimation errors are very low: on average 1.65% for
the SAVAGE-de-novo contigs and 1.39% for the SAVAGE-b-ref contigs, with an overall minimum of 0% (a
perfect estimate) and a maximum of 5.34%.
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Figure 3: Performance of SAVAGE-de-novo and SAVAGE-b-ref, depending on pairwise distance and mix-
ture ratio. A. Target genome fraction recovered (%) considering all maximally extended contigs ≥ 500 bp.
B. Overall mismatch rate (%) considering all maximally extended contigs ≥ 500 bp. C. Relative error of
estimated frequency for the minor strain (%). Frequency estimates were computed using Kallisto and only
assemblies containing exactly two maximally extended contigs longer than 4000 bp were evaluated.
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Zika virus sample

To test SAVAGE-de-novo on real conditions, we ran it on a sample taken from a rhesus macaque infected
by an Asian lineage Zika virus (Dudley et al. 2016). The sequencing reads covered the full ZIKV reference
genome used (NCBI sequence KU681081.3) at an average coverage of 30 000x. Using a similar procedure
as for the real HIV data (lab mix), we split the reads into patches of approximately 750x each and pro-
ceeded with Stage a assembly on each patch (Supplemental Figure S1). Subsequently, we used the whole
collection of Stage a contigs together as input for Stage b, which yielded 148 maximally extended contigs
longer than 500 bp. A small fraction (4%) of these contigs could not be aligned to the reference genome,
but instead matched four human BAC clones (accession AC117500.13, AC002565.1, AC079754.4, and
AC015819.5) and one rhesus macaque BAC clone (accession AC190318.8) at > 90% sequence identity,
indicating contamination, so we removed them from further consideration. The remaining 142 contigs con-
tained 13 sequences longer than 1000 bp, the largest contig being 1874 bp long, and the N50 measure was
572 bp. The contigs covered the 10767 bp reference genome between positions 225–10767, the greatest
divergence occurring between positions 1700 and 4200.

In Stage c, we allowed up to 1% divergence between contigs in the overlap graph, thus assembling
representatives for groups of very closely related strains (see Methods). This resulted in 6 contigs of length
at least 500 bp, now called master contigs. The largest sequence was 4155 bp long and the N50 measure was
equal to 2065. Aligning the contigs to the reference genome reveals that the master contigs together form
two master strains: their sequences differed only by a one nucleotide deletion at position 4103 followed by
a SNP at position 4106 (see Supplemental Figure S2). Our frequency estimation procedure predicted the
haplotype harboring the deletion to be the minor haplotype with a frequency of 8.6%, compared to 91.4%
for the major haplotype. We hope that in the future, novel external data obtained by different means will
become available for this sample, allowing an in-depth validation of our two-strain quasispecies assembly.

Hepatitis C virus sample

Analogous to the ZIKV analysis above, we applied SAVAGE to a hepatitis C patient sample presented in
(Töpfer et al. 2014). This sample covers the NS5B region (positions 7602–9374), a gene encoding for the
RNA-dependent RNA polymerase, which is essential for viral replication. We found 839 contigs in Stage
b, with an N50 measure of 533 bp and the largest contig 839 bp long. Aligning the contigs to the HCV
reference genome (NCBI sequence NC 004102.1) reveals that the 9646 bp genome was covered between
positions 6128–9304, with a relatively constant amount of variation across the whole region. We observed
no contigs resulting from sample contamination (all contigs could be aligned to the reference sequence).

By allowing up to 1% divergence between contigs in the overlap graph in Stage c, we continued the
assembly. This led to 80 master contigs of length at least 500 bp, of which 5 were longer that 1000 bp.
The N50 measure was 535 and the largest sequence counted 1433 bp. Aligning the master contigs to the
reference genome shows that one of the master contigs contains a large deletion of 444 bp. This particular
sequence could not be aligned across the deletion; instead we found two clipped alignments for the contig,
one for the first 781 bases and one for the last 319 bases. Combining these two alignments, the contig covers
positions 7723–9267 the reference genome (nearly the entire NS5B gene), apart from a gap of 444 bases
starting at position 8504. The largest master contig spans almost the same region (positions 7923–9356),
but it does not show any deletions compared to the reference genome. We conclude that there is a 444 bp
deletion in the NS5B gene of only a part of the strains in the sample, in agreement with results from an
earlier study (Töpfer et al. 2014).

Compared to the previous sample (ZIKV), the current sample shows much more variation in both contigs
and master strains. A likely explanation for this is the large difference in numbers of days of infection
between the samples: 4 days for ZIKV versus 135 for HCV. To get an estimate on the number of master
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strains in the HCV sample, we built a conflict graph based on the alignments of the master contigs to the
reference genome. An edge in this graph reflects that two contigs disagree on at least one position of the
reference genome, hence any clique corresponds to a set of sequences all belonging to different strains. The
largest clique in this graph was of size 16, suggesting the existence of at least 16 different strains in the HCV
sample.

Discussion

Recent outbreaks of viral diseases, such as the Ebola or the Zika virus, have pointed out a pressing need for
methods to assess the genetic diversity of viral infections in a flexible manner, without strongly depending
on the quality of available reference genomes. Here, we have presented SAVAGE, the first method for de
novo assembly of viral quasispecies based on overlap graphs.

Viral genomes are characterized by high mutation and recombination rates. They are therefore often
extreme in terms of both ploidy and the low relative abundance of single haplotypes. In our experiments,
existing genome assemblers that do not depend on reference genomes were unable to reconstruct a viral
quasispecies completely, where the (often resistance-inducing) low-frequency strains could not be captured
sufficiently well. This has pointed out that only more specialized assemblers that can operate without de-
pending on a reference genome have the power to overcome the current limitations.

We have shown that SAVAGE has this power and thus provides answers to such currently pressing issues.
SAVAGE has performed very favorable—if not crucially advantageous—in comparison to a large collection
of state-of-the-art de novo assemblers and specialized (but reference-dependent) viral quasispecies assem-
blers. Thereby, it proved particularly beneficial when being compared to reference-free approaches in terms
of reconstructing strains of low frequency, which had been one of the essential goals of this study. Com-
parisons with existing reference-guided approaches pointed out that those yield contigs that are affected
by more sequencing errors in general. Moreover, they tend to become confused by reference genomes of
suboptimal quality, while SAVAGE behaves in a robust manner and can also make favorable use of such
suboptimal bootstrap (ad-hoc) reference genomes. Last but not least, our method significantly outperforms
the only available de novo viral quasispecies assembler (MLEHaplo) in terms of assembly quality, runtime,
and memory usage. In an overall account, SAVAGE has proven to bridge a significant gap in the spectrum
of viral quasispecies assembly approaches.

We believe that the central methodical reason for the benefits of our approach is the use of overlap graphs
as the underlying assembly paradigm. While assembling genomes of low ploidy usually works favorably
based on de Bruijn graphs, we have pointed out that using reads at their full length is key in assembling viral
quasispecies, where distinguishing between low-frequency mutations and sequencing errors is imperative.
The key insight is that (genetically linked) true mutations co-occur among different reads. Examining the
full read span decisively enhances the detection of patterns of co-occurrence. Beyond enabling the detection
of low-frequency strains, this also allows correction of sequencing errors in novel ways. We have pointed
this out by making integrative use of sound statistical sequence models in combination with an iterative
algorithmic scheme, which extends reads into contigs of increasing length and extremely low error content.

Key to reference free construction of overlap graphs has been the use of FM-index based techniques,
which has been novel in the context of the analysis of viral data. Moreover, we have demonstrated that
overlap graphs also seem to be the approach of choice when aiming to make use of ad-hoc consensus
reference genomes, such as provided by specialized tools that construct a single consensus sequence from
patient sample read data. Often, the resulting consensus sequence is of worse quality than a well-curated
reference sequence. This can substantially disturb approaches that rely on the underlying reference as a
sequence template (e.g. PredictHaplo, ShoRAH). Overlap graphs constructed by making use of reference
sequence coordinates provide a robust alternative, since they use the reference sequence only as a coordinate
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system for the determination of overlaps.
A few more things are noteworthy. First, the bootstrap reference approach SAVAGE-b-ref has proven

to outperform reference guided approaches in terms of the error rates of the contigs, even when they make
use of high-quality reference sequence, which further underlines the general use of overlap graphs. Second,
the target genome coverage of our full de novo approach SAVAGE-de-novo exceeded that of the high-
quality reference-guided approaches, which points out its ability to distinguish sequencing errors from true
mutations. Finally, SAVAGE-b-ref also depends on the quality of the reference sequence: the target genome
coverage is 13.6 points lower compared to SAVAGE-h-ref on the 10-strain HCV mix. This, of course,
had to be expected: if reference coordinates are too mistaken, overlaps cannot be detected. This last point
underscores that a full de novo approach can come with decisive extra advanatages.

Of course, there is still room for improvements. While substantially faster and more space efficient
than previous overlap graph based viral quasispecies assembly algorithms, SAVAGE has been particularly
tailored towards dividing deep coverage datasets into chunks of 500 to 1000x, and merging the contigs of
the chunks in subsequent steps, because this reflects its statistical calibration. While this works well, it
sets certain limits on the frequency of strains it can recover — haplotypes of frequencies below 1% remain
difficult to reconstruct. In future work, we will seek to lower these limits further by considering novel
strategies for computing cliques in overlap graphs. On the algorithmic side, we will also explore alternative
indexing techniques that allow for more relaxed definitions of overlaps and faster computation. Last but not
least, incorporating long read data into SAVAGE may help to reconstruct full-length genomes.

Methods

Overlap graph construction

We first provide a brief definition of an overlap graph and then sketch how to construct such graphs from
patient sample read data using indexes or reference genomes as two options.

Overlap graphs. For a collection R of sequencing reads (Stage a) or contigs (Stages b,c), both of which
are sequences over the alphabet of nucleotides {A,C,G,T,N} (which includes N as a common placeholder
for unknown nucleotides), the overlap graph G= (V,E) is a directed graph, where vertices v∈V correspond
to reads/contigs R ∈ R and directed edges connect reads/contigs R j,R j ∈ R whenever a suffix of Ri of
sufficient length matches a prefix of R j and QS(Ri,R j)≥ δ where QS : V ×V →R is a quality score that has
to exceed a certain threshold δ. For Stages a, b we make use of the statistical model presented in (Töpfer
et al. 2014), where QS(Ri,R j) ≥ δ reflects that the overlapping parts of reads Ri and R j present a locally
identical haplotypic sequence. Note that the statistical model includes a refined analysis of the (Phred-
scaled) error profiles that underlie Ri and R j so as to reflect that sequencing is an erroneous process and
hence to assess the identity of their overlapping parts on a sound statistical basis.

In Stage c, QS(Ri,R j) reflects the fact that the two contigs share only a limited amount of mismatches
in their overlaps, meaning that they did likely emerge from identical master strain sequences.

Paired-end reads. SAVAGE was designed for short reads (typically Illumina reads); after merging self-
overlapping pairs, the input in Stage a may contain paired-end reads and/or single-end reads. To make use
of the pairing information, we add another edge restriction by allowing only the overlap cases shown in
Figure 4. For overlaps involving a paired-end read, we require both read ends to have a sufficiently long
overlap (at least half of the minimum overlap length for single-end reads) as well as a sufficiently high
quality score.

Construction. Construction of overlap graphs always proceeds in two steps. First, pairs of reads (Ri,R j)
are determined that have a sufficiently long and well-matching overlap. Subsequently, QS is evaluated on
all pairs (Ri,R j). For Stages b and c, where the input is sufficiently small, the first step is implemented by
pairwise comparison of all contigs using BLAST (Altschul et al. 1990). The only difficulty is the first step in
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single - single single - paired paired - paired

Figure 4: Edge criteria. For an overlap to become an edge in the overlap graph, it must satisfy three criteria.
First, the overlap length l must be at least the minimal overlap length L. Second, the overlap quality score
QS(R1,R2) must be at least the minimal score δ. For overlaps involving paired-end reads, we require both
l1 ≥ L and l2 ≥ L, and, analogously, QS(R1a ,R2a)≥ δ and QS(R1b ,R2b)≥ δ. Finally, we only accept overlaps
where the sequence orientations of a paired-end read agree: either both sequences in forward orientation, or
both sequences in reverse orientation.

Stage a, where the input is very large (the original deep coverage data). This requires some sophistication;
we explore two options:

1. With a read index: We determine all sufficiently long overlaps between sequencing reads using FM-
index based techniques (Välimäki et al. 2012, SFO) such that overlaps contain at most 2% mismatches
(accounting for up to 1% sequencing errors in each of the reads). This method, however, only works
on single-end reads, so we first ignore the paired-end relations and consider each of the sequences as a
single-end read. Then, after listing all pairwise overlaps with SFO, we reconsider the pairing information,
outputting only overlaps that are supported by both read ends as described above.

2. With a reference genome: We align all reads against a reference genome; here we may use an ad-hoc
consensus genome obtained by running an assembly tool on the sample reads. With all read alignments in
hands, it is then computationally straightforward to determine all sufficiently long and sufficiently matching
overlaps pairs.

Read orientations. When merging multiple reads into one consensus sequence, it is important that
the reads agree on their respective orientations. Therefore, we apply a read orientation routine that assigns
a label (+/−) to every read, indicating the orientation in which its sequence should be considered. This
routine starts by setting the orientation of a node of minimal in-degree to +, then recursively labels all
out-neighbors as defined by the corresponding edges (Figure 5, panel A). When there is no perfect labeling
possible, meaning that there are conflicts among the read orientations due to inversions, we heuristically
search for an orientation that leads to a minimal amount of conflicts among the reads.

Overlap graph based assembly

In all stages, our algorithm proceeds as an iterative procedure where contigs grow with the iterations. The
final contigs (in particular the output of Stage b, or, optionally, Stage c) can substantially exceed the length
of the original reads. As our analyses demonstrate, these contigs present haplotype specific sequences with
high accuracy.

Cliques and contigs. The main idea of our algorithm is to compute cliques in the overlap graph. A
clique is a subset of the nodes such that each pair of nodes is linked by an edge. By definition of the edges, a
clique groups reads that stem from identical haplotypes. Within a clique, reads/contigs share (possibly low-
frequency) true mutations while sequencing errors are not shared by the majority of reads (Figure 1, Panel
B). Hence, cliques can be used to clearly distinguish between true mutations and sequencing errors. This
further allows us to correct these errors by transforming cliques into contigs that represent an error-corrected
consensus sequence of the reads in the clique.
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Transitive edge removal. The number of maximal cliques in an overlap graph grows exponentially
with the number of nodes in the graph, that is here, with the read coverage of the dataset giving rise to the
overlap graph. While our method relies on cliques for the purpose of error correction, the size of the cliques
does not have to exceed a certain threshold for that goal.

A common approach to reduce the complexity of an overlap graph is to remove transitive edges (see e.g.
(Simpson and Durbin 2012)). An edge u→ w is called transitive if there exist a vertex v and edges u→ v,
v→ w. We call an edge u→ w double transitive if there exists a vertex v and transitive edges u→ v, v→ w,
illustrated in Figure 5, panel B. Note that, by definition, any double transitive edge is also single transitive.
We found that removing double transitive edges bounds the size of the cliques to 4, thus decisively limiting
the number of maximal cliques and allowing efficient maximal clique enumeration, while still allowing for
safely distinguishing errors from true mutations.

To find all double transitive edges, we first remove all non-transitive edges from the overlap graph to
obtain the transitive graph G′. This can be done efficiently by computing the inner product of a−u and a+v for
all pairs (u,v) ∈ V ×V , where a−u (resp. a+v ) is the adjacency vector of outgoing (resp. incoming) edges of
u (resp. v). Applying this procedure to G we obtain G′, and to find all double transitive edges we apply the
same procedure to G′.

In the first iteration of Stage a, we remove all double transitive edges from the overlap graph. This
reduces the number of contigs obtained in this iteration by an order of magnitude, leading to a decrease in
CPU time and memory usage of even two orders of magnitude (Supplemental Table S5). In later iterations
our algorithm no longer depends on clique formation because the reads (contigs) are assumed to be already
of high quality. This allows us to remove not only double but also single transitive edges.

Read clustering. In the first iteration of Stage a, we cluster reads by enumerating maximal cliques in
the overlap graph. After double transitive edge removal in an acyclic graph, the maximum clique size is 4,
as illustrated in Figure 5, Panel B: a clique of size 5 will always use a double transitive edge. In practice, our
overlap graphs are nearly acyclic and all cliques are of size at most 4. This implies that the total number of
cliques is polynomial in the number of nodes, hence we can efficiently enumerate all maximal cliques; we
use the degeneracy algorithm presented in (Eppstein et al. 2010) to do so. For the error correction algorithm
to function optimally, we solely consider cliques of size 4 in this iteration.

In later iterations, after removing all single transitive edges, we merge pairs of contigs into new (ex-
tended) contigs. This does not require clique enumeration of any kind. See Figure 5, panel C for an illus-
tration of the two read clustering techniques. In case of conserved regions among multiple strains, there can
be branches in the overlap graph. In such situations it is often impossible to connect the variants left and
right of the conserved region, hence we do not merge any pair of contigs connected by a branching edge
(Supplemental Figure S3).

Contig formation and error correction. As outlined above, we transform all reads/contigs within a
cluster (a clique or a pair of contigs) into a consensus sequence. It is important to determine the consen-
sus very carefully, because the original sequencing reads may contain up to 1% sequencing errors. Every
consensus base is determined by a position-wise weighted majority vote, where the weights correspond to
the respective base quality scores, as described in (Töpfer et al. 2014) and Supplemental Methods. This
procedure was designed to correct for all putative sequencing errors showing among members of a clique,
which is especially relevant in the first iteration of stage a (the error correction step). In this specific itera-
tion, therefore, we require cliques of size at least 4; it is then highly unlikely that all the reads in a clique
will agree on a sequencing error. We remove the extremities of the resulting contig where the support of the
clique is less than 4 (Figure 5, panel D). Reads that are not contained in any size 4 clique are discarded after
this iteration.

Graph updating. The newly constructed contigs become the nodes of the updated overlap graph and
we need to determine the edges between those nodes. In other words, we need to find all pairs of contigs
satisfying our overlap criteria. In Stage a, we examine all pairs of contigs that share an original read. This
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Figure 5: Algorithmic details. A. Read orientations: Given an edge u→ v with orientations (−,+). Then
if u is labelled +, the induced label for v is −, while if u is labelled − the induced label for v is +. This
procedure leads to a vertex labeling in O(V ) time. B. Transitive edges: An edge u→ w is called single
transitive (resp. double transitive), shown in green (resp. red), if there exists a vertex v and edges (resp.
transitive edges) u→ v, v→w. C. Read clustering by cliques (top) or by pairs (bottom). D. Error correction:
when a consensus sequence is constructed from a cluster of reads, the extremities are removed.

approach is very efficient, but risks ignoring overlaps of contigs that do not share an original read. In Stages
b and c the graph is sparse enough, such that we can update the edges by considering all induced overlaps.
This means that for every edge u→ v in the graph before updating, we consider every overlap u′→ v′ for
all u′ ∈ Su,v′ ∈ Sv, where Su,Sv are the sets of all newly constructed contigs containing u, v, respectively. In
addition, we also reconsider all overlaps that were not included as an edge in the graph before updating due
to an insufficient overlap quality score.

Iteration. The key idea of the SAVAGE assembly algorithm now is to repeatedly apply this twofold
procedure of clique enumeration (Stage a) or merging pairs (Stages b and c) and contig formation. Thereby,
all contigs of iteration i≥ 1 become nodes in the overlap graph of iteration i+1, which results in an overlap
graph to be processed in iteration i+1. We repeat this procedure until there are no more edges in the overlap
graph. Key to success is that contigs are constantly growing along the iterations, and, upon convergence,
greatly exceed the length of the original reads. An example of the progression of contig lengths during the
three stages of the algorithm is given in Supplemental Table S6.

Parameter settings

There are three parameters to be set, namely, the overlap score threshold δ, the mismatch rate mr allowed
in the overlaps, and the minimal overlap length L. To analyze the behaviour of the overlap score function,
we simulated 2x250 bp Illumina MiSeq reads from different genomes, diverging between 1% and 10%.
We computed all overlaps among those reads and classified them by the number of true mutations in the
overlap (not counting mismatches that are due to sequencing errors). This resulted in distributions Pi, i≥ 0,
representing the overlap scores found in case of i true mutations (Supplemental Figure S4), from which we
concluded that δ = 0.97 is the optimal choice. To be more conservative, this threshold can be raised, but this
comes at the cost of a decrease in the target genome coverage.

The mismatch rate parameter allows overlaps having a sufficiently high overlap score to become edges
in the overlap graph if the mismatch rate is sufficiently low. By default, this parameter is set to 0, meaning
that we only rely on the overlap score for constructing the overlap graph. When assembling master strains,

18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2017. ; https://doi.org/10.1101/080341doi: bioRxiv preprint 

https://doi.org/10.1101/080341
http://creativecommons.org/licenses/by-nd/4.0/


however, the allowed mismatch rate was set to 0.01, so that strains diverging by less than 1% were merged
into a consensus sequence.

Finally, the setting of the minimal overlap length parameter depends on the average read coverage and
sequencing depth. Increasing the minimal overlap length results in a faster algorithm and lower error rate,
because the overlap graph will be very much restricted. But this achievement comes with a potential loss of
low-frequency strains, since the corresponding reads may not have sufficiently long overlaps. In general, we
found a minimal overlap length of 50–70% of the total read length to work well. The exact command lines
and parameter settings used for all experiments can be found in Supplemental Methods.

Frequency estimation

We apply Kallisto (Bray et al. 2016) to estimate relative frequencies of the contigs assembled for a viral
quasispecies. Kallisto was designed for quantifying the abundances of bacterial genomes from HTS data,
which is similar in spirit to estimating frequencies for viral quasispecies assembly. The Kallisto algorithm
takes as input the original sequencing reads along with the contigs, and returns for every contig a so called
TPM (Transcripts Per Million). This number estimates the amount of sequencing reads corresponding to
this contig for every one million reads considered, and it is independent of the contig length. We translate
these counts to relative frequencies by dividing each TPM by the sum of TPMs of all contigs evaluated. For
the heatmaps in Figure 3, panel C, we only evaluated the two contigs of at least 4000 bp.

Other methods used for evaluation

For benchmarking, we compared SAVAGE against the state-of-the-art approaches ShoRAH (Zagordi et al.
2011) and PredictHaplo (Prabhakaran et al. 2014). Both methods were run with default parameter settings,
after aligning the reads to the reference genome using BWA-MEM (Li 2013). The de novo assembler
MLEHaplo (Malhotra et al. 2016b) required the reads to be error corrected first, for which we used MultiRes
(Malhotra et al. 2016a) with default settings (recommended by the authors). Unfortunately, we could not
compare against VGA (Mangul et al. 2014) and HaploClique (Töpfer et al. 2014) because these software
packages were no longer maintained.

Data simulations

To evaluate performance of SAVAGE, we designed several simulated data sets. We used the software SimSeq
(https://github.com/jstjohn/SimSeq) to simulate Illumina MiSeq reads from the genome of interest.
In order to obtain reads similar to the real 5-virus-mix data, we simulated 2x250 bp paired-end reads, with
a fragment size of 450 bp and the MiSeq error profile provided with the software. In addition, we also
simulated a 5-strain HIV mix with shorter reads (2x150 bp). The genomes used for each data set are listed
in the Supplemental Methods.

Read trimming and merging

Before running any of the methods, the raw Illumina reads were trimmed using CutAdapt (Martin 2011).
Next, we applied PEAR (Zhang et al. 2014) for merging self-overlapping read pairs. This resulted in a final
read set containing both single-end and paired-end reads, on which we ran SAVAGE. For the other methods
(MLEHaplo, PredictHaplo, ShoRAH, and VICUNA) we used the trimmed reads without merging, since
neither of these methods accepts a combination of single- and paired-end reads. In addition, MLEHaplo
required an error correction step on the input reads which was performed using MultiRes (Malhotra et al.
2016a).
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MetaQUAST evaluation

We use MetaQUAST (Mikheenko et al. 2016) for quality evaluation of the assembled contigs, which
evaluates the contigs against each of the true viral genomes. By default, MetaQUAST uses the option
--ambiguity-usage all, which means that all possible alignments of a contig are taken into account.
However, the genomes in a viral quasispecies can be so similar that a contig may align to multiple strains,
even though it only matches one haplotype. Therefore, we manually changed this option to --ambiguity-usage
one, such that for every contig only the best alignment is used. Contigs shorter than 500 bp were ignored
during evaluation.

Data and software availability

A C++ implementation of SAVAGE is available for public use at https://bitbucket.org/jbaaijens/
savage. The lab mix used for experiments can be downloaded from https://github.com/cbg-ethz/
5-virus-mix and both the ZIKV and HCV data are available in the NCBI Sequence Read Archive under
experiment SRX1678783 (run SRR3332513) and experiment SRX396803 (run SRR1056035), respectively.
All simulated data sets can be downloaded from https://bitbucket.org/jbaaijens/savage-benchmarks.
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