1	Kinetics and identities of extracellular peptidases in subsurface sediments of the White
2	Oak River Estuary, NC
3	
4	Running title: Extracellular enzymes in subsurface sediments
5	
6	Andrew D. Steen ^{a,#} , Richard T. Kevorkian ^b , Jordan T. Bird ^b , Nina Dombrowski ^c , Brett J.
7	Baker ^c , Shane M. Hagen ^a , Katherine H. Mulligan ^{a,d} , Jenna M. Schmidt ^a ,
8	Austen T. Webber ^a , Marc J. Alperin ^e
9	
10	^a Department of Earth and Planetary Sciences, University of Tennessee, Knoxville,
11	Tennessee, USA
12	^b Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
13	^c Department of Marine Science, University of Texas-Austin, Marine Science Institute,
14	Port Aransas, Texas, USA
15	^d Department of Biology, University of North Carolina at Chapel Hill, Knoxville,
16	Tennessee, USA
17	^e Department of Marine Sciences, University of North Carolina at Chapel Hill, USA
18	
19	#Corresponding author. email: asteen1@utk.edu
20	mail: Strong Hall 601, 1621 Cumberland Avenue, Knoxville, TN 37996-1410
21	tel: (865) 974-4014, fax: (865) 974 2638
	1

22 Abstract

23	Anoxic subsurface sediments contain communities of heterotrophic
24	microorganisms that oxidize organic carbon at extraordinarily slow rates. In order to
25	assess the mechanisms by which subsurface microorganisms access detrital sedimentary
26	organic matter, we measured kinetics of a range of extracellular peptidases in anoxic
27	sediments of the White Oak River estuary, NC. Nine distinct peptidase substrates were
28	enzymatically hydrolyzed at all depths. Potential peptidase activities (V_{max}) decreased
29	with increasing sediment depth, although V_{max} expressed on a per cell basis was
30	approximately the same at all depths. Half-saturation constants (K_m) decreased with
31	depth, indicating that subsurface enzymes are adapted to low substrate concentrations.
32	Potential activities of extracellular peptidases acting on molecules that are enriched in
33	degraded organic matter (D-phenylalanine and L-ornithine) increased relative to enzymes
34	that act on L-phenylalanine, further suggesting microbial community adaptation to access
35	degraded organic matter. Nineteen classes of exported peptidases were identified in
36	genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases
37	represented more than 40% at each depth. Methionine aminopeptidases, zinc
38	carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded
39	DNA repair, were also abundant. These results suggest a subsurface heterotrophic
40	microbial community that primarily accesses low-quality detrital organic matter via a
41	diverse suite of well-adapted extracellular enzymes.
42	

43

44 IMPORTANCE

45	Burial of organic carbon in marine and estuarine sediments represents a long-term
46	sink for atmospheric carbon dioxide. Globally, ~40% of organic carbon burial occurs in
47	anoxic estuaries and deltaic systems. However, the ultimate controls on the amount of
48	organic matter that is buried in sediments, versus oxidized into CO ₂ , are poorly
49	constrained. Here we used a combination of enzyme assays and metagenomic analysis to
50	identify how subsurface microbial communities catalyze the first step of proteinaceous
51	organic carbon degradation. Our results show that microbial communities in deeper
52	sediments are adapted to access molecules characteristic of degraded organic matter,
53	suggesting that those heterotrophs are adapted to life in the subsurface.

55 Introduction

56	A large fraction of the microorganisms in subsurface sediments are heterotrophs
57	that metabolize aged, microbially altered organic matter (Lomstein et al., 2009;
58	Jørgensen and Marshall, 2016; Biddle et al., 2006). These communities' metabolisms can
59	be more than a million-fold more slower than cells in culture (Hoehler and Jørgensen,
60	2013; Lomstein et al., 2009). A recent meta-analysis showed that only about 12% of cells
61	in marine sediments belonged to cultured species, while 27% belong to phyla that contain
62	no cultured representatives (Lloyd et al., 2018). Consequently, the mechanisms by which
63	these microorganisms access detrital organic matter are poorly understood.
64	In surface environments, where carbon transformations are relatively rapid,
65	heterotrophic microorganisms gain energy by metabolizing a combination of small
66	molecules (<600-1000 Da), which can be taken up directly via general uptake porins
67	(Benz and Bauer, 1988) and macromolecules, which must be broken down outside of the
68	cell by extracellular enzymes. Most freshly-produced organic matter is macromolecular,
69	and large molecules tend to be more bioavailable than small ones (Benner and Amon,
70	2015), so the nature and activity of extracellular enzymes present in surface environments
71	is a major control on the rate of microbial carbon oxidation in such environments.
72	It is not clear whether microbial extracellular enzymes play the same role in
73	subsurface sediments. It is conceivable that macromolecules are broken down primarily
74	by non-enzymatic mechanisms in sediments. For instance, in soils, MnO ₄ catalyzes the
75	depolymerization of proteins without requiring enzymes. Certain bacterial species can
76	use TonB-dependant transporters to transport polysaccharides that are substantially larger
	4

77	than 600 Da into the periplasm (although enzymatic hydrolysis is still required prior to
78	uptake into the cytoplasm; Reintjes et al., 2017). Furthermore, some of the unique aspects
79	of subsurface sediments suggest that extracellular enzymes might not be an effective
80	strategy to obtain carbon or energy. In order for the production of extracellular enzymes
81	to be part of a viable metabolic strategy, each enzyme must, over its lifetime, provide the
82	cell with at least as much carbon or energy as was required to synthesize the enzyme
83	(Vetter et al., 1998; Allison, 2005; Schimel and Weintraub, 2003). In subsurface
84	sediments, where cell division times may be on the order of decades to millenia, enzyme
85	lifetimes would need to be correspondingly longer to remain 'profitable'. Since enzyme
86	lifetimes are finite, there must exist a community metabolic rate below which
87	extracellular enzyme lifetimes are too short to become profitable. That limit is difficult to
88	quantify because enzyme lifetimes in any environment are poorly constrained (e.g., Steen
89	and Arnosti, 2011). Thus, it is plausible that extracellular enzyme-mediated carbon
90	acquisition is impractical in sediments in which metabolic rates are particularly slow.
91	While extracellular enzyme activity in surface sediments has frequently been
92	reported, few reports exist of extracellular enzyme activity from deeper than 20 cm below
93	the seafloor (cmbsf) (Arnosti et al., 2014). Enzyme activity has been reported in
94	sapropels up to 389 cmbsf in sapropels in the Eastern Mediterranean Sea (Coolen and
95	Overmann, 2000; Coolen et al., 2002) and in sediment from 600-630 cmbsf in Aarhus
96	Bay sediments (Lloyd et al., 2013a), as well as in a few other subsurface environments,
97	such as the interior of seafloor basalts at the Loihi seamount (Jacobson Meyers et al.,
98	2014). Furthermore, an analysis of transcriptomes from subsurface sediments of the Peru

99	Margin revealed diverse exported peptidases and carbohydrate-active enzymes, which
100	decreased in relative abundance with increasing depth (Orsi et al., 2018).
101	In order to better understand how heterotrophic microorganisms in subsurface
102	sediments access organic matter, we assayed a diverse set of peptidases (protein-
103	degrading enzymes) in sediment cores from the White Oak River estuary, NC. We paired
104	these assays with analysis of the potential for extracellular peptidase production from
105	existing metagenomic data sets. We chose this site because the porewater geochemistry
106	and microbiology of these sediments has been well-characterized (Martens and
107	Goldhaber, 1978; Kelley et al., 1990; Baker et al., 2015; Lazar et al., 2016; Lloyd et al.,
108	2011) and because they contain abundant Bathyarchaeota and Thermoprofundales
109	archaea, which appear to be capable of metabolizing detrital organic matter (Kubo et al.,
110	2012; Lloyd et al., 2013a; Meng et al., 2014; Zhou et al., 2018b). We focused on
111	peptidases because protein degradation appears to be an important metabolism for some
112	subsurface archaea (Lloyd et al., 2013a) and because peptidases were more active than
113	other enzymes in similar environments (Coolen and Overmann, 2000; Jacobson Meyers
114	et al., 2014). Because environmental samples contain a wide range of distinct peptidases
115	at variable activities (Obayashi and Suzuki, 2005; Steen and Arnosti, 2013) we measured

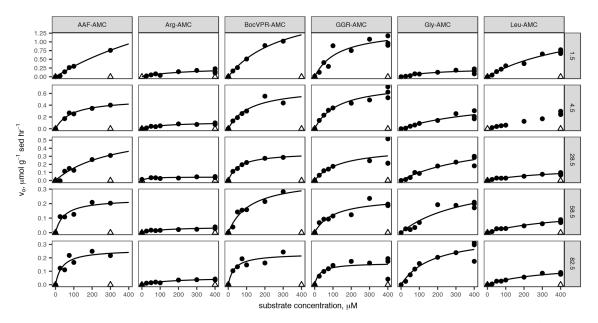


Figure 1: Saturation curves for six substrates measured using the single-cuvette reader methodology at each of six depths. Dark circles indicate "live" samples, open triangles indicate autoclaved controls. Dark lines indicate nonlinear least-squares fits to the Michaelis-Menten rate law. Substrate abbreviations are given in the column headings and are defined in Table 1. Sediment depths are listed on row headings in centimeters below sediment-water interface.

- the hydrolysis of eleven different substrates, which may be hydrolyzed by structurally
- 117 and genetically diverse extracellular peptidases.

118 **Results**

119 PEPTIDASE KINETICS

120 Combining data from all three sampling dates, unambiguous hydrolysis of eleven

121 different peptidase substrates was observed. All peptidase substrates assayed with the

- 122 more-sensitive single-cuvette methodology were hydrolyzed much faster in untreated
- sediments than in autoclaved controls. Kinetics of substrate hydrolysis were qualitatively

124 consistent with the Michaelis-Menten rate law,
$$v_0 = \frac{V_{max} \times [S]}{K_m + [S]}$$
 (Fig 1). Estimated V_{max}

125 values ranged from 40 to 3400 nmol g^{-1} sediment hr⁻¹ (median 310, interquartile range

- 126 190 to 560 nmol g⁻¹ sediment hr⁻¹). Throughout the core, AAF-AMC, GGR-AMC, and
- 127 Gly-AMC were hydrolyzed the fastest, and Arg-AMC was hydrolyzed slowest (Fig S1).
- 128 Summed V_{max} values decreased with depth from 9.09 µmol AMC g⁻¹ sed hr⁻¹ at the
- surface to 1.24 μ mol AMC g⁻¹ sed hr⁻¹, or 13% of the surface value, at 82.5 cmbsf.
- 130 Estimated K_m values ranged from 36.1 μ M to 1310 μ M (median 138 μ M, interquartile
- 131 range 102 to 326 μ M), and trended downward (i.e., to greater substrate affinity) with
- 132 increasing depth (Fig 2). *K_m* values for hydrolysis of Leu-AMC were the greatest (i.e.,
- 133 lowest substrate affinity) while *K_m* values for hydrolysis of BocVPR-AMC, GGR-AMC,
- 134 and Arg-AMC were the least.

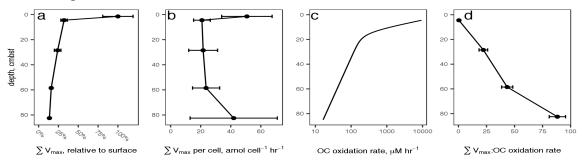
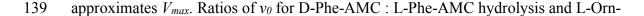
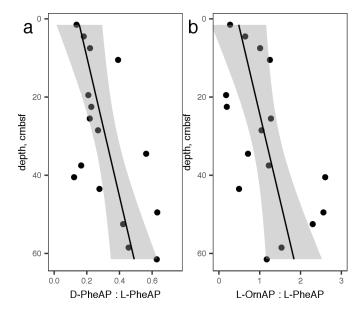



Figure 2: A: The sum of all peptidase V_{max} values, relative to the value at 4.5 cm, versus sediment depth. Error bars represent propagated error of the estimate of V_{max} for each substrate. B: Summed V_{max} relative to cell count. Error bars represent propagated error from summed Vmax and cell counts, and is dominated by cell count uncertainty. C: Organic carbon oxidation rates modeled from sulfate and methane profiles. D: Summed V_{max} relative to modeled carbon oxidation rates. Error bars represent error in summed V_{max} relative to organic carbon oxidation rates, for which uncertainty was not modeled.

135 In a separate core, hydrolysis rates of D-Phe-AMC, L-Phe-AMC, and L-Orn-

- 136 AMC were assessed. These were measured using a plate-reader technique that proved
- 137 insufficiently precise to accurately measure V_{max} or K_m , so we have only reported v_0 ,
- 138 which was measured at a high substrate concentration (400 μ M) and therefore

140 AMC : L-Phe-AMC hydrolysis rates increased approximately linearly downcore (Fig 3).


141 MICROBIAL ABUNDANCE, CELL-SPECIFIC PEPTIDASE ACTIVITY, AND ORGANIC

142 CARBON OXIDATION RATES

143 Concordantly with potential activities, cell counts decreased more-or-less steadily 144 downcore from 4.5×10^8 cells ml⁻¹ wet sediment at 1.5 cmbsf to 7.4×10^7 cells ml⁻¹ wet 145 sediment at 82.5 cmbsf. Consequently, cell-specific total potential peptidase activity was 146 roughly constant at 32 +/- 14 amol AMC cell⁻¹ hr⁻¹ (Fig 2b) with no significant trend as a 147 function of depth. Most of the error in cell-specific peptidase activities results from 148 variance in cell counts rather than in V_{max} estimations.

149 Organic carbon oxidation rates were estimated using a 2-G model driven by

150 porewater methane and sulfate concentrations. The total organic carbon oxidation rate at

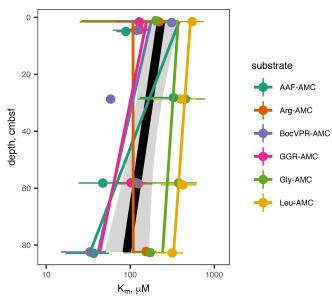

82.5 cmbsf was approximately 0.17% relative to that at 4.5 cmbsf (the top of the model domain), a decrease of almost 3 orders of magnitude (Fig 2c). Thus, summed V_{max} relative to G increased more than 200-fold in the deepest sediments relative to surface sediments.

Figure 3: a.) Ratio of v_0 for D-phenylalanine aminopeptidase: Lphenylalanine aminopeptidase and b.) L-ornithine aminopeptidase : L-phenylalanine aminopeptidase.

160 **PEPTIDASE GENES**

161

Samples for genomic analysis were taken from three broad sedimentary zones: the 162 sulfate reduction zone (SRZ, 8-12 cmbsf), sulfate-methane transition zone (SMTZ, two

Figure 4: K_m values of extracellular peptidases as a function of depth. Details of substrates and the peptidases they correspond to are in Table 1.

distinct samples from nearby locations, 24-32 cmbsf and 26-30 cmbsf), and the methane-rich zone (52-54 cmbsf; data originally published in Baker et al., 2015). A total of 3739 genes encoding extracellular peptidases were identified among metagenomes from the three depth zones examined, including 685 from SRZ, 1994 from SMTZ, and 1060 from MRZ. Of the genes encoding for

173 peptidases, 0-71% (depending on class of peptidase, algorithm and sediment depth) 174 contained a signal peptide and are likely secreted by the SEC-dependent transport system 175 (supplementary data). Among the genes associated with signal peptides, members of 176 peptidase family C25, belonging to the gingipain family, were by far the most abundant 177 at all depths, accounting for 41-45% of all SP-associated peptidases (Fig. 4). Genes 178 annotated as encoding extracellular methionine aminopeptidases and zinc 179 carboxypeptidases were also abundant (13%-19%). Together, these peptidase classes 180 accounted for 73%, 76%, and 73% of exported peptidases in the SRZ, SMTZ, and MRZ 181 respectively. The composition of protein families was generally consistent with depth,

particularly among the more-abundant peptidases. Five peptidase annotations were an
exception to this trend: peptidase family M1, peptidase family M20/M25/M40, peptidase
family M3, M61 glycyl aminopeptidase, and thermophilic metalloprotease (M29) were
found in much lower abundance at the SMTZ than the MRZ or SRZ. Given that those
correspond to differences of one or a few total reads, these are well within the range of
noise.

188 Discussion

189 IDENTITIES OF EXTRACELLULAR PEPTIDASES PRESENT IN WHITE OAK RIVER190 ESTUARY SEDIMENTS

191

Kinetics of fluorogenic substrate hydrolysis was consistent with the Michaelis-

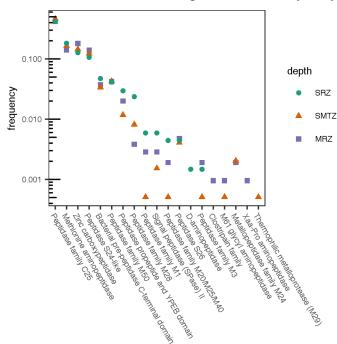


Figure 5: Exported peptidases identified in WOR sediments. Depths SRZ, SMTZ, and MRZ correspond to the sulfate-reducing zone (8-12 cmbsf), sulfate-methane transition zone (24-32 cmbsf) and methane-rich zone (52-54 cmbsf), respectively.

Menten rate law and hydrolysis rates
were dramatically slower in
autoclaved controls than in "live"
treatments, indicating that the
substrates were hydrolyzed by
enzymes rather than by abiotic
factors. The enzyme substrates used
here encompassed a diverse range of
amino acid and peptide chemistries,
including polar and non-polar R
groups at the P1 site (i.e., the amino

203	acid N-terminal to the scissile bond) and substrates with and without steric protecting
204	groups, which must have been hydrolyzed by endopeptidases (which cleave proteins from
205	within) and aminopeptidases (which cleave proteins from the N terminus) respectively.
206	Peptide bonds adjacent to a diverse set of amino acid residues were cleaved, including
207	glycine (the smallest amino acid), phenylalanine (among the largest amino acids),
208	arginine (positively charged at porewater pH) and leucine (uncharged, hydrophobic),
209	consistent with the presence of a diverse range of extracellular peptidases throughout the
210	core.
211	The metagenomic results also indicated the potential for a diverse range of
212	secreted peptidases, produced by a broad range of taxa, throughout the sediment column.
213	The metagenomic results represent a minimum estimate for the genomic potential for
214	extracellular peptidase production, because they rely on the assumption that only those
215	peptidases associated with signal peptides (SPs) are secreted. Non-SP-based enzyme
216	secretion pathways may also contribute to the pool of extracellular enzymes, including
217	Sec-independent secretion systems (Bendtsen et al., 2005) and release of internal
218	enzymes into the extracellular medium by viral lysis (Danovaro et al., 2008; Breitbart et
219	<i>al.</i> , 2004).
220	The dominance of genes for exported gingipain-like endopeptidases (class C25) at

The dominance of genes for exported gingipain-like endopeptidases (class C25) at all depths is consistent with rapid hydrolysis rates of fluorogenic substrates for endopeptidases. Gingipains are endopeptidases with preference for arginine at the P1 position (i.e., the N-terminal side of the hydrolyzed bond), which would be active towards the substrates GGR-AMC and Boc-VPR-AMC. Those were among the fastest-

225	hydrolyzed substrates at each depth (Fig. 1), indicating that genes for C25 peptidases
226	were likely expressed. Previously, gingipains have been identified in Thermoprofundales
227	(formerly Marine Benthic Group D) and in Bathyarchaeota, and appear to be widespread
228	in marine sediments (Zhou et al., 2018a; Lloyd et al., 2013b; Orsi et al., 2018). The M28
229	family, also among the most abundant annotations, contains a diverse range of
230	aminopeptidases and carboxypeptidases including leucine aminopeptidase, consistent
231	with the observed hydrolysis of Leu-AMC (Rawlings et al., 2018). Genes for D-
232	aminopeptidases genes were observed, consistent with hydrolysis of D-Phe-AMC.
233	Other abundant genes were annotated as methionine aminopeptidase, zinc
234	carboxypeptidase, a C-terminal domain from bacterial pre-peptidases, and peptidases
235	from the MEROPS families M24, S24, M50, and M28. Potential activities of these
236	peptidases were not assayed. Zinc carboxypeptidases (M20) cleave enzymes from the
237	carboxy-terminus and have strong specificity for Gly at the P1 position (i.e., the position
238	C-terminal to the scissile bond), but little preference for the residue at the P1' position
239	(the position C-terminal to the scissile bond; in a carboxypeptidase this would be the C-
240	terminus of the protein). Methioine aminopeptidases (M24) are metallopeptidases with
241	preference for glycine at the P1 position.
242	S24 and M50 peptidases are less likely to be directly relevant to organic matter
243	processing. S24 peptidases are involved in the SOS response for single-stranded DNA
244	repair (Rawlings et al., 2018). M50 peptidases are membrane-bound enzymes that act as

sporulation factors in Bacillus subtilis, and possibly other Bacteria (Green and Cutting,

246 2000; Feng et al., 2007), and which are not secreted. However, DNA repair (Orsi et al.,

247 2013; Bird *et al.*) and spore formation (O'Sullivan *et al.*, 2015; Lomstein *et al.*, 2012)
248 both appear to be important survival mechanisms for microorganisms in subsurface
249 sediments. The bacterial C-terminal pre-peptidase domain is often found in secreted
250 peptidases, but is removed prior the peptidase becoming active, and could be associated
251 with a wide range of peptidases (Yeats *et al.*, 2003).

252 Each of these annotations is plausible in terms of what is known about peptidase activities in sediments, and the annotations and observed activities generally agreed with 253 254 each other. We did not assay for carboxypeptidases (e.g. MEROPS family M20) or 255 methionine aminopeptidase, but carboxypeptidases have previously been observed to be 256 active in estuarine sediments (Pantoja et al., 1997) and the generally broad substrate 257 specificities of extracellular aminopeptidases suggests that methionine aminopeptidases 258 could have contributed to the hydrolysis of the other aminopeptidase substrates (Steen et 259 al., 2015). However, a note of caution is also warranted when interpreting peptidase 260 annotations from deeply branching microorganisms: the high diversity of hydrolases 261 makes precise annotations difficult, and the exact substrate specificities of the peptidases 262 in these samples may differ somewhat from those inferred from the annotations 263 (Michalska *et al.*, 2015). Thus, while these annotations are environmentally plausible and 264 generally consistent with the fluorogenic enzyme assays, they should nevertheless be 265 viewed with some skepticism.

266 PEPTIDASE KINETICS SUGGEST ADAPTAION OF SUBSURFACE PEPTIDASES TO

267 DEGRADED ORGANIC MATTER

268 Heterotrophic microorganisms in subsurface sediments have little access to fresh 269 organic matter. In the cores described here, which represented ~ 275 years of sediment 270 deposition, organic matter reactivity decreased by at least three orders of magnitude 271 between the surface and 82.5 cmbsf (Fig 2c). It is challenging to determine what fraction 272 of high- vs low-molecular weight organic matter subsurface microorganisms metabolize. 273 However, the fact that cell-specific V_{max} was more-or-less constant downcore (Fig 2b) suggests that the heterotrophic community relied on complex organic matter to a similar 274 275 degree at all depths. The cell-specific V_{max} values for Leu-AMC hydrolysis, 21-51 amol 276 cell⁻¹ hr⁻¹, are comparable to previous measurements in active environments such as 277 surface sediments (2-100 amol cell⁻¹ hr⁻¹) and seawater (mostly less than 100 amol cell⁻¹ hr⁻¹, but with some measurements up to 10 nmol cell⁻¹ hr⁻¹; Vetter and Deming, 1994 and 278 279 references therein), consistent with communities that relied primarily on organic carbon 280 derived from macromolecules.

The ratio of ΣV_{max} : OC oxidation rate is sensitive to the mix of enzymes included in the sum, and to the substrate specificity of enzymes assayed (some enzymes will be capable of hydrolyzing multiple substrates). The absolute value of that sum, therefore, is not particularly meaningful. The trend, however, is informative: as sediment depth increased, the potential activity of extracellular peptidases decreased much more slowly than the actual rate of organic carbon oxidation, so the ratio of ΣV_{max} : OC oxidation rate increased dramatically (Fig 2d). V_{max} is a proxy for enzyme concentration, so the

288 observed increase in ΣV_{max} : OC oxidation rate combined with the trend in cell-specific 289 ΣV_{max} suggests that deeper heterotrophic communities exhibited similar demand for 290 detrital OM, but that those enzymes returned bioavailable hydrolysate at a much slower 291 rate because substrate concentrations were lower. 292 The White Oak River subsurface communities were similar to their surface 293 counterparts in terms of reliance on extracellular enzymes for bioavailable organic 294 carbon, although subsurface metabolisms were considerably slower. However, enzyme 295 kinetics and potential activities of D-phenylalanine aminopeptidase, L-phenylalanine 296 aminopeptidase, and L-ornithine aminopeptidase all suggested microbial community adaptation to old, degraded organic matter in deeper sediments. 297 298 Most amino acids are biosynthesized as L-stereoisomers. As organic matter ages, 299 the ratio of D-amino acids to L-amino acids (D:L ratio) increases with depth, due to 300 abiotic racemization and increased abundance of D-amino acids derived from bacterial 301 cell walls (Bada et al., 1970; Lomstein et al., 2009). Accordingly, the potential activity of 302 D-phenylalanyl aminopeptidase increased relative to that of L-phenylalanyl 303 aminopeptidase, indicating an increased capacity to access degraded organic matter. 304 Ornithine, which is a product of the release of urea from arginine, is another marker for 305 degraded organic matter, while phenylalanine is more characteristic of fresher organic 306 matter (Dauwe et al., 1999), and the relative potential activity of L-phenylalanine 307 aminopeptidase : ornithine aminopeptidase followed the same increasing trend with 308 depth. Finally, the decrease of K_m values with increasing depth indicates peptidases that 309 function more efficiently at lower substrate concentrations. It is intuitive that the

310 concentration of enzyme-labile organic matter concentrations would decrease downcore, 311 and the observed increase in ΣV_{max} : OC oxidation rate provides direct evidence of that. 312 Taken together, these three observations provide strong evidence for a subsurface 313 heterotrophic microbial community that is increasingly adapted to persist using degraded 314 organic matter at increasing depth. This evidence raises the ecological question of how selective pressure produces a 315 316 heterotrophic community adapted to degraded organic matter. Modeling and genomic 317 observations in other sedimentary environments suggest that microbial growth rates are 318 too slow for community adaptation by enhanced growth rates of more successful taxa; 319 rather, communities in deeper sediments consist of taxa that were deposited at the 320 sediment-water interface and died at the slowest rates (Starnawski et al., 2017; Bradley et 321 al., 2018). If those findings can be generalized to environments characterized by 322 recalcitrant organic matter, that poses a question: in which aquatic environments are 323 microorganisms capable gaining reproductive advantage by growing on recalcitrant 324 organic carbon? The studies cited above addressed sites at which sedimentation rates, 325 microbial respiration, and likely cell doubling times were considerably slower than in the 326 sediments described here, so even if growth (as opposed to persistence) on recalcitrant 327 organic carbon is not possible in those environments, it may have been in the White Oak 328 River sediments. Alternately, microbial taxa may gain adaptations to metabolize 329 recalcitrant organic matter in environments where labile organic matter is more abundant 330 and growth rates are higher. This scenario would imply that organisms which primarily 331 metabolize more labile organic matter would gain some selective advantage by also

metabolizing recalcitrant organic matter. Further analysis of the mechanisms by which
subsurface heterotrophs access degraded sedimentary organic matter may yield insights
into how microorganisms survive in low-energy environments, and into the controls on
organic carbon preservation in sediments over geological timescales.

336

337 Materials and Methods

338 STUDY SITE

Samples were collected from Station H in the White Oak River Estuary, 34° 339 340 44.490' N, 77° 07.44' W, first described by Gruebel and Martens (1984). The White Oak 341 River Estuary occupies a drowned river valley in the coastal plain of North Carolina. 342 Station H is characterized by salinity in the range of 10 to 28 and water depth on the 343 order of 2 m. The flux of ΣCO_2 across the sediment-water interface was 0.46 ± 0.02 344 mmol m⁻² hr⁻¹ (measured in May of 1987), primarily due to organic carbon oxidation via 345 sulfate reduction. The sediment accumulation rate averages 0.3 cm yr⁻¹ (Kelley et al., 346 1990). Total organic carbon content is approximately 5%. For this study, push cores of 347 40-85 cm were collected from Station H by swimmers on May 28, 2013, and October 22, 348 2014. In 2013, cores were transported to the nearby Institute of Marine Sciences 349 (University of North Carolina) at Morehead City, where they were sectioned and 350 processed for enzyme activities, porewater geochemistry, and cell counts within 6 hours 351 of sample collection. Porewater sulfate in 2013 was depleted by 43.5 cm, and methane 352 peaked at 79.5 cm (Fig. S1). In 2014, cores were transported on the day of sampling to

353 the University of Tennessee, Knoxville, stored at 4 °C, and processed for enzyme

activities the following day. Samples for metagenomic analysis were collected separately

in October 2010 from three sites (sites 1, 2, and 3, as previously described by Baker et al.,

356 2015), all of which are within 550 m of Station H.

357 ENZYME ASSAYS

358 Enzyme assays were performed using different protocols in 2013 (data presented 359 in Figs 1-3) versus 2014 (data presented in Fig 4). In 2013, enzyme assays were 360 performed according to a protocol similar to the one described in Lloyd et al (2013b). 361 Cores were sectioned into 3 cm intervals. The following intervals were selected for 362 enzyme assays: 0-3 cm, 3-6 cm, 27-30 cm, 57-60 cm, and 81-83 cm. Each section was 363 homogenized, and approximately 0.5 ml wet sediment was transferred into separate 5 ml 364 amber glass serum vials, which had been pre-weighed and preloaded with 4 ml anoxic 365 artificial seawater (Sigma Sea Salts, salinity = 15, pH=7.5) Samples were weighed again 366 to determine the precise mass of wet sediment added, and then an appropriate quantity of 367 20 mM peptidase substrate stock dissolved in DMSO was added, up to 90 μ L, for final 368 substrate concentrations of 0, 25, 50, 75, 100, 200, or 300 µM. Substrates are listed in 369 Table 1. Triplicate incubations with 400 uM Arg-AMC, Gly-AMC, Leu-AMC and Gly-370 Gly-Arg-AMC were also created, but these were omitted for Ala-Ala-Phe-AMC and Boc-371 Phe-Val-Arg-AMC because the latter two substrates are considerably more expensive. 372 Each serum vial was vortexed, briefly gassed with N_2 to remove oxygen introduced with 373 the sample, and approximately 1.3 ml slurry was immediately removed, transferred to a microcentrifuge tube, and placed on ice to quench the reaction. The precise time of 374

375	quenching was recorded. This was centrifuged at $10,000 \times g$ within approximately 15
376	minutes. The supernatant was transferred to a methacrylate cuvette and fluorescence was
377	measured with a Turner Biosystems TBS-380 fluorescence detector set to UV mode
378	(λ_{ex} =365-395 nm, λ_{em} =465-485 nm). Samples were then incubated at 16 °C,
379	approximately the <i>in situ</i> temperature, and the sampling procedure was repeated after
380	approximately 3 hours. The rate of fluorescence production was calculated as the increase
381	in fluorescence for each sample divided by the elapsed time between sample quenching.
382	Killed controls were made using homogenized, autoclaved sediments from 35-45 cmbsf.
383	However, we note that autoclaving does not completely destroy sediment enzymes
384	because sorption to mineral surfaces stabilizes enzyme structure, vastly increasing their
385	ability to maintain a functional conformation at high temperatures (Stursova and
386	Sinsabaugh, 2008; Carter et al., 2007; Schmidt, 2016). We therefore used the autoclaved
387	samples as a qualitative control for the null hypothesis that enzymes were responsible for
388	none of the observed substrate hydrolysis, rather than as a quantitative method to
389	distinguish enzymatic substrate hydrolysis from potential abiotic effects. In some
390	sediments, a large fraction of fluorophore can sorb to particles, requiring a correction to
391	observed fluorescence (Coolen et al., 2002; Coolen and Overmann, 2000), but we
392	observed negligible sorption of fluorophore to the White Oak River sediments.
393	In 2014, enzymes were assayed using a protocol based on the approach of Bell et
394	al (2013), which was designed for soil enzyme assays. In this approach, peptidase
395	substrates were mixed with sediment-buffer slurries in 2-mL wells of a deep-well plate.
396	These plates were periodically centrifuged and 250 μ L aliquots of supernatant were

397	transferred into a black 96-well microplate. Fluorescence was read using a BioTek
398	Cytation 3 microplate reader ($\lambda_{ex} = 360 \text{ nm}$, $\lambda_{em} = 440 \text{ nm}$). Results from this method
399	proved considerably noisier than the single-cuvette method used in 2013, so kinetic
400	parameters (V_{max} and K_m) were not calculated for these data. Nevertheless, results were
401	qualitatively similar to those from 2013, and we have reported V_{max} from 2014 as v_0
402	measured at 400 μ M substrate concentration, which was saturating. In June 2014, the
403	following substrates were assayed: AAF-AMC, Arg-AMC, Boc-VPR-AMC, D-Phe-
404	AMC, Gly-AMC, Leu-AMC, L-Phe-AMC, Orn-AMC, Z-Phe-Arg-AMC, and Z-Phe-Val-
405	Arg-AMC. In October 2014, L-Phe-AMC, D-Phe-AMC, and Orn-AMC were assayed
406	according to the same protocol in 3-cm core sections at 1.5, 4.5, 7.5, 10.5, 19.5, 22.5,
407	25.5, 28.5, 34.5, 37.5, 40.5, 43.5, 49.5, 52.5, 58.5, and 61.5 cmbsf.
408	Peptidase kinetic data were analyzed using R. All raw data and scripts related to
408 409	Peptidase kinetic data were analyzed using R. All raw data and scripts related to enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For
409	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For
409 410	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten
409 410 411	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten parameters were estimated from nonlinear least squares fits to kinetic data. In the case of
409 410 411 412	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten parameters were estimated from nonlinear least squares fits to kinetic data. In the case of Leu-AMC at 4.5 centimeters below seafloor, kinetic data could not successfully be fit to a
 409 410 411 412 413 	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten parameters were estimated from nonlinear least squares fits to kinetic data. In the case of Leu-AMC at 4.5 centimeters below seafloor, kinetic data could not successfully be fit to a Michaelis-Menten function, so no K_m was reported and the value of v ₀ at the highest
 409 410 411 412 413 414 	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten parameters were estimated from nonlinear least squares fits to kinetic data. In the case of Leu-AMC at 4.5 centimeters below seafloor, kinetic data could not successfully be fit to a Michaelis-Menten function, so no K_m was reported and the value of v ₀ at the highest substrate concentration was substituted for V_{max} . For analysis of correlations, data sets
 409 410 411 412 413 414 415 	enzyme analysis are posted at <u>http://github.com/adsteen/WOR_enz_2013_2014</u> . For samples taken using the more sensitive single-cuvette method, Michaelis-Menten parameters were estimated from nonlinear least squares fits to kinetic data. In the case of Leu-AMC at 4.5 centimeters below seafloor, kinetic data could not successfully be fit to a Michaelis-Menten function, so no K_m was reported and the value of v ₀ at the highest substrate concentration was substituted for V_{max} . For analysis of correlations, data sets were qualitatively evaluated for homoskedasticity and normality of residuals using q-q

419 cases in which log-transformed data were wither heteroskedastic or residuals were non-

420 normally distributed, data were rank-transformed and correlations were tested using

421 Spearman's ρ .

422

423 GEOCHEMICAL AND MICROBIOLOGICAL MEASUREMENTS

424 Sediment porosity was measured by mass after drying at 80 °C, according to the 425 equation

$$\phi = \frac{m_w/\rho_w}{m_w/\rho_w + \frac{m_d - S \times m_w/1000}{\rho_{ds}}}$$

426

427 Here, m_w represents mass lost after drying, ρ_w represents the density of pure water, m_d represents the mass of the dry sediment, S represents salinity in g kg⁻¹, and ρ_{ds} 428 429 represents the density of dry sediment (assumed to be 2.5 g cm⁻³). Porewater sulfate 430 concentrations were measured using a Dionex Ion Chromatograph (Sunnyvale, CA) in 431 porewater that was separated by centrifugation in 15 ml centrifuge tubes at $5000 \times g$ for 5 432 minutes, filtered at 0.2 µm, and acidified with 10% HCl. Methane was measured using 3 433 ml sediment subsamples that were collected from a cutoff syringe, entering through the 434 side of a core section, immediately after core extrusion. Subsamples were deposited 435 immediately in a 20 ml serum vial containing 1 ml, 0.1 M KOH. These were immediately 436 stoppered and shaken to mix sediment with KOH. Methane was later measured by 437 injecting 500 µl of bottle headspace into a GC-FID (Agilent, Santa Clara, CA) using a 438 headspace equilibrium method (Lapham et al., 2008).

439 GEOCHEMICAL MODELING

440	Organic carbon remineralization rates as a function of depth were estimated by
441	applying a multi-component reaction-transport model to depth distributions of sulfate and
442	methane concentration. The model is based on equations described in Boudreau
443	(Boudreau, 1996) and includes only sulfate reduction and methane production due to lack
444	of data regarding oxic and suboxic processes. Thus, the model is limited to depths greater
445	than 4.5 cm where sulfate reduction and methane production are the dominant processes,
446	and bioirrigation and bioturbation may be assumed to be negligible. The organic matter
447	remineralization rate is parameterized using the multi- G model first proposed by
448	Jørgensen (1978); a two-component model was sufficient to accurately simulate the
449	sulfate and methane data. For solutes, the upper boundary conditions were measured
450	values at 4.5 cm while the lower boundary conditions (200 cm) were set to zero-gradient.
451	The flux of reactive organic carbon to 4.5 cm was calculated from the sulfate flux across
452	the 4.5 cm horizon and an estimate of methane burial below the lower boundary (the
453	methane flux at the upper boundary was observed to be zero), with an assumed oxidation
454	state of reactive carbon of -0.7. The model contains four adjustable parameters that are
455	set to capture the major details of measured sulfate and methane data: first-order rate
456	constants for both fractions of the reactive carbon pool; the partitioning factor for both
457	fractions, and the rate constant for methane oxidation.

458 CELL ENUMERATION

459 Cells were enumerated by direct microscopic counts. One mL of sediment was
 460 placed in a 2-mL screw-cap tube with 500 µl of 3% paraformaldehyde in phosphate
 23

461	buffered saline (PBS), in which it was incubated overnight before being centrifuged for 5
462	minutes at 3000 × g. The supernatant was removed and replaced with 500 μ l of PBS,
463	vortexed briefly and centrifuged again at $3000 \times g$. The supernatant was subsequently
464	removed and replaced with a 1:1 PBS:ethanol solution. Sediments were then sonicated at
465	20% power for 40 seconds to disaggregates cells from sediments and diluted 40-fold into
466	PBS prior to filtration onto a 0.2 μ m polycarbonate filter (Fisher Scientific, Waltham,
467	MA) and mounted onto a slide. Cells were stained with 4',6-diamidino-2-phenylindole
468	(DAPI) and enumerated by direct counts using a Leica Epifluorescence Microscope.
469	METAGENOMIC ANALYSIS
470	To resolve the taxonomic distribution of extracellular peptidases we searched a
471	pre-existing White Oak River de novo assembled and binned metagenomic dataset (Table
472	S2; Baker et al., 2015) for genes that were assigned extracellular peptidase functions.
473	These assignments were based on best matches to extracellular peptidases in KEGG,
474	pfam, and NCBI-nr (non-redundant) databases using the IMG annotation pipeline
475	(Markowitz et al., 2014). Genes were additionally screened for signal peptidase motifs
476	using the following programs: PrediSI setting the organism group to gram-negative
477	bacteria (Hiller et al., 2004), PRED-Signal trained on archaea (Bagos et al., 2009), the
478	standalone version of PSORT v.3.0 trained against archaea (Yu et al., 2010), and SignalP
479	4.1 using gram-negative bacteria as the organism group (Petersen et al., 2011). All
480	programs were used with default settings if not stated otherwise. Binned genomes from
481	three different depth zones of White Oak River sediments were examined. The sulfate-
482	rich zone (SRZ) genomes were obtained from sites 2 and 3 core sections 8-12 and 8-10
	24

- 483 cm, respectively. The sulfate-methane transitions zone (SMTZ) genomes were recovered
- 484 from site 2 and 3 and depths of 30-32 cm and 24-28 cm. The methane-rich zone (MRZ)
- 485 was from site 1 and 52-54 cm.

487 Acknowledgements

488	We thank Michael Piehler for access to his laboratory facilities at the University
489	of North Carolina Institute of Marine Sciences, the captain of the R/V Capricorn for
490	sampling assistance, and Terry Hazen for use of lab equipment at the University of
491	Tennessee. We thank Oliver Jeffers for reminding ADS that science is cool. Funding for
492	KHM was provided by NSF grant DBI-1156644 to Steven W. Wilhelm. Funding for
493	ADS was provided by NSF grant OCE-1431598 and a C-DEBI subaward. This work is
494	C-DEBI Contribution number << to be determined.>>
495	

496 **Conflict of interest**

497	The authors declare no competing financial interests in relation to the work
498	described.
499	
500	

501 **References**

502	Allison SD. (2005). Cheaters, diffusion and nutrients constrain decomposition by		
503	microbial enzymes in spatially structured environments. Ecol Lett 8: 626-635.		
504	Arnosti C, Bell C, Moorhead DLL, Sinsabaugh RLL, Steen ADD, Stromberger		
505	M, et al. (2014). Extracellular enzymes in terrestrial, freshwater, and marine		
506	environments: perspectives on system variability and common research needs.		
507	Biogeochemistry 117: 5–21.		
508	Bada JL, Luyendyk BP, Maynard JB. (1970). Marine sediments: Dating by the		
509	racemization of amino acids. Science (80-) 170: 730-732.		
510	Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. (2009).		
511	Prediction of signal peptides in archaea. Protein Eng Des Sel 22: 27-35.		
512	Baker BJ, Lazar CS, Teske AP, Dick GJ. (2015). Genomic resolution of linkages		
513	in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria.		
514	Microbiome 3 : 14.		
515	Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD.		
516	(2013). High-throughput fluorometric measurement of potential soil extracellular enzyme		
517	activities. J Vis Exp e50961.		
518	Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. (2005). Non-classical protein		
519	secretion in bacteria. BMC Microbiol 5: 58.		
520	Benner R, Amon RMW. (2015). The size-reactivity continuum of major		
521	bioelements in the ocean. Ann Rev Mar Sci 7: 185–205.		
522	Benz R, Bauer K. (1988). Permeation of hydrophilic molecules through the outer 27		

523	membrane of gram-negative bacteria. Review on bacterial porins. Eur J Biochem 176: 1-		
524	19.		
525	Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, et al.		
526	(2006). Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.		
527	<i>Proc Natl Acad Sci U S A</i> 103 : 3846–51.		
528	Bird JT, Tague E, Zinke L, Schmidt JM, Steen AD, Reese BK, et al. Uncultured		
529	microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea		
530	sediments. MBio.		
531	Boudreau BP. (1996). A method-of-lines code for carbon and nutrient diagenesis		
532	in aquatic sediments. Comput Geosci 22: 479-496.		
533	Bradley JA, Amend JP, LaRowe DE. (2018). Survival of the fewest: Microbial		
534	dormancy and maintenance in marine sediments through deep time. Geobiology. e-pub		
535	ahead of print, doi: 10.1111/gbi.12313.		
536	Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, et al. (2004).		
537	Diversity and population structure of a near-shore marine-sediment viral community.		
538	<i>Proc R Soc B Biol Sci</i> 271 : 565–574.		
539	Carter DO, Yellowlees D, Tibbett M. (2007). Autoclaving kills soil microbes yet		
540	soil enzymes remain active. Pedobiologia (Jena) 51: 295–299.		
541	Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J. (2002). Ongoing		
542	modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science		
543	296 : 2407–10.		
544	Coolen MJL, Overmann J. (2000). Functional Exoenzymes as Indicators of		

545	Metabolically Active Bacteria in 124,000-Year-Old Sapropel Layers of the Eastern		
546	Mediterranean Sea. Appl Environ Microbiol 66: 2589–2598.		
547	Danovaro R, Dell'Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C,		
548	et al. (2008). Major viral impact on the functioning of benthic deep-sea ecosystems.		
549	<i>Nature</i> 454 : 1084–1087.		
550	Dauwe B, Middelburg JJ, Herman PMJ, Heip CHR. (1999). Linking diagenetic		
551	alteration of amino acids and bulk organic matter reactivity. Limnol Oceanogr 44: 1809-		
552	1814.		
553	Feng L, Yan H, Wu Z, Yan N, Wang Z, Jeffrey PD, et al. (2007). Structure of a		
554	site-2 protease family intramembrane metalloprotease. Science 318: 1608–12.		
555	Green DH, Cutting SM. (2000). Membrane topology of the Bacillus subtilis pro-		
556	sigma(K) processing complex. J Bacteriol 182: 278-85.		
557	Gruebel KA, Martens CS. (1984). Radon-222 tracing of sediment-water chemical		
558	transport in an estuarine sediment. Limnol Oceanogr 29: 587-597.		
559	Hiller K, Grote A, Scheer M, Münch R, Jahn D. (2004). PrediSi: Prediction of		
560	signal peptides and their cleavage positions. Nucleic Acids Res 32. e-pub ahead of print,		
561	doi: 10.1093/nar/gkh378.		
562	Hoehler TM, Jørgensen BB. (2013). Microbial life under extreme energy		
563	limitation. <i>Nat Rev Microbiol</i> 11: 83–94.		
564	Jacobson Meyers ME, Sylvan JB, Edwards KJ. (2014). Extracellular enzyme		
565	activity and microbial diversity measured on seafloor exposed basalts from Loihi		
566	seamount indicate the importance of basalts to global biogeochemical cycling. Appl		

567 Environ Microbiol **80**: 4854–64.

568	Jørgensen BB. (1978). A comparison of methods for the quantification of		
569	bacterial sulfate reduction in coastal marine sediments: II. Calculation from mathematical		
570	models. <i>Geomicrobiol J</i> 1: 29–47.		
571	Jørgensen BB, Marshall IPG. (2016). Slow Microbial Life in the Seabed. Ann Rev		
572	<i>Mar Sci</i> 8 : 311–32.		
573	Kelley CA, Martens CS, Chanton JPJP. (1990). Variations in sedimentary carbon		
574	remineralization rates in the White Oak River estuary, North Carolina. Limnol Oceanogr		
575	35 : 372–383.		
576	Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. (2012). Archaea of		
577	the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine		
578	sediments. ISME J 6: 1949–65.		
579	Lapham LL, Chanton JP, Martens CS, Sleeper K, Woolsey JR. (2008). Microbial		
580	activity in surficial sediments overlying acoustic wipeout zones at a Gulf of Mexico cold		
581	seep. Geochemistry, Geophys Geosystems 9: Q06001.		
582	Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs K-U, et al. (2016).		
583	Genomic evidence for distinct carbon substrate preferences and ecological niches of		
584	Bathyarchaeota in estuarine sediments. Environ Microbiol 18: 1200-11.		
585	Lloyd KG, Alperin MJ, Teske A. (2011). Environmental evidence for net methane		
586	production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.		
587	Environ Microbiol 13: 2548–2564.		
588	Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al.		
	30		

589 (2013a). Predominant archaea in marine sediments degrade detrital proteins. *Nature* 496:
590 215–8.

Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, *et al.*(2013b). Predominant archaea in marine sediments degrade detrital proteins. *Nature* 496.
e-pub ahead of print, doi: 10.1038/nature12033.
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. (2018). Phylogenetically Novel
Uncultured Microbial Cells Dominate Earth Microbiomes Neufeld JD (ed). *mSystems* 3:
e00055-18.

597 Lomstein BA, Langerhuus AT, D'Hondt S, Jørgensen BB, Spivack AJ. (2012).

598 Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor

599 sediment. *Nature* **484**: 101–4.

600 Lomstein BA, Niggemann J, Jørgensen BB, Langerhuus AT. (2009).

601 Accumulation of prokaryotic remains during organic matter diagenesis in surface

602 sediments off Peru. *Limnology* **54**: 1139–1151.

Martens CS, Goldhaber MB. (1978). Early diagenesis in transitional sedimentary
environments of the White Oak River Estuary, North Carolina. *Limnol Oceanogr* 23:
428–441.

Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. (2014). Genetic and functional
properties of uncultivated MCG archaea assessed by metagenome and gene expression
analyses. *ISME J* 8: 650–9.

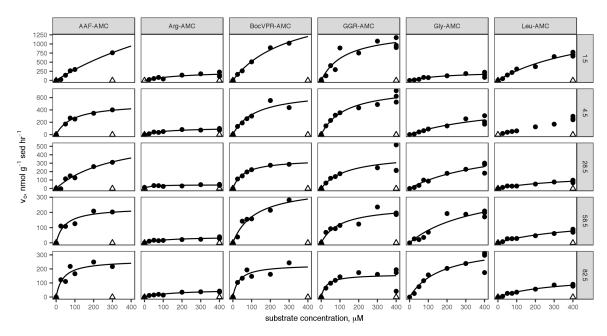
- 609 Michalska K, Steen AD, Chhor G, Endres M, Webber AT, Bird J, et al. (2015).
- 610 New aminopeptidase from 'microbial dark matter' archaeon. *FASEB J* 29: 4071–4079.

611	O'Sullivan LA, Roussel EG, Weightman AJ, Webster G, Hubert CR, Bell E, et al.		
612	(2015). Survival of Desulfotomaculum spores from estuarine sediments after serial		
613	autoclaving and high-temperature exposure. ISME J 9: 922–933.		
614	Obayashi Y, Suzuki S. (2005). Proteolytic enzymes in coastal surface seawater:		
615	5 Significant activity of endopeptidases and exopeptidases. <i>Limnol Oceanogr</i> 50 : 722–72		
616	Orsi WD, Edgcomb VP, Christman GD, Biddle JF. (2013). Gene expression in		
617	the deep biosphere. Nature 499: 205–208.		
618	Orsi WD, Richards TA, Francis WR. (2018). Predicted microbial secretomes and		
619	their target substrates in marine sediment. Nat Microbiol 3: 32-37.		
620	Pantoja S, Lee C, Marecek JF. (1997). Hydrolysis of peptides in seawater and		
621	sediment. Mar Chem 57: 25-40.		
622	Petersen TN, Brunak S, von Heijne G, Nielsen H. (2011). SignalP 4.0:		
623	discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-6.		
624	Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. (2018).		
625	The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017		
626	and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:		
627	D624–D632.		
628	Reintjes G, Arnosti C, Fuchs BM, Amann R. (2017). An alternative		
629	polysaccharide uptake mechanism of marine bacteria. ISME J 11: 1640–1650.		
630	Schimel JP, Weintraub MN. (2003). The implications of exoenzyme activity on		
631	microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem		
632	35 : 549–563.		

633	Schmidt J. (2016). Microbial Extracellular Enzymes in Marine Sediments:		
634	Methods Development and Potential Activities in the Baltic Sea Deep Biosphere.		
635	University of Tennessee - Knoxville.		
636	Starnawski P, Bataillon T, Ettema TJG, Jochum LM, Schreiber L, Chen X, et al.		
637	(2017). Microbial community assembly and evolution in subseafloor sediment. Proc Nat		
638	<i>Acad Sci U S A</i> 114 : 2940–2945.		
639	Steen AD, Arnosti C. (2013). Extracellular peptidase and carbohydrate hydrolase		
640	activities in an Arctic fjord (Smeerenburgfjord, Svalbard. Aquat Microb Ecol 69: 93-99.		
641	Steen AD, Arnosti C. (2011). Long lifetimes of β -glucosidase, leucine		
642	aminopeptidase, and phosphatase in Arctic seawater. Mar Chem 123: 127-132.		
643	Steen AD, Vazin JPJP, Hagen SMSM, Mulligan KHKH, Wilhelm SWSW.		
644	(2015). Substrate specificity of aquatic extracellular peptidases assessed by competitive		
645	inhibition assays using synthetic substrates. Aquat Microb Ecol 75: 271–281.		
646	Stursova M, Sinsabaugh RL. (2008). Stabilization of oxidative enzymes in desert		
647	soil may limit organic matter accumulation. Soil Biol Biochem 40: 550-553.		
648	Vetter YA, Deming JW. (1994). Extracellular enzyme activity in the Arctic		
649	Northeast Water polynya. Mar Ecol Prog Ser 114: 23–34.		
650	Vetter YAY, Deming JJW, Jumars PPA, Krieger-Brockett BBB. (1998). A		
651	Predictive Model of Bacterial Foraging by Means of Freely Released Extracellular		
652	Enzymes. <i>Microb Ecol</i> 36 : 75–92.		
653	Yeats C, Bentley S, Bateman A. (2003). New knowledge from old: in silico		
654	discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol 3: 3.		

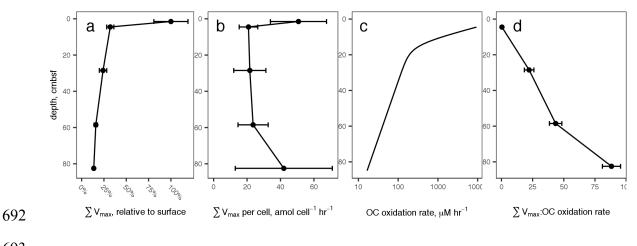
655	Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. (2010). PSORTb 3.0:		
656	improved protein subcellular localization prediction with refined localization		
657	subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-		
658	1615.		
659	Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu J-D, et al. (2018a). Genomic and		
660	transcriptomic insights into the ecology and metabolism of benthic archaeal		
661	cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 1.		
662	Zhou Z, Pan J, Wang F, Gu J-D, Li M. (2018b). Bathyarchaeota: globally		
663	distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 42: 639-		
664	655.		
665			

667 **Table**

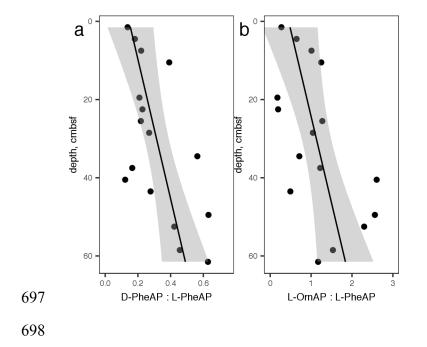

- Table 1: Substrates used in this study and the enzymes that hydrolyze them. AMC stands
- 669 for aminomethylcoumarin, the moiety that becomes fluorescent after hydrolysis of the
- 670 peptide bond. All amino acids are in the L- stereoconformation unless otherwise noted.
- 671 Enzymes are described as "putative" because the substrate specificity of many
- 672 environmental peptidases is fairly broad, so multiple peptidases may hydrolyze any given
- 673 substrate.

Substrate	Abbreviation	Putative enzyme
L-arginine-7-amido-4-methylcoumarin	Arg-AMC	arginyl aminopeptidase
L-glycine-7-amido-4-methylcoumarin	Gly-AMC	glycyl aminopeptidase
L-leucine-7-amido-4-methylcoumarin	Leu-AMC	leucyl aminopeptidase
Carboxybenzoyl-glycine-glycine-arginine-7- amido-4-methylcoumarin	Z-GGR-AMC	gingipain and other endopeptidases
Alanine-alanine-phenylalanine-7-amido-4- methylcoumarine	AAF-AMC	clostripain and other endopeptidases
Boc-valine-proline-arginine-AMC	Boc-VPR-AMC	gingipain and other endopeptidases
D-phenylalanine-AMC	D-Phe-AMC	D-phenyalanine aminopeptidase
L-phenylalanine-AMC	L-Phe-AMC	L-phenylalanine- aminopeptidase
Ornithine-AMC	Orn-AMC	ornithine aminopeptidase

- 674
- 675

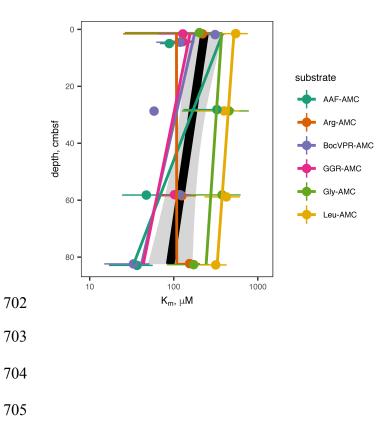

676 Figures and Legends

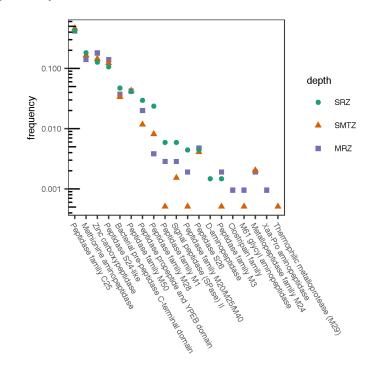
- 677 Figure 1: Saturation curves for six substrates measured using the single-cuvette reader
- 678 methodology at each of six depths. Dark circles indicate "live" samples, open triangles
- 679 indicate autoclaved controls. Lines indicate nonlinear least-squares fits to the Michaelis-
- 680 Menten rate law. Substrate abbreviations are given in the column headings and are
- defined in Table 1. Sediment depths are listed on row headings in centimeters below
- 682 sediment-water interface.


683

- Figure 2: a.) The sum of all peptidase Vmax values, relative to the value at 4.5 cm, versus
- 686 sediment depth. Error bars represent propagated error of the estimate of V_{max} for each
- 687 substrate. b.) Summed V_{max} relative to cell count. Error bars represent propagated error
- from summed Vmax and cell counts, and is dominated by cell count uncertainty. c.)
- 689 Organic carbon oxidation rates modeled from sulfate and methane profiles. d.) Summed
- V_{max} relative to modeled carbon oxidation rates. Error bars represent error in summed
- V_{max} relative to organic carbon oxidation rates, for which uncertainty was not modeled.

693

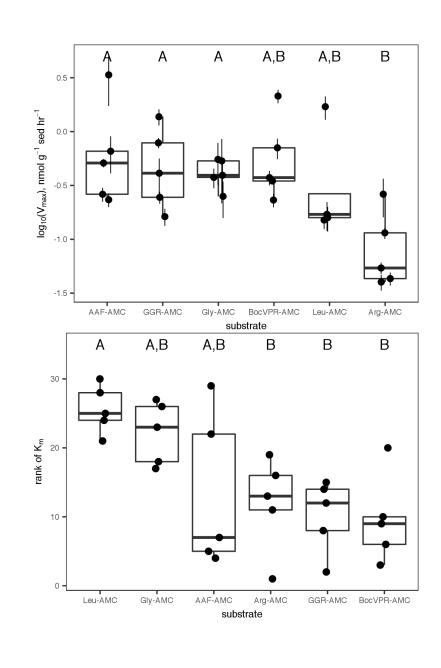

695 Fig 3: a.) Ratio of v_0 for D-phenylalanine aminopeptidase: L-phenylalanine


696 aminopeptidase and b.) L-ornithine aminopeptidase : L-phenylalanine aminopeptidase.

- 699 Fig 4: *K_m* values of extracellular peptidases as a function of depth. Details of substrates
- and the peptidases they correspond to are in Table 1.

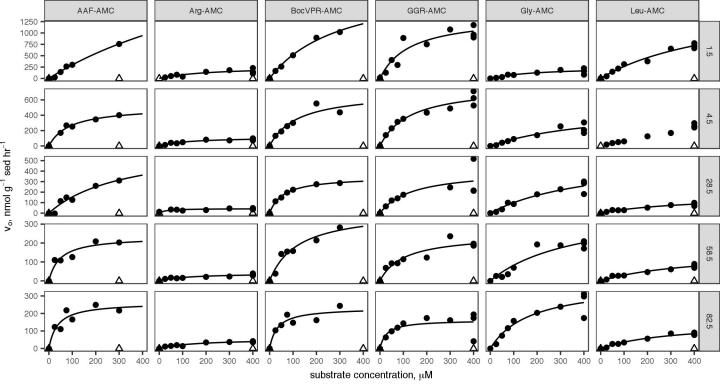
701

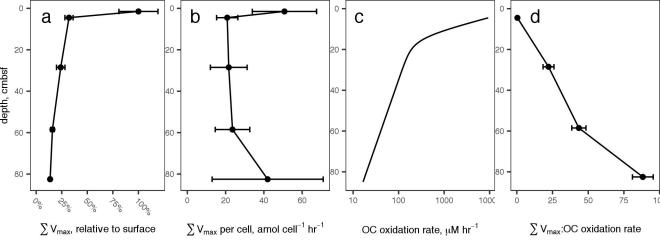
- 707 Fig 5: Frequency of reads for genes of various classes of extracellular peptidases that
- 708 were associated with signal peptidases, relative to all genes for extracellular peptidases at
- that depth. SRZ, SMTZ, and MRZ correspond to "sulfate reducing zone" (8-12 cmbsf),
- 710 "sulfate-methane transition zone" (24-32 cmbsf) and "methane-rich zone" (24-28 cmbsf)
- 711 respectively.

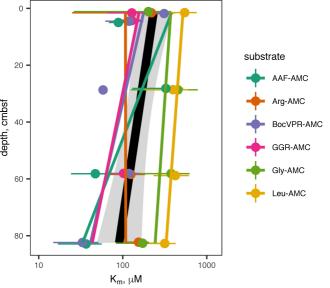


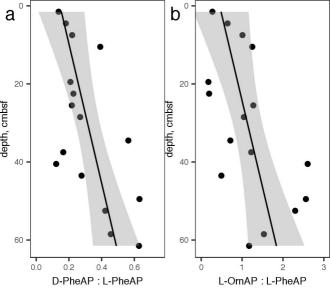
712

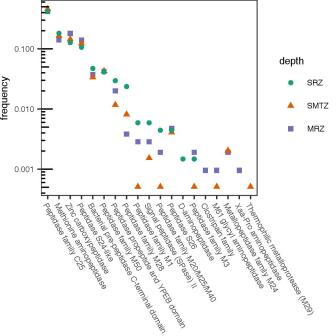
713


715 Supplemental Information


Fig S1: V_{max} and K_m values.






720 Supplemental file: annotations of all peptidases included in this manuscript.

